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Abstract

Measures of morbidity and comorbidity are frequently used for the control of confounding,
particularly in health services research. Several proposals for those measures are defined
with ICD-coded diagnoses available in hospital routine data. However, a measure that
makes use of the ICD structure is missing. Objective of this work was to elaborate the
power of the ICD structure for defining morbidity and comorbidity measures. Routine data
from three German hospitals with inpatients discharged 2008 were used for model develop-
ment; routine data from 36 German hospitals with inpatients admitted and discharged 2010
were used for model evaluation. Two different risk models were developed, one based on
ICD-10 chapters, the other based on ICD-10 groups. The models were transformed into
sum scores using whole-number weights. Models and scores were compared with the
Charlson Index and the Elixhauser Comorbidities using the receiver operating characteris-
tic. Dependent variable was hospital death. Logistic regression was used to derive the new
models. Charlson Index and Elixhauser Comorbidities were mapped to the German ICD-
10. According to the receiver operating characteristic, the quality of the measures based on
the structure of the ICD-10 was superior compared with the Charlson Index and the Elixhau-
ser Comorbidities. The best result was achieved with the measure based on ICD-10-groups
with an area under curve of 0.910 (95% confidence interval = 0.907—-0.913). The sum
scores showed a comparable performance. The developed new measures may be used to
control for confounding.

Introduction

Measures of morbidity and comorbidity are used, when the overall burden of diseases is
regarded as a confounder. This is particularly relevant in health services research, in quality
management, in pay-for-performance approaches, and in health economics. Four reasons had
been mentioned for measuring morbidity [1]:

« control of confounding,

« identification of effect modifiers,

PLOS ONE | DOI:10.1371/journal.pone.0143365 December 14,2015

1/11


http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0143365&domain=pdf
http://creativecommons.org/licenses/by/4.0/

@’PLOS ‘ ONE

ICD-based Morbidity and Comorbidity Scores

Competing Interests: There is not any relationship
from both authors with the company ID Information
und Dokumentation im Gesundheitswesen GmbH &
Co. KGaA in terms of “employment, consultancy,
patents, products in development, marketed
products, etc.”. There are not any restrictions
concerning sharing of data/or materials due to the
funding or any other relationship with that company.
The funding does not alter the authors' adherence to
PLOS ONE policies on sharing data and materials.

o prediction of outcome, and

« improvement of statistical efficiency.
Morbidity can be defined several fold [2]:

1. absence of physical and mental well-being,

2. asick individual,

3. diseases of a sick individual, or

4. the duration of a disease.

For this work, definition three is applied. If morbidity is the set of diseases of an individual,
comorbidity might be different. Firstly, comorbidity can be regarded as diseases that exist addi-
tionally to one or several diseases of interest [1, 3]. In routine data of inpatient care, the princi-
ple diagnosis is frequently taken as the disease of interest, the set of secondary diagnoses as
comorbidity. Secondly, comorbidity could be defined as the coexistence of several diseases,
without the necessity to exclude a disease of interest [4]. Thirdly, complications could be sepa-
rated from preexisting diseases and those summarized as comorbidity [5, 6]. All three
approaches for the definition had been applied in works about comorbidity measures.

The calculation of morbidity and comorbidity measures from diagnoses coded with the
International Statistical Classification of Diseases and Related Health Problems (ICD) has
reached great interest (cf. Birkmeyer et al. [7] as application example and Quan et al. [8] as
methodological work). In most of the developed countries that reimburse inpatient cases with
diagnosis related groups (DRGs), routine data can be used without the necessity of additional
data acquisition at least for inpatient care. Diagnoses coded with the ICD are part of the routine
data. Several proposals for the definition of morbidity or comorbidity measures based on ICD-
coded diagnoses had been made [8-12]. These definitions make use of two different comorbid-
ity measures, the Charlson Index published in 1987 [13] and the Elixhauser Comorbidities
published in 1998 [10]. Both measures and their derivatives were developed through a combi-
nation of expert opinions and statistical analyses. Meanwhile, several reviews are available
comparing the performance of the different measures in different settings [14, 15]. Yurkovich
et al. showed that there is room for improvement [15]. Predicting hospital mortality, analyses
based on the Charlson Index received very heterogeneous results with an area under curve
(AUC) between 0.608 and 0.860, scores based on the Elixhauser Comorbidities with an AUC
between 0.632 and 0.878.

