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Abstract
Infaunal communities of benthic macro-organisms (� 1mm length) were studied from 81

samples collected across nine sites to the north and south of the Orange River in the Ben-

guela upwelling ecosystem in 2003, with a view to describing communities and understand-

ing the drivers of regional community structure, as well as to document diversity and to

examine geographic affinities. Although the fauna was dominated by polychaetes and pera-

carid crustaceans, patterns in community structure could only weakly be explained by the

measured environment (~35%). This is attributed to the generalist nature of the species

recovered, which were widely distributed amongst different sediments, water-depths and

latitudes. The fauna is dominated by species that enjoy a widespread regional and global

distribution and is characterised by relatively low diversity, which is discussed.

Introduction
Coastal-upwelling ecosystems are amongst the most productive in the world, where pelagic
systems are characterised by short diatom-based food chains leading to industrial scale fisheries
[1]. Biomass is generally high, and diversity is correspondingly low, perhaps because the high
levels of environmental instability prevents the fine-tuning of genotypes to local conditions [2].
Although this favours habitat generalists (as at polar latitudes [3]), few of the dominant species
are shared amongst the four (Benguela, Humboldt, Canary and California) major upwelling
systems [2]: and those that are tend to be large and migratory.

The benthic habitat of these upwelling ecosystems is often characterised by large areas of
diatomaceous ooze, fed by the sedimentation of excess surface production [4]. This environ-
ment is associated with low concentrations of dissolved oxygen (<0.5 ml O2 l

-1), and some-
times high levels of hydrogen sulphide in the pore water [5]. Methane eruptions are not
uncommon [6]. The fauna of these oxygen minimum zones (OMZs), sensu [7], is characterised
by a high density of benthic Foraminifera, which is thought to reflect both their release from
predation and an enhanced food supply [7]. The densities of macrofauna (>1 mm body length)
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are typically low, except at the margins, and communities tend to be dominated by polychaete
worms of small size [7 cf 8]. Macrofaunal diversity within OMZs is also low, and communities
show a remarkable homogeneity in composition across wide spatial scales; a fact that is attrib-
uted to the lack of biogenic structures and large burrowers [7]. Although the typical fauna of
OMZs has a variety of specialised adaptations to low oxygen [7], periodic increases in oxygen-
ation can lead to the sudden proliferation of a diversity of previously absent, highly opportunis-
tic species such as molluscs and crustaceans, as well as echinoderms [9].

Despite the presence of permanent OMZs in coastal upwelling areas, these systems often
support important demersal fisheries [10]. And whilst some of the target species are piscivo-
rous as adults (e.g. hakes), most will feed on benthic infaunal organisms for at least part of their
life cycle (e.g. [11]). Clearly, given the paucity of animals in the permanent OMZs, these areas
cannot provide all the necessary food for the often abundant demersal resources (but see [12]),
yet our knowledge of benthic communities from outside of the OMZs in upwelling areas is
curiously limited.

In the case of the Benguela upwelling ecosystem, macrofaunal diversity appears to be lowest
off Walvis Bay in Namibia [8], which is attributed to the OMZ that is perennially present
over the shelf there [13]. Off the Kunene River in the north, diversity has been observed to
increase significantly [8, 14–15] and this reflects both biogeographic influences (higher natural
diversity in the subtropical waters off southern Angola) and a movement away fromWalvis
Bay. An increase in diversity has been noted too by Atkinson et al [16] to the south of Walvis
Bay, which may also be related to the more oxic nature of the overlying water column (>2 ml
O2 l

-1), but could also be due to the increased water-depth (348–436 m cf 49–117 m, [8]) from
which they collected their samples.

The factors contributing to the diversity of local infaunal communities outside of OMZs
have been reviewed by [17], but it is widely agreed that the regional species pool, which reflects
bathymetry and latitude, is primarily responsible for influencing local diversity. Gray ([17] pp
293) further suggests that “. . .available food resources control population densities at a variety
of scales and set the maximum range of species richness, but that variability in species richness
for a given resource level is determined by spatial and temporal heterogeneity in sediment
structure. . .”. However, the few regional studies that have attempted to look at infaunal com-
munities have indicated that sediment properties explain either no (e.g. [8]) or a limited [16]
amount of the variability in communities or their attributes.

A reduction in diversity around the coast of South Africa from east to west has been widely
noted in the literature for intertidal and shallow water communities and taxa (e.g. [18]).
Although patterns of endemism vary with the subject group, most taxa show greatest levels of
endemism along the south coast (e.g. ascidians), and at the transition areas between regional
biogeographic provinces [19–20]. The west coast region supports low numbers of both overall
species and endemic species [19]. Few benthic studies have extended into Namibia (e.g. [18]),
but the results of work on pelagic organisms suggest a further decline in diversity to the posi-
tion of the Benguela-Angola Front [21].

Here, we set out to examine infaunal communities from the offshore (inner shelf only)
waters of southern Namibia (outside the permanent OMZ at Walvis Bay) and off the northwest
coast of South Africa (Namaqualand) with a view to 1) describing and exploring spatial pat-
terns in community structure and the potential drivers of same, 2) estimating species richness
for selected taxa and so further our insight into regional patterns of diversity, and 3) examining
the global distributional ranges of the fauna in order to establish biogeographic affinities and
levels of endemism.
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Materials and Methods

Study Area
The study area is located over the inner shelf north and south of the Orange River, the latter
marking the political boundary between Namibia and South Africa (Fig 1). Within this area,
nine sites were selected for investigation (Fig 1) The sedimentary environment of the area has
been described by [22–24], whilst the physical and chemical environment have been summa-
rised respectively by [25] and [13].

