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Abstract
MicroRNAs (miRNAs or miRs) are small regulatory RNAs crucial for modulation of signaling

pathways in multiple organs. While the link between miRNAs and heart disease has grown

more readily apparent over the past three years, these data are primarily limited to small ani-

mal models or cell-based systems. Here, we performed a high-throughput RNA sequencing

(RNAseq) analysis of left ventricle and other tissue from a pre-clinical ovine model. We iden-

tified 172 novel miRNA precursors encoding a total of 264 mature miRNAs. Notably, 84 pre-

cursors were detected in both the left ventricle and other tissues. However, 10 precursors,

encoding 11 mature sequences, were specific to the left ventricle. Moreover, the total 168

novel miRNA precursors included 22 non-conserved ovine-specific sequences. Our data

identify and characterize novel miRNAs in the left ventricle of sheep, providing fundamental

new information for our understanding of protein regulation in heart and other tissues.

Introduction
Coronary artery disease is the most common cause for mortality and development of heart fail-
ure in the United States [1–4]. Large animal models have been developed to study myocardial
infarction with resultant ischemic heart failure [5–12]. The ovine model is particularly enticing
in the study of heart failure due to its lack of collateral circulation, the resistance to fatal
arrhythmias, and its anatomical similarities to humans [6,9,10,13]. However, the molecular
mechanisms underlying development of heart failure in this critical pre-clinical model are
unknown. In fact, we lack even a basic fundamental knowledge of the molecular pathways
related to transcriptional and translational regulation in this species.

miRNAs are small non-coding RNAs that act as post-transcriptional regulators of gene
expression [14,15]. Their mature form (ffi18�22 nt long) is incorporated into a protein
complex called RISC (RNA-induced silencing complex) to which they confer binding specific-
ity to target mRNA molecules. miRNAs can bind their targets through partial or perfect

PLOSONE | DOI:10.1371/journal.pone.0143313 November 24, 2015 1 / 20

OPEN ACCESS

Citation: Laganà A, Veneziano D, Spata T, Tang R,
Zhu H, Mohler PJ, et al. (2015) Identification of
General and Heart-Specific miRNAs in Sheep (Ovis
aries). PLoS ONE 10(11): e0143313. doi:10.1371/
journal.pone.0143313

Editor: Giuseppe Pignataro, Federico II University of
Naples, ITALY

Received: June 23, 2015

Accepted: November 3, 2015

Published: November 24, 2015

Copyright: © 2015 Laganà et al. This is an open
access article distributed under the terms of the
Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any
medium, provided the original author and source are
credited.

Data Availability Statement: The raw data has been
submitted to the NCBI SRA database: Project
accession #: SRP038892; Samples accession #:
SRR1175693, SRR1175694. The original output files
generated by miRDeep2 are available as
supplementary material.

Funding: The authors have no support or funding to
report.

Competing Interests: The authors have declared
that no competing interests exist.

http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0143313&domain=pdf
http://creativecommons.org/licenses/by/4.0/


complementarity and inhibit their translation or promote their degradation. Target recognition
is often mediated by the seed region at the 5' end of the mature miRNA, although a supplemen-
tary or compensatory role of the central and 3' end of the miRNA has been observed [16].

miRNAs play a crucial role in many biological processes and their dysregulation is linked to
a variety of diseases with significant impact in important cellular pathways [17–20]. Recently,
miRNAs have been linked with heart failure, albeit primarily in a descriptive manner [21–23].
Several works have reported the discovery of ovine miRNAs and the latest version of miRBase
(Release 21, June 2014) contains 106 precursors and 153 mature miRNAs [24–30]. However,
there remains a paucity of data on the miRNAs in sheep cardiac tissue.

The role of miRNAs in both diagnosis and treatment of heart failure remains enticing.
Therefore, we defined and characterized novel miRNAs in the left ventricle of Ovis aries
through high-throughput RNA sequencing (RNA-Seq) and a multi-step computational
approach. Our results provide novel foundational work for understanding cardiac regulation
in pre-clinical models by contributing to the characterization of the sheep “miRNAome”.

Materials and Methods
All studies were conducted with approval by the Institutional Animal Care and Use Committee
(IACUC) at The Ohio State University (Study number: 2012A00000040). Adult male Dorset
sheep weighing between 50–70 kg were used for this study (n = 5). Strict adherence was kept to
the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health.