As far as the author knows, the feasibility of the native ICD structure as basis of morbidity
or comorbidity measures has not been analyzed yet. Therefore, this analysis intended to make
use of the ICD structure for defining such measures, not only to code expert opinions about
those measures with the ICD as in previous work. Furthermore, the quality of respective mea-
sures was compared with ICD-based definitions of the Charlson Index and the Elixhauser
Comorbidities. In-hospital death was used as the dependent variable. The study was split up in
the development and the validation of the measures using different convenient samples of
inpatient cases.

Materials and Methods
Data sets

Anonymized routine data of 51,898 inpatient cases discharged in 2008 from three acute-care
hospitals were used for the development of the model (cf. Table 1). The hospitals belonged to
one hospital group in a large city of Germany. Newborns were excluded from the analysis.
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Table 1. Description of the population.

Development data set Evaluation data set
Hospitals (number) 3 36
Inpatients (number) 51,898 435,076
Year of discharge 2008 2010
Hospital mortality (percent) 2.4% 2.3%
Length of stay in days (mean + standard deviation) 6.65 + 8.44 6.35+7.24
Age in years (mean + standard deviation) 55.7 £ 23.3 55.3+25.1
Female (percent) 54.3% 54.1%
Number of secondary diagnoses per inpatient (mean + standard deviation) 3.55 + 3.33 4.61 £+ 4.56

doi:10.1371/journal.pone.0143365.t001

Hospital mortality was 2.4%; the mean number of secondary diagnoses was 3.55 with a stan-
dard deviation of 3.33. For evaluation, anonymized routine data of 435,076 inpatient cases
admitted and discharged in 2010 from 36 acute-care hospitals in Germany were included.
Those hospitals participated in a nationwide quality benchmarking project of ecclesiastical
institutions. Hospital mortality was 2.3%; the mean number of secondary diagnoses was 4.61
with a standard deviation of 4.56. All diagnoses, i.e. principal as well as secondary ones were
available, coded with the ICD-10 German Modification 2008 (ICD-10-GM 2008) or ICD-
10-GM 2010. A present on admission flag was not available in both data sets. It is still missing
in hospital routine data in Germany. Furthermore, a patient identifier was missing too. There-
fore, it was not able to assign different inpatient cases to an individual.

In alphabetical order, the five most frequent principal diagnoses in the develeopment data
set were atherosclerosis of arteries of extremities Fontaine stage ITA (ICD-10-GM code 170.21),
left ventricular failure with severe limitations (I50.14), obstructive sleep apnoea syndrome
(G47.31), other forms of angina pectoris (120.8), and overlapping lesion of bronchus and lung
(C34.8). The five most frequent principal diagnoses in the evaluation data set were concussion
(506.0), left ventricular failure with severe limitations (150.14), other primary gonarthrosis
(M17.1), singleton, born in hospital (Z38.0), and syncope and collapse (R55).

Model and score development

For the new measures concerning the ICD-10-structure, two risk models were developed using
logistic regression with hospital death as dependent and the ICD-10-chapters or ICD-
10-groups as independent variables. In the final models, non-significant chapters or groups
were excluded. Both models were developed using the principal diagnosis (PDX) as well as sec-
ondary ones (SDX). For each patient, the set of secondary diagnoses was trimmed as follows.
Additional codes were excluded. On the one hand additional codes were identified by the dag-
ger and asterisk-system that is used in the ICD-10 internationally. Typically, dagger codes
describe the etiology and asterisk codes the localization of a disease. The use of dagger codes is
obligatory, the additional use of asterisk codes optional. On the other hand additional codes
are flagged by an exclamation mark in the ICD-10-GM nationally. Those codes are not part of
the international version of the ICD-10. A disease occurring left and right simultaneously (e.g.
both right hip and left hip arthrosis) was counted only once. Furthermore, a code recorded sev-
eral times was not counted but once.

The coefficients of the models were transformed into a score according to Perneger et al.
[16] and Sullivan et al. [17]. The regression coefficient with the minimal absolute value received
the weight “1” or “-1” depending on its prefix. The other regression coefficients were trans-
formed by dividing their absolute value by the minimal absolute value rounded to a whole
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number preserving the prefix. The score of an individual case is then calculated as the sum of
the weights counting a group or chapter only once.

Other variables as sex and gender were not included into the models, even if they influence
hospital mortality. The goal was not to find the best model explaining hospital mortality apply-
ing the whole range of patient characteristics. This is typically the case in risk models used to
calculate a hospital standardized mortality ratio (HSMR) [18, 19]. Those risk models include a
comorbidity score as one out of several independent variables. It would be contradictory if the
comorbidity score itself includes other variables.

