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Abstract
Thiamin (vitamin B1), a member of the water-soluble family of vitamins, is essential for nor-

mal cellular functions; its deficiency results in oxidative stress and mitochondrial dysfunc-

tion. Pancreatic acinar cells (PAC) obtain thiamin from the circulation using a specific

carrier-mediated process mediated by both thiamin transporters -1 and -2 (THTR-1 and

THTR-2; encoded by the SLC19A2 and SLC19A3 genes, respectively). The aim of the cur-

rent study was to examine the effect of chronic exposure of mouse PAC in vivo and human

PAC in vitro to nicotine (a major component of cigarette smoke that has been implicated in

pancreatic diseases) on thiamin uptake and to delineate the mechanism involved. The

results showed that chronic exposure of mice to nicotine significantly inhibits thiamin uptake

in murine PAC, and that this inhibition is associated with a marked decrease in expression

of THTR-1 and THTR-2 at the protein, mRNA and hnRNAs level. Furthermore, expression

of the important thiamin-metabolizing enzyme, thiamin pyrophosphokinase (TPKase), was

significantly reduced in PAC of mice exposed to nicotine. Similarly, chronic exposure of cul-

tured human PAC to nicotine (0.5 μM, 48 h) significantly inhibited thiamin uptake, which

was also associated with a decrease in expression of THTR-1 and THTR-2 proteins and

mRNAs. This study demonstrates that chronic exposure of PAC to nicotine impairs the

physiology and the molecular biology of the thiamin uptake process. Furthermore, the study

suggests that the effect is, in part, mediated through transcriptional mechanism(s) affecting

the SLC19A2 and SLC19A3 genes.
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Introduction
Thiamin (vitamin B1), a member of the water-soluble family of vitamins, is required for the
normal health and function of pancreatic acinar cells (PAC). The vitamin acts as a cofactor for
enzymes like transketolase, pyruvate dehydrogenase, alpha-ketoglutarate dehydrogenase and
branched chain ketoacid dehydrogenase that are involved in a variety of cellular metabolic
reactions related to energy metabolism. Thiamin also plays a key role in the reduction of cellu-
lar oxidative stress and in maintaining mitochondrial health and function. Deficiency of thia-
min is detrimental for normal cell physiology and leads to impairment of oxidative energy
metabolism (acute energy failure) predisposing the cells to oxidative stress [1, 2]; it further
causes mitochondrial dysfunction [3].

The pancreas, with its important endocrine and exocrine functions, plays critical roles in
normal health and physiology. Although PAC lack the ability for de novo synthesis of thiamin,
they maintain it at high levels [4], by extracting it from circulation using specific plasma mem-
brane transporters. Thiamin deficiency leads to a dramatic reduction in pancreatic content of
digestive enzymes [5] and to inadequate insulin secretion [6, 7], thus, affecting both the exo-
crine and endocrine functions of this organ.

We have previously elucidated the mechanism of thiamin uptake by PAC and showed that
cellular thiamin uptake is mediated by a specific and regulated carrier-mediated process [8, 9].
We have also utilized SLC19A2 and SLC19A3 knockout mouse models to show the involve-
ment of both thiamin transporters THTR-1 and THTR-2 in cellular thiamin uptake [9].
Pancreatic health and physiology are affected by a number of environmental factors. Many
experimental and epidemiological studies have linked cigarette smoke (CS) to injury/disease of
the pancreas [10–15]; indeed, exposure to CS leads to significant functional and pathological
changes in the exocrine pancreas [13, 16, 17]. The effect of CS exposure on cell physiology
appears to be multifactorial and includes differential effects on gene expression and oxidative
stress, and causes mitochondrial dysfunction [18–22]. Nicotine is a major component of CS
and has been extensively studied because of its addictive properties. Although it is not a carcin-
ogen itself, nicotine is a risk factor for the induction/development of pancreatic inflammation
and pancreatic cancer [11, 13, 23–26]. Nicotine is known to accumulate in the pancreas [27],
and has been implicated in the production of free radicals that lead to oxidative stress and con-
sequently pancreatic injury [28]. Furthermore, animal studies have shown that nicotine expo-
sure induces changes in the pancreas that are similar to those seen in experimental models of
pancreatitis [29]. The effect(s) of nicotine on pancreatic physiology appears to be mediated
mainly by the nicotinic acetylcholine receptor and elevated levels of intracellular calcium [30].
Nothing is known about the influence of nicotine on the physiology of thiamin uptake by PAC.
An essential micronutrient such as thiamin plays critical roles in energy metabolism, mito-
chondrial function and reduction of cellular oxidative stress; a deleterious effect of nicotine on
pancreatic thiamin uptake could contribute to the observed negative impact of CS on the health
of PAC [1–3, 31].