Tissue Harvesting and RNA isolation
All animals were sedated, and all attempts were made to minimize animal discomfort as previ-
ously described [31]. The animals underwent a 5th intercostal space left thoracotomy, and an
expeditious cardiectomy was performed. Autologous platelets from sheep’s own blood were pre-
spun to form platelet aggregates. Then, employing selective cardiac catheterization, these were
injected into the left anterior descending artery to create a reproducible area of myocardial infarc-
tion. This did not necessarily produce ischemic heart failure as that is a chronic model (which
requires weeks) and we were measuring the acute effects (3 days) of a myocardial infarction [5].

In addition, a laparotomy and craniotomy were performed with procurement of lung, liver,
kidney, spleen, pancreas and brain tissue.

The euthanization procedure strictly followed the Ohio State University IACUC approved
method of euthanasia for vertebrate animals. In brief, the sheep were anesthetized using telazol
4–10 mg/kg and Isoflurane and intubated. After confirming the animals were under deep anes-
thesia (no response to deep tissue stimulus, lack of jaw tone, decreased respiration) the chest
was opened to access the heart. The major vessels were cut to facilitate exsanguination and the
heart and tissues removed for further analysis.

The tissue was separated into two groups with the test group being left ventricular (LV) tis-
sue and the control group being all others (Global Library). The tissue collected was immedi-
ately flash frozen in liquid nitrogen and stored in -80 C. RNA isolation was performed using
the mirVana PARIS isolation kit (Ambion, Austin, Texas). RNA integrity was confirmed with
agarose gel electrophoresis stained with ethidium bromide with a 28S:18S ratio� 2.0 as confir-
mation of RNA integrity. The purity of RNA was confirmed via UV spectroscopy using A260
and A280 ratio.

Reverse transcription (RT) and preamplification
Reverse transcription and pre-amplification were performed according to the manufacturer’s
instructions using TaqMan MicroRNA RT kit, Megaplex RT Primers, and Megaplex PreAmp
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Primers (Life Technologies Corporation, Carlsbad, CA). The mixture of total RNA with Mega-
plex RT primers, RNase Inhibitor and MultiScribe Reverse Transcriptase was reverse tran-
scribed utilizing a C1000 thermal Cycler (Bio-Rad Laboratories Incorporated, Hercules, CA).

Illumina Deep Sequencing
Two small RNA libraries were generated from LV and global samples using the Illumina Tru-
seqTM Small RNA Preparation kit according to Illumina’s TruSeqTM Small RNA Sample Prepa-
ration Guide [REF1]. The purified cDNA library was used for cluster generation on Illumina’s
Cluster Station and then sequenced on Illumina GAIIx following vendor’s instruction for run-
ning the instrument. Raw sequencing reads (40 nts) were obtained using Illumina’s Sequencing
Control Studio software version 2.8 (SCS v2.8) following real-time sequencing image analysis
and base-calling by Illumina's Real-Time Analysis version 1.8.70 (RTA v1.8.70). The extracted
sequencing reads were stored in file separate raw data files and were then used in the standard
data analysis, which is described in the Results and in the Bioinformatics Methods sections.

Quantitative Stem-Loop Real-Time PCR
The expression of selected mature miRNAs in the LV sample was confirmed by Stem-Loop
qRT-PCR performed with a TaqMan Human MicroRNA A array (version 2.0; Life Technolo-
gies Corporation, Carlsbad, CA) in association with TaqMan Universal Master Mix II (Life
Technologies Corporation, Carlsbad, CA). The threshold cycle (Ct) = the fractional cycle
number above a given threshold with normalization to U6 snRNA. The mean Ct of each sam-
ple was calculated as ΔCt with analysis via a commercially available software (SDS Relative
Quantification Software, Applied Biosystems, Life Technologies Corporation, Carlsbad, CA).
The relative quantification was solved with the equation of 2-ΔCt. The snRNA U6 was used as
internal control. All microRNAs were considered expressed if Ct values were< 35. The con-
served miRNAs were validated using TaqMan Assays for Ovis aries, where available, or 100%
homologous miRNAs from other species (e.g. Bos taurus and Homo sapiens). The non-con-
served miRNAs were validated using custom designed TaqMan Assays.

Bioinformatics Analysis
For each sample, raw sequence reads were extracted from image data and then processed by a
proprietary pipeline script, ACGT101-miR v4.2 (LC Sciences), which employed a series of filter
to remove various un-mappable sequencing reads [32,33]. Identical reads were clustered into
unique families and stored in FastQ files, annotated with their copy numbers. In the subse-
quent filtering step, low-quality sequences due to sample preparation, sequencing chemistry
and processes, and the optical digital resolution of the sequencer detector were removed. The
remaining sequences, with lengths between 15 and 32 bases, were grouped by families of
unique sequences and stored in FastQ files as mappable reads.