Measures for comparison

Charlson et al. calculated the mortality risk of specific diseases using univariate statistical pro-
cedures [13]. An exclusion of a disease of interest is not reported. A relevant risk was identified
for 19 conditions. A weight of 1, 2, 3 or 6 was given to each condition. The Charlson Index is
the sum of the weights. In this analysis, a reduced version with 17 conditions with the original
weights of Charlson et al. was used [9]. The definition of the conditions with the ICD 10th
Revision Canadian version (ICD-10-CA) by Quan et al. [8] was mapped to the ICD-10-GM
2010.

Elixhauser et al. published a list of 30 diseases coded with the ICD 9th Revision Clinical
Modifications (ICD-9-CM) that showed a risk for length of stay, costs, and mortality [10]. The
principal diagnosis was excluded. Later on, van Walraven et al. [20] added a scoring algorithm
based on 21 out of the 30 Elixhauser Comorbidities with weights between -7 to 12. The occur-
rence of negative weights is an artifact resulting from the statistical methodology. A negative
weight does not denote diseases preventing patients from dying during hospital stay. The score
is then calculated as the sum of the weights. The definition of the comorbidities with the ICD-
10-CA by Quan et al. was also mapped to the ICD-10-GM 2010.

For evaluation, each case was characterized by values of six different models: Charlson
Index, score of Elixhauser Comorbidities, risk according to the model based on ICD-10-chap-
ters, risk according to the model based on ICD-10-groups, ICD-10-chapter-score, and ICD-
10-group-score. All six models were applied to the data once excluding and once including the
PDX leading to 12 different measures.

Statistics and software

The accordance between the measures was checked using the non-parametric correlation coet-
ficient of Spearman. The methodological quality of the measures was analyzed calculating the
AUC of the receiver operating characteristic (ROC) with hospital death as the dependent vari-
able. Significance was assumed with a p < = 0.05 (both sides). Goodness of fit was analyzed
with Nagelkerke’s R*. The data were maintained with the relational database management sys-
tem Microsoft Access. The correlation analysis and the logistic regressions were done with
IBM SPSS Statistics. All ICD-10-chapters were considered in a first regression analysis (method
ENTER). Non-significant chapters were excluded from the final model in a second regression
analysis. The logistic regression with ICD-10-groups was run forward stepwise (method
FSTEP). Therefore, only significant variables remained in the model.

Ethics statement

The data were provided for this analysis completely anonymized. Therefore, an approval of an
ethics committee or another respective institution was not required. Because of anonymization,
a written consent was not required as well.
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Results
Measures based on the ICD structure

The first measure using the ICD structure was defined on the level of chapters. The ICD-
10-GM is divided into 22 chapters. Five chapters were excluded:

« Chapter I “Certain infectious and parasitic diseases®, because it includes many additional
codes.

Chapter XV “Pregnancy, childbirth and the puerperium®, because it does not describe dis-
eases primarily.

o Chapter XX “External causes of morbidity and mortality”, because it includes solely addi-
tional codes.

« Chapter XXI “Factors influencing health status and contact with health services”, because the
conditions that are classified here are usually not regarded as a disease.

o Chapter XXII “Codes for special purposes”, because it includes solely undefined codes.

The second measure using the ICD structure was defined on the level of groups. In some
parts of the ICD-10, groups are further structured hierarchically. In those parts, only the upper-
most group was considered:

« C00-C97 Malignant neoplasms

o M00-M25 Arthropathies

o M40-M54 Dorsopathies

o M60-M79 Soft tissue disorders

« M80-M94 Osteopathies and chondropathies

Groups belonging to the chapters I, XV, XX, XXI, and XXII (see above) were excluded as
well. In the calculation of both measures, codes including death as part of their definition were
excluded:

o Codes within group R95-R99 Ill-defined and unknown causes of mortality
« 146.1 Sudden cardiac death, so described
« 095 Obstetric death of unspecified cause (excluded due to the chapter selection as well)

« 096 Death from any obstetric cause occurring more than 42 days but less than one year after
delivery (excluded due to the chapter selection as well)

« P95 Fetal death of unspecified cause

From 241 ICD-10-GM-groups, 165 remained for the measure based on ICD-10-groups.
The final models included 13 ICD-10-GM-chapters (S1 Appendix) and 42 ICD-10-GM-
groups (S2 Appendix). The model based on ICD-10-chapters received an AUC = 0.863 (confi-

dence interval (CI) = 0.853-0.872), the model based on ICD-10-groups an AUC = 0.916
(CI=0.909-0.923). The ICD-10-chapter-score included weights between -6 and +7 with a
maximal sum of 32; the ICD-10-group-score included weights between -131 and +6 with a
maximal sum of 71.