In this study we examined the effect of chronic exposure of PAC to nicotine in vivo and in
vitro on thiamin uptake. We used SLC19A2 and SLC19A3 transgenic mice previously generated
and characterized in our laboratory [32, 33] as an in vivomodel. Cultured human primary
PAC were used for in vitro studies. The human PAC were isolated and maintained under cul-
ture conditions [34] and were used after 3 days in culture (4 days from isolation). This time
period was shown to have minimal effect on cellular morphology and no effect on cell differen-
tiation [34]. Collectively, the results show that nicotine inhibits thiamin uptake by PAC and
that this inhibition is mediated, at least in part, at the level of transcription of the thiamin trans-
porter genes.

Effect of Nicotine on Pancreatic Vitamin B1 Physiology
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Materials and Methods

Materials
[3H]-Thiamin (specific activity 20 Ci/mmol) with a radiochemical purity> 99% was purchased
from American Radiolabeled Chemicals (St. Louis, MO). Nitrocellulose filters (0.45-μm pore
size) were fromMillipore (Fisher Scientific). All other chemicals including unlabelled thiamin
and molecular biology reagents were of analytical grade obtained from commercial vendors.
Oligonucleotide primers were synthesized by Sigma Genosys (Sigma, Woodland, TX). THTR-
1, THTR-2 and β-actin antibodies were purchased from Santa Cruz Biotechnology (Santa
Cruz, CA) and mice TPKase rabbit polyclonal antibodies were purchased from Proteintech
(Chicago, IL).

Chronic exposure of mice to nicotine and thiamin uptake by freshly
isolated mouse PAC
Transgenic mice carrying the full-length human SLC19A2 (-2,250 to -36) and SLC19A3 (-1,957
to +59) promoters fused to the firefly luciferase reporter gene used in this study were previously
generated and characterized as described [32, 33]. The animal experimental protocol was
approved by the Animal Use Committee of the Long Beach Veterans Affairs Medical Centre.
The mice received nicotine in the drinking water at a concentration of 0.77 mM for 4 weeks (a
dosage that achieves the same systemic levels of nicotine as that found in smokers; [35]) as
described previously [35]. Control animals received regular (no nicotine) water. After 4 weeks
the mice were euthanized and the pancreas was removed and primary PAC were isolated by a
collagenase type-V (Sigma, St. Louis, MO) digestion method as described previously [36–38].
Freshly isolated PAC were used for uptake analysis on the day of isolation with a portion stored
at −80°C for protein, mRNA expression and firefly luciferase analyses. Cells were suspended in
Krebs-Ringer buffer (in mM: 133 NaCl, 4.93 KCl, 1.23 MgSO4, 0.85 CaCl2, 5 glucose, 5 gluta-
mine, 10 HEPES, and 10 MES; pH 7.2; 37°C) labelled and unlabelled thiamin was added at the
onset of incubation, and the reaction was terminated after 7 min (initial rate; [8]). A rapid fil-
tration technique was used in uptake investigations as described previously [8]. Carrier-medi-
ated thiamin uptake was determined by subtracting 3H-thiamin uptake in the presence of 1
mM of unlabeled thiamin from that in its absence (i. e., from total uptake). Protein concentra-
tions were determined using a Bio-Rad Dc protein assay kit.