In brief, the shelf off the Orange River is up to 180 km broad [25], and sediments form tex-
tural zones parallel to the coast [22]. These generally become finer seawards, changing from
terrigenous (land derived, low carbonate) sands on the inner and middle shelves to terrigenous
muddy sands and sandy muds on the outer shelf and continental slope, but may remain sandy
to the slope in areas where relict sand is found on the middle shelf. The extensive mud belt that
stretches southwards along the South African west coast for up to 500 km is up to 40 km wide
and 15 m thick and is situated over the outer edge of the inner shelf. The sediments are mainly
of terrigenous origin, and on the prodelta of the Orange River they are laminated and have a
dominant fluvial input [27]. The samples fromML3 South (Fig 1) come from the distal edge of
the terrigenous inner-shelf mudbelt in depths of 141 m to 137 m, SW of Port Nolloth, and
those fromML3 North also come from the distal edge of the inner-shelf mudbelt, WSW of the
Orange River, from slightly shallower depths of 134 m to 120 m.

Off the Sperrgebiet, immediately north of the Orange River, the MA1 North and South sites
(Fig 1) occur over the distal edge of the inner-shelf mudbelt, there being part of the Orange
prodelta, in depths of 102 m to 98 m (South) and 107 m to 105 m (North). The gravels, initially
deposited by surf-zone processes during the Pleistocene low stands in this area were drowned
by quartzose sands, and then the prodeltaic silts and clays deposited by the seaward prograd-
ing-feather edge of the Holocene Orange Delta were subsequently integrated into the delta-
front by bioturbation. As a consequence, the sediments here typically exhibit a fining-upward
transgressive sequence within the upper 30 cm and consist mainly of muddy sand and sandy
mud [23].

The five sampling-areas farther north off southern Namibia are all from shallower depths
(67 m to 14 m), close to the higher-energy, wave-affected zone beside the coast. The Kerbe Huk
samples, still off the Sperrgebiet, are from 67 to 22 m, those from just north of Chameis Bay are
from 47 m to 21 m and those off Bogenfels from 76 m to 19 m. Approaching Lüderitz, north of
the Sperrgebiet, the samples from Elizabeth Bay are from 60 m to as shallow as 14 m, whereas
those off Halifax Island, just west of Lüderitz, are from 67 m to 24 m.

Much of the inner shelf off central Namibia is subject to seasonally and inter-annually vari-
able oxygen stress [28]. This reflects the complex interplay between the sedimentation and
decay of local surface production, thermal stratification and the advection of low-oxygen
waters from Angola [28]. Although the Orange River Bight is subject to locally generated low-
oxygen water [29], as are all areas downstream of the upwelling cells in the Benguela ecosystem
[13], the impact of low-oxygen water from Angola appears limited here [30].

Companies within the De Beers Group of Companies are holders of several diamond-min-
ing-licence areas off the South African (Namaqualand) and Namibian West Coast. The marine
portions of these licence areas include the deep-sea (80–120m) mining areas MLA3 off Nama-
qualand and the Atlantic 1 Mining Licence (MLA1) area off the southern Namibian coast, as
well as the southern Namibian mid-water (<80 m) licence areas between Kerbe Huk and Lüde-
ritz (Fig 1).
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Benthic Sampling Methods
Nine samples were collected from each of the nine sites shown in Fig 1 during November 2003.
All sites occurred within the mining-licence areas for which the respective De Beers Group
companies have exclusive government permission to sample, and from whom permission was
obtained to collect the material presented here. All samples were at least 1 km from the nearest
mining activity. Samples were taken with a Van Veen grab, which samples an area of 0.2 m2 of
seabed penetrating the sediment to about 20–30 cm. Although the volume of each grab sample
was not explicitly determined at the time of sampling, any sample estimated to be less than 5 l
in volume was discarded. Subsequent sampling (2005–2008) in the same areas has indicated
that the average volume of sediment collected by the grab, as used here, is 14.21 l (95% confi-
dence intervals 13.73 l – 14.70 l; N = 421). Given that the majority of infaunal organisms are
generally located in the upper 5–10 cm of the sediment, this sample volume corresponds to an
average depth of approximately 7.1 cm. Further, given that community analyses depend on a
root-root transformation of abundance data (see below), any differences in organismal abun-
dance between samples that reflects differences in sediment volume, will be minimised. That
said, caution should be exercised in the interpretation of the abundance data presented. A rep-
resentative wet sample of the sediment was taken for subsequent textural (granulometric) anal-
ysis. Each grab sample was wet-sieved through a 1 mm-mesh sieve and all organisms retained
were fixed in a 10% buffered seawater formaldehyde solution.