Nagelkerke’s R* was 0.229 for the model based on ICD-10-chapters and 0.330 for the model
based on ICD-10-GM-groups.
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Table 2. Non-parametric correlation coefficient from the correlation analysis of the comorbidity measures including the PDX.

Measure 1 3 5 7 9 11
Charlson PDX+SDX (1) 1.000 0.734 0.542 0.502 0.550 0.488
Elixhauser PDX+SDX (3) 1.000 0.535 0.594 0.539 0.589
ICD-10 chapters PDX+SDX (5) 1.000 0.539 0.999 0.517
ICD-10 groups PDX+SDX (7) 1.000 0.537 0.993
ICD-10-chapter-score PDX+SDX (9) 1.000 0.514
ICD-10-group-score PDX+SDX (11) 1.000

PDX = Principal diagnosis, SDX = Secondary diagnoses. All results are statistical significant with p< = 0.01.

doi:10.1371/journal.pone.0143365.1002

Evaluation

Tables 2 and 3 show the results of the correlation analysis. All bivariate comparisons were sta-
tistical significant with p< = 0.01. The maximum of the correlation coefficient for different
models was 0.734 between the Charlson Index and the Elixhauser Comorbidities including the
PDX and 0.711 excluding the PDX. The minimum was 0.488 between the ICD-10-group-score
and the Charlson Index including the PDX and 0.418 excluding the PDX. The correlation coef-
ficients were equal and higher than 0.990 for the comparisons of the scores with the risks recal-
culated using the original 8-coefficients. Having correlation coefficients between 0.451 and
0.539, the new measures are less concordant among each other than the Charlson Index and
the Elixhauser comorbidities.

Table 4 shows the results of the ROC-analysis. All results were different from the null
hypotheses (AUC = 0.5) with p<0.001. The initial performance of the new models was con-
firmed with an AUC = 0.856 (CI = 0.852-0.859) for the model based on ICD-10-chapters and
an AUC = 0.910 (CI = 0.907-0.913) for the model based on ICD-10-groups. According to their
95%-confidence limits, the scores performed equally to the raw models. Inclusion of the PDX
did not change the performance of the model based on ICD-10-chapters; the model based on
ICD-10-groups showed a slightly higher AUC = 0.910 (CI = 0.907-0.913) with PDX than with-
out PDX (AUC = 0.894, CI = 0.891-0.897). To check for a bias due to the extreme negative
weight of group K35-K39 “Diseases of appendix” the scores based on ICD-10-groups were
additionally analyzed excluding diagnoses codes of that group (results not shown in Table 4).
The results were identical to the original scores with an AUC = 0.909 (CI = 0.906-0.911) with
PDX and AUC = 0.891 (CI = 0.888-0.895) without PDX.

Table 3. Non-parametric correlation coefficient from the correlation analysis of the comorbidity measures excluding the PDX.

Measure

Charlson SDX (2)

Elixhauser SDX (4)

ICD-10 chapters SDX (6)
ICD-10 groups SDX (8)
ICD-10-chapter-score SDX (10)
ICD-10-group-score SDX (12)

2 4 6 8 10 12
1.000 0.711 0.556 0.434 0.561 0.418
1.000 0.544 0.555 0.547 0.548

1.000 0.480 0.999 0.451

1.000 0.479 0.990

1.000 0.449

1.000

PDX = Principal diagnosis, SDX = Secondary diagnoses. All results are statistical significant with p< = 0.01.

doi:10.1371/journal.pone.0143365.1003
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Table 4. Area under curve (AUC) from the ROC-analysis.