Human pancreatic acinar cell Isolation
PAC were the byproduct of the human islet cell isolation process from de-identified organ
donors. Collected human pancreas was digested to obtain islet and acinar cells. Briefly, after
informed consent had been obtained, pancreata of subjects (15–65 years old) were removed
from brain-dead donors as part of multi-organ procurement. The pancreata were transported
either in histidine-tryptophan-ketoglutarate solution or in cold University of Wisconsin solu-
tion [39, 40]. On arrival at the laboratory, the pancreas was trimmed, cannulated, and dis-
tended with collagenase and neutral protease [41]. After ductal perfusion of the enzyme, the
pancreas was digested using a modified Ricordi’s semi-automated method [42]. The dissoci-
ated islet and acinar cells were then separated by continuous iodixanol (OptiPrep™, Axis-
Shield, Oslo, Norway) density gradient on a COBE-2991 cell processor. The sedimented acinar
cells were collected from the COBE bag. The collected acinar cells were washed and dispersed
in CMRL-1066 (Connaught Medical Research Laboratories) supplemented medium (Media-
tech Inc; Manassas, VA) [43].
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Assessment of viability of the isolated human PAC
The rapid fluorescein diacetate/propidium iodide method was used to evaluate the viability of
acinar cells after isolation. This assay differentiates viable and nonviable cells by simultaneous
staining. The inclusion and exclusion dyes used were fluorescein diacetate and propidium
iodide [44]. Individual cells were observed through the fluorescent microscope and scored indi-
vidually to estimate overall cell viability as a percentage of the preparation. The purity of PAC
was� 95% (islet purity was assessed by ditizone staining [45] which provided an indirect mea-
sure of acinar cell purity) and the viability was> 90%. The viability was also assessed on the
day of use of the cultured PAC for transport investigations using the trypan blue exclusion
method and found to be> 80%. Finally, morphology of the human acinar cells was similar to
that described previously [34].

Chronic exposure of human pancreatic acinar cells to nicotine and
uptake studies
Human primary PAC were cultured in Ham’s F-12K media with 10% FCS, 5% BSA, 10 ng/ml
of epidermal growth factor (EGF) and 0.1 mg/ml soybean trypsin inhibitor as described [34].
After 24 h the cells exhibited attaching and spreading and formed a monolayer. The viability
was> 80% (tryphan blue) during the entire culture period (3 days), a value similar to that
reported by others [34]. After 24 h of culturing in the media described above, cells were
exposed to nicotine (0.5 μM) for 48 h as described [46, 47]. The nicotine concentration used
corresponded to that seen in the blood of smokers [48]. The total time between isolation and
use of the cells was about 4 days. The nicotine exposed and control human PAC were sus-
pended in Krebs-Ringer buffer for thiamin uptake studies. Labelled and unlabelled thiamin
was added at the onset of incubation, and the reaction was terminated after 7 min with addition
of cold Krebs-Ringer buffer and a rapid filtration technique was employed for the uptake inves-
tigations as described previously [8]. Carrier -mediated thiamin uptake was measured by sub-
tracting 3H-thiamin uptake in the presence of 1 mM of unlabeled thiamin from that in its
absence (i. e., form total uptake). Protein concentrations were determined using a Bio-Rad Dc
protein assay kit.

Western Blot Analysis
Western blot analysis was performed using 60 μg protein from whole cell lysate prepared from
mouse and human PAC chronically exposed to nicotine and their respective controls. Briefly,
PAC were suspended in 200 μl of RIPA buffer (Sigma) supplemented with protease inhibitor
cocktail (Roche) and the proteins were resolved on premade 4–12% Bis-Tris minigel (Invitro-
gen). After electrophoresis, proteins were transferred onto immobilon polyvinylidene difluor-
ide membrane (Fisher Scientific) and blocked with Odyssey blocking solution (LI-COR
Bioscience, Lincoln, NE). The membranes were incubated overnight either with THTR-1 or
THTR-2-specific (1:200 dilution) polyclonal goat antibody along with β-actin (1:3,000 dilu-
tion) monoclonal antibody for mice. Mice TPKase was detected using TPKase specific rabbit
polyclonal antibodies. For human PAC protein, the membrane was incubated with THTR-1
polyclonal goat antibody, or THTR-2 along with β-actin (1:3,000 dilution) monoclonal anti-
body. The THTR-1, THTR-2, and β-actin immunoreactive bands were detected by using
donkey anti-goat IRDye-800 (for mice THTR-1 and THTR-2) goat anti-rabbit IRDye-800
(for human THTR-2, mice TPKase) and anti-mouse IRDye-680 (for β-actin) (LI-COR Biosci-
ence) secondary antibodies (1:30,000 dilution). Odyssey infrared imaging system (LI-COR
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Bioscience) was used to detect the signals and quantified using LI-COR software and normal-
ized to β-actin as an internal control.

Real-Time PCR Analysis
Total RNA (2 μg) was isolated from primary mouse/human PAC and treated with DNase I
(Invitrogen) and then subjected to cDNA synthesis using iScript cDNA synthesis kit (Bio-Rad,
Hercules, CA). The mice THTR-1, THTR-2, TPKase mice and ARPO mRNA/ heterogeneous
nuclear RNA (hnRNA) and human THTR-1, THTR-2 and ARPO mRNA were PCR amplified
using specific primers (Table 1) for quantitative PCR studies. Quantitative PCR conditions
were the same as described [49]. The data were normalized to ARPO for mice and β-actin for
human and then values were calculated by a relative relationship method [50].