Sediment Analysis
The grain-size composition of the sediment samples taken from each grab was determined fol-
lowing standard ASTM D422 methods. Samples were first dried at 50°C in an oven and then
passed through a 2 mm sieve. The +2 mmmaterial was washed, dried and sieved. The – 2 mm
material was dispersed with Sodium Hexametaphosphate (40g/l) (50g sediment for silt/clay
samples or 100g sediment for sandy samples), hydrometer readings taken, and the suspension
passed through 75 μm sieve, washed, dried and then sieved again. Sediment masses per sieve
were expressed as percentages of the total mass recorded, according to the following Went-
worth Grades:>2000 μm (Gravel), 1000–2000 μm (Very Coarse Sand), 500–1000 μm (Coarse
Sand), 250–500 μm (Medium Sand), 125–250 μm (Fine Sand), 63–125 μm (Very Fine Sand)
and<63 μm (Mud). The mud fraction was further subdivided into Silt (63 to 2 μm) and Clay
(<2 μm) by hydrometer analysis. These sediment-fractions were further grouped into Gravel
(>2000 μm), Sand (2000–63 μm) and Mud (<63 μm). To derive an indication of the mean
grain size and sediment textural group (sensu [31]) for each sample, data were analysed using
the sediment-analysis program Gradistat v8 [32] that computes grain-size statistics based on
Folk and Ward [33] and the moments methods by Blott and Pye [32]. The mean water water-
depth of each sediment-textural group was calculated across sites, whereas the diversity of sedi-
ment-textural groups per site was calculated using the Shannon Index [34]. Comparisons of
environmental measures between sites were done using ANOVA, following data transforma-
tion (log10 water-depth, arcsine percentages), and Tukey post-hoc testing employed when
appropriate.

The composition of the sediments was not examined under a binocular microscope, though
it should be noted that gravels primarily consist of shell fragments rather than the sedimento-
logically more significant rock fragments.

Fig 1. Map of sampling region. The position of the different samples collected from the nine sites during 2003 (made using ArcGIS, Version 10.2 using data
from [26]). Place names mentioned in the text, and bathymetry (m) also shown. Gravel-sand-mud, and mud-silt-clay ternary diagrams for each site also
shown.

doi:10.1371/journal.pone.0143637.g001
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Faunal Analysis
The animals were identified (and counted) to the species level where possible, otherwise to
genus- or family-level and data were analysed separately for each. Taxa that could be identified
to genus-level, but which could not be assigned a species name as they were missing diagnostic
features were not included in the species-level analyses. Similarly, taxa that could be identified
to family-level, but not to genus-level (again because they lacked key features) were ignored
from genus-level analyses. Planktonic species such as euphausiids or hyperiid amphipods were
excluded from the analysis, as were taxa that could not be assigned as described above (e.g.
cumaceans, nemerteans), or that could not be identified even to family level (e.g. decapitated
polychaetes).

Statistical Analysis: Sedimentological Data
In order to explore structure in the multivariate sedimentary environment, a similarity matrix
between the data from each sample was generated based on Euclidean distance, following arc-
sine transformation and normalisation, using PRIMER 6 [35]. As none of the seven size-frac-
tions were correlated with each other at a level of r>0.95, all were included in analyses (see
[36]). Patterns were then investigated using Principal Components Analysis (PCA). The rela-
tionship between the texture of the sediments vs water-depth, latitude/site and distance from
the Orange River mouth (as predictors, all log10 transformed) was investigated using a Distance
Based Linear Model (DistLM) [37]. At first, DistLM conducts marginal tests, which determine
the proportion of the variance in the sediment distribution pattern that can be explained by
each predictor, before partitioning the variation according to a step-wise multiple regression
model. The model was visualised using distance-based redundancy analysis (dbRDA), which is
an ordination of the fitted values from the multivariate regression model [37].

Statistical Analysis: Biological Data
A variety of statistical procedures in the computer package PRIMER 6 & PERMANOVA+ was
used to analyse community structure (separately at species, genus and family levels) across the
region, and these are described by [35–37], and other references therein. All data were first
root-root transformed, and a Bray-Curtis resemblance matrix computed between samples.
This was visualised using non-metric multi-dimensional scaling (MDS). Relationships between
the resemblance matrices produced from studies at the species, genus and family were ascer-
tained, pairwise, using the RELATE test in PRIMER. This is a non-parametric Mantel test, and
generates a rank correlation coefficient ρ between corresponding elements from two matrices
[36].

In order to determine which environmental predictors (water-depth, latitude, distance from
the Orange River mouth and various sediment characteristics, including the percentages of
mud, sand and gravel, as well as skewness, sorting and kurtosis) were responsible for driving
any observed pattern in the biological resemblance matrix, data were analysed by a DistLM
and visualised using dbRDA.

As latitude/site was identified as a key driver of community structure (see Results, below), a
Similarity Percentage (SIMPER) analysis was employed to determine those species that were
principally responsible for similarities between samples within a site. The SIMPER routine
decomposes average Bray-Curtis similarities between all pairs of samples within a site into per-
centage contributions from each species [36]. The SIMPER routine was also used to identify
those taxa most responsible for similarities within water-depth and sediment textural classes.
Following the latter analyses, the weighted mean water-depth and sediment grain size was cal-
culated for each taxa following standard methods.