Measure

Charlson

Elixhauser

ICD-10 chapters

ICD-10 groups

ICD-10-chapter-core

ICD-10-group-score

Diagnoses AUC Asymptotic 95%-confidence interval

lower limit upper limit
SDX 0.764 0.759 0.769
PDX+SDX 0.792 0.788 0.797
SDX 0.815 0.810 0.819
PDX+SDX 0.829 0.825 0.833
SDX 0.853 0.850 0.857
PDX+SDX 0.856 0.852 0.859
SDX 0.894 0.891 0.897
PDX+SDX 0.910 0.907 0.913
SDX 0.854 0.850 0.857
PDX+SDX 0.856 0.852 0.859
SDX 0.890 0.887 0.894
PDX+SDX 0.908 0.905 0.911

PDX = Principal diagnosis, SDX = Secondary diagnoses

doi:10.1371/journal.pone.0143365.1004

Including the PDX, the Charlson Index received an AUC = 0.792 (CI = 0.788-0.797) and
the Elixhauser Comorbidities an AUC = 0.829 (CI = 0.825-0.833), being significantly lower
than all results achieved with the new models based on the ICD structure.

Discussion

Two new risk models for morbidity and comorbidity based on the ICD structure were devel-
oped using logistic regression analyses with hospital death as dependent variable. One of them
was based on 13 out of 22 chapters of the ICD-10-GM, the other one on 42 out of 241 groups.
The performance results of the development stage were confirmed in the evaluation using a
totally independent data set of more than 400,000 inpatient cases. Moreover, the sum score for
both models showed a comparable performance to the application of the raw model. This is
important to provide an easy-to-use-approach for the application of the models in future proj-
ects. Depending on the use case, the scores are applicable with and without the PDX. Including
the PDX will address morbidity, excluding the PDX will address comorbidity. The weight
determined for ICD-10-group K35-K39 “Diseases of appendix” appears as an artifact. Never-
theless, diagnoses from that group could be excluded without lowering the score’s
performance.

The concordance of the new measures among each other and with the Charlson Index and
the Elixhauser Comorbidities was weaker than the concordance between the Charlson Index
and the Elixhauser Comorbidities. Charlson Index and Elixhauser Comorbidities might share a
common tradition that is not addressed by the new measures. Surprisingly, the concordance
between the ICD-based measures was lower than the concordance between their competitors.
The formal hierarchy of the ICD-10 might not correctly reflect the clinical relationship between
diseases. As a consequence, the meaning of a branch in terms of morbidity or comorbidity
changes between chapters and groups.

In the ROC-analysis, the measure based on ICD-10-groups showed the best performance,
independently of the exclusion or inclusion of the PDX. As far as the authors know, an AUC of
0.910 (CI 0.907-0.913) for hospital death is the best value published for ICD-based measures
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ever, if the measure is applied without co-variables like sex and age. A superior result was pub-
lished by Quail et al. combining the Elixhauser Comorbidities with a base model [21]. They cal-
culated an AUC of 0.913 (CI 0.910-0.916) for death in the year following the base year in a
general population cohort of 662,423 people in Canada.

The superiority of the Elixhauser Comorbidities to the Charlson Index was recognized in
several studies before. E. g. Southern et al. [22] received an AUC of 0.704 for the Charlson
Index in the adaptation of Deyo et al. and an AUC of 0.793 for the Elixhauser Comorbidities.
In that study, the principal and the secondary diagnoses coded with the ICD-9-CM had been
included. Ou compared both comorbidity measures defined with the ICD-10 [23]. The Charl-
son Index received an AUC of 0.860 in the prediction of hospital mortality, the Elixhauser
Comorbidities an AUC of 0.870, including all diagnoses for both measures. In the work of Chu
et al. [24], results between 0.708 and 0.737 were reached for both measures in the prediction of
hospital mortality for acute myocardial infarction and chronic obstructive pulmonary disease.
The results derived from the German dataset for the international measures are similar. This
might be an indicator of the high quality of diagnoses documentation for inpatient care in Ger-
many [25]. Together with the USA and Belgium, the mean number of secondary diagnoses in
German hospitals is the highest in 14 member states of the Organisation for Economic Co-
operation and Development (OECD)), all using some kind of a DRG-like reimbursement sys-
tem [26]. Therefore, a general underreporting of diagnoses could be ruled out. However, reim-
bursement incentives could induce an improper up-coding [27]. As far as we know, that did
not happen in Germany due to a strong quality control of the medical documentation on behalf
of the statutory health insurances [28, 29].

The risk models based on the ICD structure reached reasonable results. The model applying
the chapters of the ICD-10 achieved results that are reasonably higher than those of the Charl-
son Index and the Elixhauser Comorbidities. A further differentiation of the chapters to the
groups of the ICD-10 then improved the model’s quality yet again. Obviously, ICD-10-groups
cover comorbidity relevant for hospital mortality quite better than the chapters. A further auto-
matic differentiation is difficult due to the high number of about 14,000 terminal codes in the
ICD-10-GM, a number too large as to include them as independent variables into the analysis.
The results presented in this paper demonstrate the promising approach of using the native
structure of the ICD-10 as basis for morbidity and comorbidity measures.