Luciferase assay in transgenic mice
For luciferase assays, mouse PAC were homogenized in ice-cold passive lysis buffer (Promega),
and centrifuged to pellet debris (25,000 g, 10 min). Levels of firefly luciferase activity in homog-
enates were assayed using a Luciferase Assay system (Promega). Luciferase activity was nor-
malized to the total protein concentration of each sample.

Statistical Analysis
Uptake data with mouse and human PAC presented in this paper are mean ± SE of at least 3
independent experiments (different mice/subjects) and are expressed as a percentage relative
to simultaneously performed controls. Carrier-mediated thiamin uptake was determined by
subtracting 3H-thiamin uptake in the presence of 1 mM of unlabeled thiamin from that in its
absence. Protein, mRNA, hnRNA and luciferase activity determinations were performed on at
least three sets of samples prepared at different occasions. The Student's t-test was used for sta-
tistical analysis, and P< 0.05 was considered statistically significant.

Results

Effect of chronic exposure of transgenic mice carrying the human
SLC19A2 and SLC19A3 promoters to nicotine on thiamin uptake by
freshly isolated PAC: in vivo exposure studies
We investigated the effect of chronic exposure of mice to nicotine on the physiological/molecu-
lar aspects of thiamin uptake in transgenic mice carrying the SLC19A2 and SLC19A3 promot-
ers (fused to the Firefly luciferase reporter gene). Nicotine (0.77 mM) was administered in the
drinking water for 4 weeks as described [35]. The results showed a substantial (P< 0.01) inhi-
bition in thiamin uptake by freshly isolated PAC (Fig 1). We further examined, by means of
Western blotting and quantitative PCR, the effect of chronic exposure of mice to nicotine on
the level of expression of the mouse THTR-1 and THTR-2 proteins and mRNAs. The results
showed a significant reduction in the expression of these two transporters at the protein (P<

0.05), mRNA (P< 0.01) and hnRNA (P< 0.01) levels in PAC from nicotine-treated mice ver-
sus the controls (Fig 2). Finally, we observed a substantial (P< 0.01) decrease in the activity of
the SLC19A2 and SLC19A3 promoters in PAC from nicotine-treated transgenic animals com-
pared to their control transgenic mice (Fig 3).

We also investigated the effect of chronic exposure of mice to nicotine on the level of expres-
sion of the key thiamin-metabolizing enzyme, thiamine pyrophosphokinase (TPKase) in PAC.
The results showed that nicotine treatment causes a substantial reduction in the level of
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Table 1. Primers used for amplifying coding region of the respective genes by quantitative PCR.

Gene Name Forward and Reverse Primers (50-30)

Mice quantitative PCR primers

THTR-1 GTTCCTCACGCCCTACCTTC; GCATGAACCACGTCACAATC

THTR-2 TCATGCAAACAGCTGAGTTCT; ACTCCGACAGTAGCTGCTCA

TPKase CTCCTGACCAAGACCACA; TGATGTGAGTGGCTTGGA

ARPO GCTGAACATCTCCCCCTTCTC; ATATCCTCATCTGATTCCTCC

hnRNA-THTR-1 CCCTCTGAAGTCCGTCTCT; ACAGCCCTCAAAAACACCT

hnRNA-THTR-2 CCTCCCTTCCTGTCTTTTC; TTTTCATTGCTGTGGTTGG

hnRNA-ARPO GGCATCTTCAGTTGTTCC; TTAGACACAGCCCCCAC

Human quantitative PCR primers

THTR-1 GCCAGACCGTCTCCTTGTA; TAGAGAGGGCCCACCACAC

THTR-2 TTCCTGGATTTACCCCACTG; GTATGTCCAAACGGGGAAGA

β-actin CATCCTGCGTCTGGACCT; TAATGTCACGCACGATTTCC

doi:10.1371/journal.pone.0143575.t001

Fig 1. Chronic exposure of mouse primary PAC to nicotine decreases the carrier-mediated [3H]
thiamin uptake. Primary PAC were isolated frommice exposed to nicotine and their controls. Carrier
-mediated [3H] thiamin uptake was determined as described in “Materials and Methods”. Data are
means ± SE of at least three separate uptake determinations frommultiple sets of mice. *P < 0.01.