Benthic Infauna off Southern Namibia
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Community attributes (number of species, genera and families as well as abundance and
Shannon diversity) per sample (0.2 m2) were calculated. Because there were equal numbers of
samples per site (nine) it was possible to compare richness across sites directly. However, as
richness varies with both effort (number and size of samples) and abundance [34], and in the
interests of making the data more useful to others, estimates of richness per site (and across the
region) were computed using EstimateS [38]. Estimates of richness (identified species and gen-
era) were computed only for Polychaeta and Amphipoda, because these taxa were most diverse
in the samples (see Results, below) and were generally best preserved, allowing ready identifica-
tion. Because the number of samples per site is too few to establish whether a species may be
considered “rare”, the use of the non-parametric estimators ICE (incidence-based coverage
estimator) and Chao2 [39–41] would lead to unreasonable estimates of richness estimates. We
have therefore made use of the observed mean estimate as an indication of species richness.
CurveExpert [42] was then used to plot the mean estimated richness value of each sample (per
site) in the form of a species accumulation curve. Each curve was fitted with the Morgan- Mer-
cer- Flodin model (MMF) whose asymptotic parameter value may be taken as the total number
of species to be found within the community [43]. The MMF model was used as a means of
consistency and provided a valid means of comparison between each of the accumulation
curves [44].

The total number of sites and textural groups across which each species was found was
determined, as were the global distributions of each. The latter were determined by searching
four online databases, vizWorld Register of Marine Species (WoRMS), Ocean Biogeographic
Information System (OBIS), Encyclopedia of Life (EOL) and European Register of Marine Spe-
cies (ERMS). When no species records existed, the wider literature was used. Species distribu-
tions were recorded as Atlantic, Benguela (Angola, Namibia and South Africa), regional
(Namibia, South Africa and Mozambique), Atlantic-Indian, global (including Antarctic and
Pacific) and endemic (Namibia only).

Results

Sediments
There was no significant difference in water-depth among the samples collected at either the
five more northern, mid-shelf sites, or the four southern offshore sites (Table 1), though the
two groups were significantly different from each other (ANOVA test:F = 27.78, p<0.001;
Tukey post-hoc test results in Table 1). Although sediments at most sites were dominated by
sand, those collected at the two sites immediately north (MLA1 South) and south (ML3 North)
of the Orange River contained large amounts of mud (Table 1). The mud content of sediments
tended to decrease with increasing distance from the Orange River, and sediments were most
gravelly in the north (Table 1).

Averages mask variability, however and it is clear from Fig 1 and S1 Fig that there was quite
a bit of patchiness in the sediment textures of the different samples collected within each of the
different sites. That said, the results of the PCA, the first two axes of which explain about 70%
of the variability in the multivariate dataset (Fig 2A), clearly separate the sediment environ-
ment across the region and the marginal tests of the DistLM indicate that distance from the
Orange River mouth (pseudo-F 16.03, p = 0.001), water-depth (pseudo-F 12.30, p = 0.001) and
latitude (pseudo-F 12.50, p = 0.001) were approximately equally significant as predictors of
sediment texture (Fig 2B). The final model (adj R2 0.299) included all predictors: distance (adj
R2 0.16, pseudo-F 16.03, p = 0.001), latitude (adj R2 0.26, pseudo-F 11.79, p = 0.001) and depth
(adj R2 0.0, pseudo-F 5.45, p = 0.002).
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General composition of the fauna
A total of 40 families, 73 genera and 66 identified species were recovered from the 81 samples
(S1 and S2 Tables), with polychaetes and peracarid crustaceans (especially amphipods), being
most species-rich (Table 2). Observed richness varied across the sites (Table 2), with the great-
est number of identified species being observed off Halifax and the least immediately north of
the Orange River (MLA1 South) (Table 2). There were strong, positive and significant (all at
p<0.001) relationships between the distribution of richness across sites when measured at the
identified species, genus or family level (species-genus R = 0.973, species-family R = 0.944,
genus-family R = 0.988), though there was a significant negative relationship between average
abundance and diversity per sample (R = 0.93, p<0.05). Greater numbers of identified species
per sample were found in the north than south (Table 2) and indeed, the average sample from
the former area tended to collect about a third of species present in the communities there,
whilst this proportion increased to about half at the southern sites (Table 2). This suggests a
greater degree of heterogeneity in the north than in the south.

Although polychaetes tended to be the most numerous infauna (Table 3), their dominance
and abundance varied so that at, (e.g.) Chameis, bivalves were most common, whilst at ML3
North, peracarid crustaceans were dominant. The most abundant families collected at each site
are shown in S3 Table. The polychaete families Spionidae and Magelonidae, and, to a lesser
extent, Nephtyidae, Onuphidae and Paraonidae were conspicuous at most sites, whilst Nassar-
iidae (Gastropoda), Tellinidae (Bivalvia), Thalassinidae (Decapoda) and Ampeliscidae
(Amphipoda) were also important.

Environment-fauna relations
Samples from the shallower mid-shelf sites group to the right of the MDS plot (Fig 3A), whilst
those from the deeper sites can be seen to the left. In general, samples from the same site tend
to group fairly close together. Patterns were clearer when the data were analysed separately by
identified species (stress value = 0.18), than by genus (0.19) or family (0.22), although there
was a high level of concordance between the similarity matrices, as determined by the relate
statistic (species-genus R = 0.932, species-family R = 0.859, genus-family R = 0.933). The
results of the marginal DistLM tests on the identified species-level data indicate that all but one

Table 1. Summary of physical environment.