The presented scores might not be appropriate for every setting. Studies focusing on homo-
geneous groups of patients suffering from an index disease might benefit from a disease specific
score. Furthermore, the presented scores are justified by hospital mortality as proxy for mor-
bidity. If other proxies are favored, scores developed specifically with those proxies as depen-
dent variable might be better.

Study limitations

The presented study made use of diagnoses recorded and coded in hospitals routine data to
estimate the level of morbidity and comorbidity of inpatients. An evaluation of other sources—
for example a subjective assessment of the patients’ comorbidity level by experts—was not part
of the study. Furthermore, there seems to be a mismatch in some ICD-10 groups and chapters
between the weights and the perceived clinical relevance. Those ICD-10 groups and chapters
might indicate situations going beyond the specific diseases. Further research could elaborate
options to keep the presented approach based on the structure of the ICD-10 while adapting
the model to the clinical appraisal.
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One might claim that the international approaches perform inferior in Germany due to dif-
ferences in case mix, etc. This concern can be rejected because the results achieved in German
data are equal to the results published in the literature.

Morbidity and comorbidity as well as the respective measures are complex constructs that
could be operationalized in several ways, for example:

o diagnoses could be coded differently with the same classification (see the differences between
[9] and [12]),

« conditions can be included or excluded (see the smaller version of the Charlson Index pro-
posed by Halfon et al. [11]),

« different weight scores could be used (see [30] for alternative weights for the Charlson
Index),

o the principal diagnosis can be included or excluded,
o complications could be considered separately (as in [31]) and
o the dependent variable could be changed.

Complications were not excluded from the models and the data. At least the exclusion of
complications from model development is sometimes mentioned as an important feature.
However, there is first evidence, that not the frequency of complications determines hospital
mortality but rather the handling of complications [32]. If this is true, the exclusion of compli-
cations in risk adjustment could lead to wrong conclusions, if a score is applied in research con-
cerned with mortality as adverse event. Therefore, further research should focus on the
methodological role of those characteristics for measuring morbidity and comorbidity. Fur-
thermore, the applicability of the scores in other research settings like outpatient care and its
performance regarding prospective mortality (e. g. one year) should be analyzed in subsequent
studies.

The use of routine data that are primarily recorded for reimbursement purposes might be
regarded as problematic due to several reasons. Diagnoses are not necessarily clinically verified,
routine data might exaggerate the disease burden due to an inadequate up-coding, routine data
might be incomplete because information is missing that is financially not relevant, and diag-
noses might be imprecise due to the coding by administrative staff.

Supporting Information

S1 Appendix. Risk model based on ICD-10-chapters. Table A shows the variables along with
their coefficients and weights of the risk model based on ICD-10-chapters.
(DOCX)

$2 Appendix. Risk model based on ICD-10-groups. Table B shows the variables along with
their coefficients and weights of the risk model based on ICD-10-groups.
(DOCX)

Author Contributions

Conceived and designed the experiments: JS SH. Performed the experiments: JS SH. Analyzed
the data: JS SH. Contributed reagents/materials/analysis tools: JS SH. Wrote the paper: JS SH.

PLOS ONE | DOI:10.1371/journal.pone.0143365 December 14,2015 9/11


http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0143365.s001
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0143365.s002

@’PLOS ‘ ONE

ICD-based Morbidity and Comorbidity Scores

References

1.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22,

23.

24.

de Groot V, Beckerman H, Lankhorst GJ, Bouter LM. How to measure comorbidity: a critical review of
available methods. J Clin Epidemiol 2003; 56: 221-229. PMID: 12725876

Porta M. A dictionary of epidemiology. New York: Oxford University Press; 2008.

Feinstein AR. The pre-therapeutic classification of co-morbidity in chronic disease. J Chron Dis 1970;
23: 455-468. PMID: 26309916

Valderas JM, Starfield B, Sibbald B, Salisbury C, Roland M. Defining comorbidity: implications for
understanding health and health services. Ann Fam Med 2009; 7: 357-363. doi: 10.1370/afm.983
PMID: 19597174

Luft HS. Methodological commentary. Health Services Research 1997; 32: 239-242.

Pompei P, Charlson ME, Ales K, MacKenzie CR, Norton M. Relating patient characteristics at the time
of admission to outcomes of hospitalization. J Clin Epidemiol 2008; 44: 1063—1069.