doi:10.1371/journal.pone.0143575.g001
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Fig 2. Chronic exposure of mouse primary PAC to nicotine decreases the levels of THTR-1 and THTR-2 proteins (A and B), mRNA (C and D) and
hnRNA (E and F).Western blotting was performed on whole cell proteins (60 μg) isolated from chronic nicotine-exposed mice and their controls. Real-time
PCR was performed using mice THTR-1 and THTR-2 gene-specific primers. Data are mean ± SE from separate sets of samples frommultiple mice and were
normalized relative to ARPO and calculated by the relative relationship. *P < 0.01, **P < 0.05.

doi:10.1371/journal.pone.0143575.g002
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expression of TPKase protein and mRNA (P< 0.05 for protein and P< 0.01 for RNA) in PAC
of mice exposed to nicotine chronically compared to their controls (Fig 4).

Effect of chronic nicotine exposure on thiamin uptake by human PAC: In
vitro exposure studies
In this study, we used cultured human PAC that were isolated and maintained as described in
“Methods”. We examined the effect of prolonged (48 h) exposure to nicotine [0.5 μM; a level
similar to that found in pancreatic juice of smokers [48]] on the initial rate [5 min; [8, 9]] of
carrier-mediated thiamin (15 nM) uptake. Treatment with nicotine was carried out as
described [46, 47]. The total time human PAC were maintained in vitro; i. e., the time between
their removal from the organ donors to their use in uptake investigations, was approximately 4
days. We used a recently described culture media [34] that is supplemented with STI, BSA and
EGF to maintain human PAC. These factors appear to enhance PAC viability and maintain
their differentiation, possibly by decreasing acinar cell injury by inhibiting proteases, including
extracellular trypsin, released into the media (31). Also, we limited the time in culture to 3
days since previous studies [34] have shown that human PAC maintained under the above-
described conditions for such a period undergo minimal morphological changes and do not
transition to an epithelial phenotype (as shown by lack of epithelial surface markers in FACS
analysis) [34]. Indeed, the level of mRNA expression of our two thiamin transporters, i. e., the
SLC19A2 and SLC19A3 (measured by qPCR), were found to be the same on the day of isolation
and on the day of use of the human PAC (relative quantity 1 ± 0.09 and 1 ± 0.08 for SLC19A2
and SLC19A3, respectively). Also, the human PACs used in this study were able to secrete amy-
lase on the day of use (measured by the Phadebas kit). Using these human PAC, our results

Fig 3. Chronic exposure to nicotine decreases the activity of SLC19A2 and SLC19A3 promoters in transgenic mice carrying human SLC19A2 (A)
and SLC19A3 (B) promoters fused to luciferase. The activities of the promoters were determined as described in “Materials and Methods” and are
presented in percentage relative to their controls. Data are mean ± SE of at least three independent experiments frommultiple sets of mice. *P < 0.01.

doi:10.1371/journal.pone.0143575.g003
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showed nicotine exposure to lead to a significant (P< 0.01) inhibition in the initial rate of thia-
min (15 nM) uptake (Fig 5). We also examined the effect of exposure of human PAC to nico-
tine on levels of expression of THTR-1 and THTR-2 proteins (Western blotting) and observed
a significant (P< 0.05) reduction in the level of expression of both proteins in human PAC
compared to untreated controls (Fig 6A and 6B). The effect of chronic exposure of human
PAC to nicotine on the level of expression of THTR-1 and THTR-2 mRNAs was also tested by
qPCR analysis. The results showed a substantial (P< 0.01) reduction in the expression of
THTR-1 and THTR-2 mRNAs in human nicotine-exposed PAC cells compared to controls
(Fig 6C and 6D).

Discussion
Our aim in this study was to examine the effect of chronic exposure of PAC to a common envi-
ronmental toxin, nicotine, on physiological and molecular parameters of thiamin uptake using
in vivo and in vitromodels. In the in vivomodel we used transgenic mice carrying the human
SLC19A2 and SLC19A3 promoters that we have previously established and characterized [32,
33]. We also examined freshly isolated PAC cells from mice exposed to nicotine and untreated
controls for physiological/molecular investigations. In the in vitromodel of chronic nicotine
exposure, we used human PAC isolated from organ donors that were maintained in culture
under optimal growth conditions, allowing these cells to maintain their viability and morphol-
ogy but preventing their transformation to an epithelial phenotype (34). The human PAC cells
used in these investigations exhibit similar expression levels of thiamin transporters up to four
days after isolation, and thus represent a suitable model system for our studies.