Site Depth % Mud % Sand % Gravel H’

Halifax *56 (17.64) 10.44 (5.83) 82.57 (16.15) 6.99 (13.25) 1.43

Ebay *36.67 (13.07) 18.2 (9.45) 81.75 (9.53) 0.05 (0.16) 0.94

Bogenfels *41.56 (24.28) 5.78 (8.27) 94.19 (8.37) 0.03 (0.1) 0.35

Chameis *36.67 (11.95) 10.69 (8.16) 89.08 (8.03) 0.24 (0.39) 1.1

Kerbehuk *47.56 (19.09) 42.55 (42.86) 57.37 (42.96) 0.08 (0.16) 1.43

DBMN MA1 North ‡106 (0.87) 23.51 (1.61) 76.49 (1.61) 0 (0) 0

DBMN MA1 South ‡100 (1.73) 77.04 (16.07) 21.95 (15.08) 1.01 (1.29) 1.15

ML3 North ‡128 (5.97) 43.76 (38.1) 56.24 (38.1) —- 1.15

ML3 South ‡139 (2.32) 20.15 (18.64) 79.85 (18.64) —- 0.94

Average water-depth and sediment texture encountered at each of the sites sampled off southwestern Africa during 2003: Shannon Index (H’) describing

diversity of Folk’s (1954) sediment group, and sampling date also shown. Data as mean (standard deviation); N = 9, in all cases.

* Similar sampling depths, as determined from Tukey post-hoc testing, shown by common symbol.

‡ Similar sampling depths, as determined from Tukey post-hoc testing, shown by common symbol.

doi:10.1371/journal.pone.0143637.t001
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Fig 2. Two dimensional visualisations of sediment environment. (A) PCA plot showing the distribution of
the samples collected off southwestern Africa during 2003: vectors indicate the direction of increase of the
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(% gravel) of the predictor variables had a significant impact on the structure of the communi-
ties (with water-depth, latitude/site and distance from the Orange River being most important,
followed by mud and sand content respectively). And though the overall model included all
variables, it could only explain 42.2% of the pattern (Table 4). This is shown graphically in the
dbRDA plot (Fig 3B), the first two (of eight) axes of which explain ~67% of fitted variation and
~33% of total variation, and separate samples by water-depth (dbRDA1) and latitude/site
(dbRDA2). Essentially similar patterns are shown whether the data are analysed by genus
(DistLM adj R2 = 0.42: data not shown) or family (DistLM adj R2 = 0.40: data not shown).
Interestingly, there appears to be less variability between samples within sites, from the deeper
than shallower areas.

In an attempt to understand the relatively low proportion of the variability in infaunal struc-
ture explained by the environmental predictors, we have looked at the results of the SIMPER
analysis and the average abundance per sample of those species responsible for 50% of the sim-
ilarity within sites. These data are shown in Fig 4, from which it is clear that many of the “iden-
tifiers” are shared across sites. For example, the polychaete Nepthys hombergi was common at
five sites, whilst the polychaete Paraprionospio pinnata and the gastropod Nassarius vinctus
were common at four. Indeed, almost 50% of identified species were recovered at, and domi-
nant at, three or more of the sites (S2A Fig). The results of a similar analysis conducted with
respect to water-depth and sediment are shown in S4 and S5 Tables, from which it can be seen,
especially with respect to water-depth (S4 Table), that although there were clear patterns in
species distribution across the shelf, relatively few species were restricted to single habitats. In

different sediment size classes. (B) Multivariate multiple regression (dbRDA) performed on sediment data
and predictor variables (water-depth, latitude and distance to the Orange River mouth): vectors indicate the
direction and strength of the environmental gradients. The location of the samples, by site, is indicated by
symbols.

doi:10.1371/journal.pone.0143637.g002

Table 2. Summary of species richness and diversity.

Site Number
species

Number
genera

Number
families

Mean
number
species
sample-1

Max
(Min)

number
species
sample-1

Amphipods Isopods Decapods Bivalves Gastropods Polychaetes Cnidarians

Halifax 36 41 36 10.89 15 (6) 10 1 3 1 1 19 0

Ebay 27 28 24 11.33 18 (8) 7 1 2 2 1 13 1

Bogenfels 26 27 23 8.11 16 (3) 8 1 1 2 1 12 1

Chameis 16 20 19 5.44 12 (2) 5 0 1 0 1 8 1

Kerbehuk 28 30 26 9.89 17 (4) 6 1 3 1 1 15 1

DBMN
MA1
North

25 25 22 13 15 (9) 8 0 2 0 2 12 1

DBMN
MA1
South

17 18 17 9.56 12 (5) 5 0 3 0 1 8 0

ML3 North 22 23 22 10.44 16 (4) 7 0 4 1 1 9 0

ML3
South

22 23 22 8.44 12 (5) 5 1 2 1 1 12 0

Observed species richness of the major macro-infauna at each of the sites sampled off southern Namibia and off Namqualand during 2003. The total

number of species, genera and families recovered from the nine samples collected from each site also shown, as well as information on the average,

maximum and minimum number of species recovered from each sample at each site.

doi:10.1371/journal.pone.0143637.t002
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other words, the fauna of the region appears to be dominated by habitat generalists and differ-
ences between sites largely reflect differences in relative abundance.