Birkmeyer JD, Siewers AE, Finlayson EV, Stukel TA, Lucas FL, Batista |, et al. Hospital volume and sur-
gical mortality in the United States. N Engl J Med 2002; 346: 1128—1137. PMID: 11948273

Quan H, Sundararajan V, Halfon P, Fong A, Burnand B, Luthi JC, et al. Coding algorithms for defining
comorbidities in ICD-9-CM and ICD-10 administrative data. Med Care 2005; 43: 1130—-1139. PMID:
16224307

Deyo RA, Cherkin DC, Ciol MA. Adapting a clinical comorbidity index for use with ICD-9-CM administra-
tive databases. J Clin Epidemiol 1992; 45: 613-619. PMID: 1607900

Elixhauser A, Steiner C, Harris DR, Coffey RM. Comorbidity measures for use with administrative data.
Med Care 1998; 36: 8-27. PMID: 9431328

Halfon P, Eggli Y, van Melle G, Chevalier J, Wasserfallen J-B, Burnand B. Measuring potentially avoid-
able hospital readmissions. J Clin Epidemiol 2002; 55: 573-587. PMID: 12063099

Romano PS, Roos LL, Jollis JG. Adapting a clinical comorbidity index for use with ICD-9-CM adminis-
trative data: differing perspectives. J Clin Epidemiol 1993; 46: 1075-1079. PMID: 8410092

Charlson ME, Pompei P, Ales KL, MacKenzie CR. A new method of classifying prognostic comorbidity
in longitudinal studies: development and validation. J Chronic Dis 1987; 40: 373-383. PMID: 3558716

Mansour TAS, Aylin P, Bottle A. Systematic review of comorbidity indices for administrative data. Med
Care 2012; 50: 1109-1118. doi: 10.1097/MLR.0b013e31825f64d0 PMID: 22929993

Yurkovicha M, Avina-Zubieta A, Thomas J, Gorenchtein M, Lacaill D. A systematic review identifies
valid comorbidity indices derived from administrative health data. Journal of Clinical Epidemiology
2015, 68: 3—14. doi: 10.1016/j.jclinepi.2014.09.010 PMID: 25441702

Perneger T, Rae A-C, Gaspoz J-M, Borst F, Vitek O, Héliot C. Screening for pressure ulcer risk in an
acute care hospital: Development of a brief bedside scale. J Clin Epidemiol 2002; 55: 498-504. PMID:
12007553

Sullivan LM, Massaro JM, D'Agostino RBD. Presentation of multivariate data for clinical use: The Fra-
mingham Study risk score functions. Statistics in Medicine 2004; 23: 1631-1660. PMID: 15122742

Jarman B, Gault S, Alves B, Hider A, Dolan S, Cook A, et al. Explaining differences in English hospital
death rates using routinely collected data. BMJ 1999; 318: 1515-1520. PMID: 10356004

Pouw ME, Peelen LM, Lingsma HF, Pieter D, Steyerberg E, Kalkman CJ, et al. Hospital standardized
mortality ratio: consequences of adjusting hospital mortality with indirect standardization. PLoS One
2013; 8:e59160. doi: 10.1371/journal.pone.0059160 PMID: 23593133

van Walraven C, Austin PC, Jennings A, Quan H, Forster AJ. A Modification of the Elixhauser Comor-
bidity Measures into a point system for hospital death using administrative data. Med Care 2009; 47:
626—633. doi: 10.1097/MLR.0b013e31819432e5 PMID: 19433995

Quail JM, Lix LM, Osman BA, Teare GF. Comparing comorbidity measures for predicting mortality and
hospitalization in three population-based cohorts. BMC Health Services Research 2011; 11: 146. doi:
10.1186/1472-6963-11-146 PMID: 21663672

Southern DA, Quan H, Ghali WA. Comparison of the Elixhauser and Charlson/Deyo methods of comor-
bidity measurement in administrative data. Med Care 2009; 42: 355-360.

Ou HT. Performances of comorbidity measures in healthcare related behaviors and outcomes in Type
2 Diabetes. Dissertation for the degree of Doctor of Philosophy (Social and Administrative Sciences).
University of Michigan. 2010.