Fig 4. Chronic exposure of mouse primary PAC to nicotine reduces the levels of TPKase proteins (A) andmRNA (B).Western blot analysis was
carried out using pancreatic acinar whole cell proteins (60 μg) isolated from chronic nicotine exposed mice and their controls. Real-time PCR was performed
using mice gene-specific primers. Data are mean ± SE from separate sets of samples frommultiple mice and were normalized relative to ARPO and
calculated by the relative relationship method. *P < 0.01, **P < 0.05.

doi:10.1371/journal.pone.0143575.g004
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Our results indicate that exposure of nicotine to transgenic mice carrying human SLC19A2
and SLC19A3 promoters fused to the reporter gene luciferase [32, 33] causes a significant inhi-
bition in thiamin uptake by freshly isolated PAC and reduces the levels of thiamin transporters.
The treatment also significantly reduced the level of expression of the mouse endogenous
THTR-1 and THTR-2 proteins, mRNAs and hnRNA and was also linked to a marked reduc-
tion in the activity of the SLC19A2 and SLC19A3 promoters in the freshly isolated mouse PAC.
The latter findings suggest that the effect of nicotine on thiamin uptake is mediated, at least in
part, by a decrease in transcription of the SLC19A2 and SLC19A3 genes. Nicotine also nega-
tively affects protein and mRNA expression of TPKase, a key metabolic enzyme involved in the
rate-limiting step in thiamin metabolism. Collectively these results show that chronic exposure
to nicotine decreases both the entry steps of thiamin into PAC cells and its subsequent intracel-
lular processing.

Our results with the human PAC chronically exposed to nicotine in vitro showed that this
exposure also decreases (by>40%) carrier-mediated thiamin uptake. Again the inhibition was
found to be associated with a significant reduction of expression of THTR-1 and THTR-2 at
the protein and mRNA levels. These results are similar to those observed with the mouse stud-
ies described earlier and validate the suitability of using human PAC as a model system.

In our review of the literature, it is apparent that earlier studies have been cautious regarding
the use of cultured human PAC. However, the recent development of modified culturing con-
ditions by Singh et al [34] and their demonstration that human PAC retain their viability,

Fig 5. Chronic exposure of human PAC to nicotine decreases carrier-mediated [3H] thiamin uptake.
Human PAC were exposed to nicotine (0.5 μM, 48 h) and carrier-mediated uptake of 3H-thiamin was
determined as described under “Materials and Methods”. Data represents the mean ± SE of at least three
separate uptake determinations.*P < 0.01.

doi:10.1371/journal.pone.0143575.g005
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Fig 6. Chronic exposure of human PAC to nicotine reduces the levels of THTR-1 and THTR-2 proteins (A and B) andmRNA (C and D). Levels of
THTR-1 and THTR-2 protein expression were determined byWestern blotting. The mRNA expression was determined by quantitative PCR. Each data
represents the mean ± SE of at least three independent experiments. *P < 0.01, **P < 0.05.

doi:10.1371/journal.pone.0143575.g006
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morphology and acinar phenotype (without transitioning towards epithelial phenotype) (see
“Methods”) encouraged us to use these cells in our current studies. The fact that similar data
was obtained with these cells and freshly isolated mouse primary PAC with response to the
effects of nicotine on cellular thiamin transporters and metabolism provide further confirma-
tion for the suitability of cultured human PAC in such type of investigations.

The effect of nicotine on thiamin uptake by PAC is similar to that seen previously with the
nicotine metabolite, 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) [51], a CS car-
cinogen that also accumulates in the pancreas [52]. This shows that multiple CS components
can negatively impact pancreatic thiamin physiology and cellular homeostasis. The mechanism
(s) that mediates the effect of nicotine on PAC thiamin uptake physiology is not clear at present
but could be mediated by the nicotinic acetylcholine receptor [30]; further investigations are
needed to address this issue. In conclusion, this study demonstrates for the first time that
chronic exposure of PAC (both mice and human) to nicotine negatively impacts the physiolog-
ical and molecular parameters of vitamin B1 uptake and that the effect is exerted, in part, at the
level of transcription of the slc19a2 and slc19a3 genes. We anticipate that our future studies will
find that low intracellular levels of thiamin could impair oxidative energy metabolism, increase
oxidative stress and compromise mitochondrial structure and function [3]. The resulting
decrease in cellular ATP level, might sensitize the pancreas to a secondary insult, predisposing
it to development of pancreatitis and other pancreatic diseases [53].
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