The actual miRNA detection was carried out by applying miRDeep2, a software pipeline for
the identification of miRNAs from deep sequencing data (https://www.mdc-berlin.de/
rajewsky/miRDeep) [34]. miRDeep2 consists of a series of scripts which makes use of other
software pieces such as the short read aligner Bowtie and the RNA secondary structure predic-
tion tool RNA fold from the Vienna RNA package [35,36]. Briefly, the short reads are aligned
to the genome, then all candidates whose structure and read signature are inconsistent with
Drosha/Dicer processing are filtered out. Potential stem-loop precursors are assigned a score
according to a Bayesian probabilistic model of miRNA biogenesis, which uses information
such as the presence of a miRNA passenger strand, the presence of a conserved miRNA seed,
and the absolute and relative energetic stability of the hairpin.
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The mappable reads FastQ files from LV and the global library were processed by miR-
Deep2 using the Ovis aries v3.1 genome reference sequence downloaded from NCBI (ftp://ftp.
ncbi.nlm.nih.gov/genomes).

For the prediction of novel miRNAs, we set a score cut-off threshold of 5, as it was the low-
est score cut-off that yielded a signal-to-noise ratio higher than 10:1 (37:1), similarly to what
has been described in other papers [37–40]. All the candidates with score below 5 were dis-
carded. We didn’t employ the same filter for the detection of known miRNAs present in miR-
Base, as we considered their precursors already validated, but we filtered out all those
candidates, novel and known, with mature read count below 10, this being a reasonable and
commonly used count threshold [41–43].

All the candidates were processed by the miRBase, NCBI and RFam implementations of
BLAST (miRBase: http://www.mirbase.org/search.shtml, NCBI: http://blast.ncbi.nlm.nih.gov/
Blast.cgi, RFam: http://rfam.sanger.ac.uk/search), in order to assess their evolutionary conserva-
tion and filter out candidates that matched potential repetitive sequences and other types of short
RNAs. The remaining candidates were further analyzed by employing ad-hoc scripts developed
in the Ruby language (https://www.ruby-lang.org), in order to compute basic descriptive statistics
about their genomic distribution, clustering and isomiRs, classify them into families, group mul-
tiple precursors encoding the same mature sequences and evaluate the dominant precursor arm
in the different samples. The candidate mature miRNAs were processed by the software miRiam,
in order to predict potential targets from the UCSC database of 3’UTR sequences of the sheep
(http://genome.ucsc.edu/) [44]. The lists of predicted targets were submitted to the online tool
Ingenuity Pathway Analyzer (IPA), which we used to carry out the functional analysis.

Results and Discussion

Generation of RNA libraries from sheep and processing of sequencing
data
To define the ovine miRNAome, we first generated a small-RNA library from sheep. Specifi-
cally, a small-RNA library was constructed from pooled RNA samples of nine tissues of adult
male Dorset sheep (“global” sheep library; see Methods section for detailed approach). More-
over, to detect novel left ventricle specific miRNAs, a second small-RNA library (LV, “Left
Ventricle specific” library) was generated from RNA samples obtained from the left ventricle of
three adult male Dorset sheep. Illumina sequencing of the purified cDNA libraries generated
21,343,067 total raw reads: 9,512,054 from the LV library and 11,831,013 from the global
library. Raw reads were processed by ACGT101-miR v4.2 (LC Sciences), a pipeline that
employs a series of digital filters to remove unmappable reads [45,46]. Low-quality sequences,
due to sample preparation, sequencing chemistry and processes, and the optical digital resolu-
tion of the sequencer detector, were removed. The remaining mappable sequences were
grouped by unique families. A total of 5,537,088 and 9,089,864 mappable reads accounting for
58.2% and 76.8% of the total raw reads from LV and global libraries, respectively, were
obtained. Fig 1 illustrates the length distribution of the total mappable reads, the majority of
which were between 18 and 24 nt (90.93%).

Processed high-quality sequences were analyzed by miRDeep2 [47,48], a computational tool
to map, analyze and score deep sequencing data for the identification of known and novel miR-
NAs. Fig 2 illustrates an example of the miRDeep2 output. miRDeep2 mapped a total of
3,927,458 reads from the LV library (70.93% of the total count) and 6,663,266 reads from the
global library (73.30% of the total counts) to a mature 5p or 3p miRNA sequence. Fig 3 illustrates
the computational pipeline employed for data analysis (results described below). The raw data
has been submitted to the NCBI SRA database (Project accession #: SRP038892; Samples
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accession # LV: SRR1175693, OT: SRR1175694). The original output generated by miRDeep2 is
available as supporting information (S1 File).