Chu Y-T, Ng YY, Wu S-C. Comparison of different comorbidity measures for use with administrative
data in predicting short and long-term mortality. BMC Health Services Research 2010; 10: 140. doi: 10.
1186/1472-6963-10-140 PMID: 20507593

PLOS ONE | DOI:10.1371/journal.pone.0143365 December 14,2015 10/11


http://www.ncbi.nlm.nih.gov/pubmed/12725876
http://www.ncbi.nlm.nih.gov/pubmed/26309916
http://dx.doi.org/10.1370/afm.983
http://www.ncbi.nlm.nih.gov/pubmed/19597174
http://www.ncbi.nlm.nih.gov/pubmed/11948273
http://www.ncbi.nlm.nih.gov/pubmed/16224307
http://www.ncbi.nlm.nih.gov/pubmed/1607900
http://www.ncbi.nlm.nih.gov/pubmed/9431328
http://www.ncbi.nlm.nih.gov/pubmed/12063099
http://www.ncbi.nlm.nih.gov/pubmed/8410092
http://www.ncbi.nlm.nih.gov/pubmed/3558716
http://dx.doi.org/10.1097/MLR.0b013e31825f64d0
http://www.ncbi.nlm.nih.gov/pubmed/22929993
http://dx.doi.org/10.1016/j.jclinepi.2014.09.010
http://www.ncbi.nlm.nih.gov/pubmed/25441702
http://www.ncbi.nlm.nih.gov/pubmed/12007553
http://www.ncbi.nlm.nih.gov/pubmed/15122742
http://www.ncbi.nlm.nih.gov/pubmed/10356004
http://dx.doi.org/10.1371/journal.pone.0059160
http://www.ncbi.nlm.nih.gov/pubmed/23593133
http://dx.doi.org/10.1097/MLR.0b013e31819432e5
http://www.ncbi.nlm.nih.gov/pubmed/19433995
http://dx.doi.org/10.1186/1472-6963-11-146
http://www.ncbi.nlm.nih.gov/pubmed/21663672
http://dx.doi.org/10.1186/1472-6963-10-140
http://dx.doi.org/10.1186/1472-6963-10-140
http://www.ncbi.nlm.nih.gov/pubmed/20507593

@’PLOS ‘ ONE

ICD-based Morbidity and Comorbidity Scores

25.

26.

27.

28.

29.

30.

31.

32.

Stausberg J. Quality of coding in acute inpatient care. Bundesgesundheitsblatt Gesundheitsforschung
Gesundheitsschutz 2007; 50: 1039-1046 [in German]. PMID: 17676418

Drésler S, Romano P, Wei L. Health care quality indicators project: patient safety indicators report
2009. OECD Health Working Papers No. 47. Paris: OECD; 2009.

Simborg DW. DRG creep—A new hospital-acquired disease. N Engl J Med 1981; 304: 1602—-1604.
PMID: 7015136

Gaertner T, Lehr F, Blum B, van Essen J. Consistency and reliability of MDK expertise examining the
encoding in the German DRG system. Gesundheitswesen. 2015 Mar 11. [Epub ahead of print] [in
German)].

Huber H, Brambrink M, Funk R, Rieger M. Quality assurance in coding expertise of hospital cases in
the German DRG system. Evaluation of inter-rater reliability in MDK expertise. Gesundheitswesen
2012; 74:645-650 [in German]. doi: 10.1055/s-0031-1301269 PMID: 22411547

Schneeweiss S, Wang PS, Avorn J, Glynn RJ. Improved comorbidity adjustment for predicting mortality
in medicare populations. Health Serv Res 2003; 38: 1103—1120. PMID: 12968819

Roos LL, Stranc L, James RC, Li J. Complications, comorbidities, and mortality: improving classification
and prediction. Health Serv Res 1997; 32: 229-238. PMID: 9180617

Ghaferi AA, Birkmeyer JD, Dimick JB. Variation in hospital mortality associated with inpatient surgery.
N Engl J Med 2009; 361: 1368—1375. doi: 10.1056/NEJMsa0903048 PMID: 19797283

PLOS ONE | DOI:10.1371/journal.pone.0143365 December 14,2015 11/11


http://www.ncbi.nlm.nih.gov/pubmed/17676418
http://www.ncbi.nlm.nih.gov/pubmed/7015136
http://dx.doi.org/10.1055/s-0031-1301269
http://www.ncbi.nlm.nih.gov/pubmed/22411547
http://www.ncbi.nlm.nih.gov/pubmed/12968819
http://www.ncbi.nlm.nih.gov/pubmed/9180617
http://dx.doi.org/10.1056/NEJMsa0903048
http://www.ncbi.nlm.nih.gov/pubmed/19797283