Howmany species?
Estimates of amphipod and polychaete richness at each site, as determined using CurveFit,
were positively correlated with observed richness (R = 0.95 p<0.001, R = 0.68 p<0.05 respec-
tively), being highest for both taxa at Halifax and lowest at the sites closer to the Orange River
(Table 5). Similar results were observed for estimates of amphipod and polychaete richness at
the genus level (R = 0.93 p<0.01, R = 0.83 p<0.01 respectively). There was, however, no rela-
tionship between the estimated or observed richness of amphipods or polychaetes and sedi-
ment textural diversity at each site (p>0.05). The total number of amphipod and polychaete
species estimated for the whole region is 43 and 44 respectively, which is between 150–200%
higher than the observed totals (Table 5). The estimates of generic richness are higher still (48
and 71 genera respectively), suggesting that much work needs still to be done to identify species
fully. Note the higher numbers of taxa estimated from Halifax than from the region as a whole.
This can be attributed to the smaller number of samples collected at Halifax relative to overall,
the higher degree of heterogeneity in composition of samples collected at Halifax and the high
degree of similarity in the composition between sites.

Geographic affinities of fauna
All of the identified species recovered here have records in one or more of the species distribu-
tion databases analysed, and 89% have previously been recorded in Namibia (S1 Table). The
majority are widely distributed in the Atlantic (30%) or along the coasts of Benguela nations
(Angola, Namibia and South Africa—26%), and some 15% can be regarded as southern African
and extend around South Africa to Mozambique and the wider Indian Ocean. Seventeen per-
cent of species occur widely in both the Atlantic and Indian oceans. Merely ~10% enjoys a
global distribution and only two species are restricted to Namibia (~3%): the brachiopod

Table 3. The abundance of dominant infauna, by lower taxonomic grouping.

Site Amphipods Isopods Decapods Bivalves Gastropods Polychaetes Cnidarians

Halifax 9.8 (3.2) 0.4 (0.4) 8.3 (2.5) 8.6 (4.2) 5.8 (2.5) 102.3 (48.6) —-

Ebay 10.7 (4.5) 0.1 (0.1) 0.8 (0.3) 3.0 (1.2) 16.3 (4.1) 200.8 (67.0) 0.7 (0.3)

Bogenfels 9.2 (3.9) 0.9 (0.3) 1.4 (0.8) 1.3 (0.5) 0.1 (0.1) 51.7 (19.7) 1.0 (0.5)

Chameis 2.2 (0.7) 0.1 (0.1) 0.3 (0.2) 359.9
(105.3)

5.4 (1.9) 5.0 (1.5) 1.3 (0.6)

Kerbehuk 85.4 (31.3) 0.2 (0.2) 0.9 (0.3) 1.4 (0.6) 42.0 (16.1) 190.9 (59.8) 0.3 (0.2)

DBMN
MA1
North

9.0 (1.8) —- 17.3 (1.6) 0.9 (0.7) 0.8 (0.4) 45.4 (5.4) 0.1 (0.1)

DBMN
MA1
South

19.3 (1.7) —- 12.1 (1.6) 0.1 (0.1) 19.1 (3.3) 26.8 (6.7) —-

ML3
North

26.6 (15.3) —- 6.6 (2.2) 3.4 (1.3) 0.3 (0.3) 22.9 (6.3) —-

ML3
South

4.9 (1.7) 0.3 (0.3) 1.3 (0.9) 5.6 (2.4) 1.2 (0.6) 59.2 (17.1) —-

Mean abundance of major macro-infauna found at each of the sites sampled off southwestern Africa during

2003. Data as mean ± standard error, N = 9, in all cases.

doi:10.1371/journal.pone.0143637.t003
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Discinisca tenuis and the polychaete Pterampharete luederitzi. These species were first
described from outside the study area, and were recovered here from one and five samples
(respectively), at a single site each (Halifax and Kerbehuk, respectively).

Discussion
The mud content of the sediments tended to decrease with increasing distance from the Orange
River (Fig 2B), especially northwards from the Orange River, and sediments were most gravelly
in the north (Table 1). This tallies with the results of previous regional surveys [22, 24]. The
remarkably poor correlation (29%) between sediment texture vs distance from the Orange
River mouth, latitude and water-depth may be explained by the lack of an inner-shelf mudbelt
between Chameis Bay and Lüderitz. Had the study been undertaken only south of Chameis
Bay, where there is a major inner-shelf mudbelt, a better correlation may well have been
observed.

The fauna was dominated by polychaetes and crustaceans (especially peracarids), although
bivalves were abundant at one of the sites. These taxa typically characterise the infauna of soft
sediments everywhere [45], and may be supplemented with echinoderms, which were largely

Fig 3. Two-dimensional visualisations of faunal communities. (A)MDS plot of the similarity in the species composition of macrofaunal (> 1mm length)
samples collected off southern Namibia and off Namaqualand during 2003. (B) Multivariate multiple regression dbRDA performed on the macrofaunal
species composition of samples collected off southern Namibia and off Namaqualand during 2003, and environmental predictors: vectors show the direction
and strength of the environmental gradients. The location of the samples, by site, is indicated by symbols.

doi:10.1371/journal.pone.0143637.g003

Table 4. Results of the DistLMmarginal and sequential tests for the abundance of macro-infauna col-
lected off southwestern Africa during 2003, with sediment texture characteristics, water-depth, lati-
tude/site and distance from the Orange River mouth as predictors.

Marginal Tests

Variable SS (trace) Pseudo-F p

Sorting 25335 9.5521 0.001

Skewness 9236.3 3.2338 0.002

Kurtosis 24380 9.1504 0.001

Distance from Orange River 28214 10.786 0.001

% Mud 23529 8.7953 0.001

% Sand 19522 7.1617 0.001

% Gravel 3736.4 1.2771 0.221

Depth 50484 21.63 0.001

Latitude 33303 13.052 0.001

Sequential Tests

Variable Adj R2 SS (trace) Pseudo-F p

Depth 0.20501 50484 21.63 0.001

Latitude 0.2785 19164 9.0471 0.001

Distance 0.35375 19130 10.083 0.001

% Sand 0.37623 6912.9 3.7749 0.001

Kurtosis 0.39624 6237.4 3.5188 0.003

% Mud 0.41306 5427.5 3.1497 0.002

% Gravel 0.42168 3570.6 2.103 0.025

Sorting 0.42226 1818.5 1.0721 0.375

Sequential tests were conducted using the ‘step-wise’ procedure and adjusted R2. Sediment size fractions

were arcsine transformed, and all other variables log10 transformed, prior to analysis. Residual DF = 79.

doi:10.1371/journal.pone.0143637.t004
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absent here. In their study further north along the Namibian coast and off southern Angola,
Zettler et al. [8] noted nearshore communities to be dominated by brachiopods (the endemic

Fig 4. Abundance of those taxa characteristic of each site. Histogram showing the average abundance
per site, of those macro-infaunal taxa identified by the SIMPER routine in PRIMER 6 as being responsible for
a minimum of 50% of the identity of each of the sites sampled off southern Namibia and off Namaqualand
during 2003.

doi:10.1371/journal.pone.0143637.g004

Table 5. Howmany species?

Species Genus

Amphipods Polychaetes Amphipods Polychaetes

Region Estimated Observed Estimated Observed Estimated Observed Estimated Observed

Halifax 68 14 278 22 146 11 404 21

Ebay 33 8 31 14 11 7 23 12

Bogenfels 42 10 73 13 77 9 10 9

Chameis 8 7 14 10 7 6 12 9

Kerbe Huk 9 6 17 17 9 6 18 15

DBMN MA1 North 35 8 59 14 19 6 42 12

DBMN MA1 South 6 5 80 8 6 5 24 7

ML3 North 9 7 9 10 8 6 9 9

ML3 South 6 6 16 13 5 4 15 12

ALL 43 22 44 31 48 21 71 32

Observed and estimated species and generic richness of amphipods and polychaetes at each of the sites sampled off southern Namibia and off

Namaqualand during 2003. Regional data also shown. Estimated richness determined using Curve Fit estimator and Morgan-Mecer-Flodin model (see

methods).

doi:10.1371/journal.pone.0143637.t005
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Discinisca tenuis collected here), whilst those within the OMZ further offshore were dominated
by bivalves (Nuculana bicuspidata). This is unusual for OMZs, which are typically character-
ised by small-bodied polychaetes [7], mostly from the families Cossuridae [9], Spionidae [46],
Cirratulidae [47], Paraonidae, Amphinomidae, Maldanidae [7], and Magelonidae [9, 48].
Other taxa that may be common include ampeliscid amphipods [7] and nassariid gastropods
[8–9]. That many of the dominant taxa observed here are not only found in these same fami-
lies, but may in fact be the same species as those from OMZs elsewhere in the world (e.g. Para-
prionospio pinnata), indicates that the environment is certainly oxygen stressed, especially in
deeper waters. However, the presence of species such as the relatively long-lived Callianassa
australis, which builds deep burrows in the sediment [49–50], suggests it is not routinely
microxic across the region.

The high level of concordance between the ecological patterns generated by the analyses
(similarity matrices, outputs of the DistLMs) conducted on, and the positive relationships
between, the different levels of taxonomic resolution has been noted previously [51–52]. And it
is often cited as a reason to study communities at lower taxonomic levels of classification [53].
In this case, the analyses at the different levels of taxonomic resolution included different
amounts of the full dataset, with those at the family-level including more than those at the
genus-level, which in turn included more than those at the species-level.

The results indicate that of the measured environmental variables, water-depth, latitude and
distance from the Orange River mouth were most important in explaining variation in the
structure of the infaunal communities, with the sediment texture playing a secondary role.
There is a wide body of literature indicating that both water depth and latitude influence com-
munities through their effect on the regional species pool [17] and, in the case of water-depth,
on the texture of the sediments [22, 24, 27]. However, we suggest (below) that the latitudinal
impact on community composition, per se, is negligible, which means that it acts here through
its influence on water-depth and sediment texture: samples from deeper water were collected
in the south, off Namaqualand, and these samples tended to be muddier than the shallower
samples collected in the north. Although most authors agree that sediment texture generally
plays a key role in influencing community structure (e.g. [54]), concordance between the distri-
bution of sediment types and biological communities is often not clear (e.g. [55–57]). Such was
apparent here, where the adjusted R2 of the DistLM of the species-level data was<0.4. This
implies that the variability in the biological communities must largely be due to spatio-tempo-
ral differences in unmeasured variables such as (e.g.) dissolved oxygen [7] and recruitment
[58], as well as food availability and disturbance [59], and metal concentrations [60], all of
which are known to impact communities, individually and in synergy (see reviews by [61–62]).
Of course, variations in biological interactions (directly and/or indirectly) should not be
ignored [62]. For example, biogenic structures may increase habitat complexity and environ-
mental heterogeneity, promoting diversity and co-existence through non-equilibrium mecha-
nisms (as e.g. Callaniassa burrows [49–50]). Regardless, the high variability observed in the
communities suggests that the study area as a whole falls outside an OMZ, where low levels of
biological heterogeneity are the norm [7].

Despite a strong latitudinal pattern to the structure of the biological communities observed
here, most of the dominant taxa were widely distributed across the sites and differed, for the
most part, simply in relative abundance. This suggests that all are drawn from the same
regional species pool. That many taxa were distributed widely across the different sediment
types, and across the water-depth gradient too, further suggests that most can probably be
regarded as habitat generalists. Tropical communities are often considered to have species that
are “tightly packed”, with pronounced partitioning of spatial and trophic resources, and such
communities are characterised by specialists ([3]: Table 1). By contrast, taxa from higher

Benthic Infauna off Southern Namibia

PLOS ONE | DOI:10.1371/journal.pone.0143637 November 30, 2015 15 / 20



latitudes often have broader niches than those at the equator, and communities are character-
ised by generalists ([3]: Table 1). Pelagic communities in upwelling areas are also characterised
by generalists [2], which can probably be attributed to environmental variability. And it would
seem that similar observations hold in the benthos off Namibia and off Namaqualand outside
of OMZs too: presumably for the same reasons.

As stressed by [17], the local community represents a subset of the regional species pool,
and in this case the regional species pool is substantial, encompassing the North and South
Atlantic Ocean and the Mediterranean Sea, as well as the Western Indian Ocean. Unless the
taxonomy is at fault, of course, or if there is significant taxonomic crypsis [63]! Whilst the latter
cannot be ruled out, and is certainly deserving of future attention, as it stands the number of
endemic species is negligible. Whilst this is in agreement with the observations of [64] on the
distribution of regional range-restricted taxa, it is in contrast to the contentions of [65], and to
the examples cited by Levin [7]. But that could be explained by the fact that the areas sampled
fall outside the main OMZ off Namibia. Of course, it can also be explained by the fact that a
number of taxa were not identified to species level, and some of these may yet turn out to be
endemic [7].

Despite the size of the potential regional source-pool, the diversity of species in both local
samples and communities is remarkably low. Caution should be exercised in interpreting this
given unidentified taxa, but it accords with both the generalist nature of community members,
the variability of upwelling communities and it confirms what we understand about diversity
gradients around the region (e.g. [19, 21]). The negative relationship between average faunal
diversity per sample per site and total abundance conforms to the results of many previous
studies [45], although the absence of a relationship between either diversity per sample per site,
or estimated richness per site, and sediment heterogeneity (as measured by sediment diversity)
is unusual. This can probably be attributed to the generalist nature of the fauna and the unmea-
sured environment.

The results of this study suggest that the fauna of the soft-sediment environment off south-
ern Namibia and off Namqualand is characterised by relatively low diversity and by species
with a generalist habit and wide distribution. Further work on measuring a wider suite of envi-
ronmental variables is desirable, and studies into the detailed taxonomic identity of all material
collected is encouraged.

Supporting Information
S1 Fig. Histograms showing the proportion of samples collected at each site off southwest-
ern Africa during 2003, described by Folk’s (1954) sediment textural groups.
(TIF)

S2 Fig. Distribution of species across sites and sediments.Number (percent of total) of iden-
tified species recovered in one or more of the nine regions (a) or sediment textural groups (b)
sampled off southern Namibia and off Namaqualand during 2003.
(PPTX)

S1 Table. Species List. List of the identified species recovered from the samples collected off
southern Namibia and off Namaqualand during 2003, with an indication of their presence (1)
or absence (0) in on-line distributional databases (WoRms Wold Register of Marine Species;
EoL Encyclopaedia of Life; OBIS Ocean Biogeographic Information System; ERMS European
Register of Marine Species). Information from other sources also indicated, where appropriate.
A summary of the known distribution of each species is also indicated.
(DOCX)
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S2 Table. Additional genera. List of additional genera, not included in Table 1 owing to our
inability to ascribe specific epithets to names, recovered from the samples collected off south-
ern Namibia and off Namaqualand during 2003, with an indication of their presence (X) or
absence (—-) in the different sampled regions.
(DOCX)

S3 Table. The abundance of common infaunal families.Mean abundance and standard error
(per sample) of the top ten most commonly represented families at each of the sites sampled
off southwestern Africa during 2003.
(DOCX)

S4 Table. Abundance of those taxa characteristic of each depth class. Average (root-root)
abundance per sample of those macro-infaunal taxa identified by the SIMPER routine in
PRIMER 6 as being responsible for 90% of the identity of each of the water-depth zones (0–20
m, 21–30 m, 31–50 m, 51–100 m, 101–150 m). The weighted mean water-depth (m) occupied
by each of the identified species is also shown.
(DOCX)

S5 Table. Abundance of those taxa characteristic of each sediment type. Average (root-root)
abundance per sample of those macro-infaunal taxa identified by the SIMPER routine in
PRIMER 6 as being responsible for 90% of the identity of each of the sediment textural groups
identified by Folk (1954) sampled off southwestern Africa during 2003. The weighted mean
sediment particle size (μm) occupied by each of the identified species is also shown.
(DOCX)

S6 Table. Abundance of all identified species from all grab samples collected at all sites,
together with pertinent bathymetric, geographic and sediment data.
(XLSX)
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