Identification of Novel Sheep miRNAs
The miRDeep2 pipeline analysis identified 182 novel miRNA precursors, i.e. not previously
reported in miRBase for sheep. A total of 1,607,604 reads from LV and 1,900,117 reads from
the global library were mapped to novel miRNA candidates, accounting for 29% and 20.9% of
the total mappable reads from LV and the global library, respectively.

Novel Sheep miRNAs: Conservation Analysis
We analyzed putative precursor sequences by miRBase implementation of BLAST to assess
their evolutionary conservation and identify potential orthologs. 110 precursors exhibited a sig-
nificant similarity match with precursors from at least 5 other species (EValue< 4e-09), 9
showed a significant similarity with<5 species (EValue< 9e-05) and one was comparable to a
distant precursor from Drosophila pseudoobscura (miR-219) (EValue = 2e-18). Moreover, 29
stem-loop sequences had a significant match with precursors from the large Bos taurus
miRNA family miR-2284/2285 (EValue< 2e-04). This family contains 101 precursors recently
detected by deep sequencing of Bos taurus, encoding highly similar mature products
[36,49,50]. These are the first example of miR-2284/2285 homolog miRNAs in a species other
than Bos taurus. The remaining 33 precursors were further analyzed by BLAST against the
Ovis aries genome and the Refseq-RNA and Rfam databases [51]. This analysis removed 10
candidates. Four of ten were removed because they had more than five significant hits against
different chromosomal areas of the sheep genome (E< 2e-08), hence likely to be repeated
sequences. The other 6 showed significant similarity with other small RNAs such as small
nuclear RNAs (snRNAs), small nucleolar RNAs (snoRNAs) and transfer RNAs (tRNAs). We
classified the remaining 24 sequences as novel sheep-specific miRNA precursors.

The 172 conserved and non-conserved novel miRNA precursors encoded 262 unique novel
5p and 3p mature sequences (S1 Table). 84 precursors were detected in both LV and global

Fig 1. Length distribution of the total mappable reads.

doi:10.1371/journal.pone.0143313.g001
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Fig 2. An example of the miRDeep2 output. The figure illustrates the output for the novel oar-miR-7134. The upper part shows the scores assigned to the
miRNA, the reads count for the mature, star and loop sequences and the total count. The predicted secondary structure of the hairpin is also depicted, with
the mature, star and loop sequences highlighted in different colors (red, purple and yellow, respectively). The bottom part of the figure shows all the reads
associated to the miRNA, aligned to the mature, star and loop sequences of the predicted precursor on the genome (obs line) and the experimental sequence
as reported in miRBase (exp line). For each sequence, the frequency (reads column) and mismatches with the genomic sequence (mm column) are given.
The mismatches are also highlighted in capital letters. The different isomiRs, discussed in the Results and Discussion section, are extracted from this
alignment data.

doi:10.1371/journal.pone.0143313.g002
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samples, while 76 precursors were present in the global sample only, as opposed to 12 precur-
sors which were instead specific to LV (Tables 1 and 2).

Fig 3. Computational pipeline of data analysis. The figure illustrates the four steps of the computational pipeline employed to analyze the RNAseq data.
Pre-Processing: raw data were processed by the ACGT101-miR v4.2 pipeline in order to obtain good quality mappable reads. miRNA detection/prediction:
this step was carried out by applying miRDeep2 to the mappable reads. The tool returned the lists of known and novel miRNA precursors identified. Filtering:
the output of miRDeep2 was further analyzed by BLAST against different databases in order to assess evolutionary conservation of the predicted miRNAs
and remove sequences matching other kinds of small RNAs. Data Analysis: last step consisted of the application of a series of ad-hoc scripts for the
extraction of descriptive statistics. The tool IPA was used to perform the functional enrichment analysis of the targets of the identified miRNAs, which were
predicted by the software miRiam.

doi:10.1371/journal.pone.0143313.g003
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Novel Sheep miRNAs: Arm Preference
Both arms of a miRNA precursor may give rise to functional levels of mature miRNA [15,52].
The dominant product may change from species to species and have different tissue expression
preference, including normal versus pathological tissue [53–59]. Although 84 stem-loop
sequences were detected in both samples, there were differences in the expression of their
mature products. Notably, for 59 we detected the presence of the same mature sequences in
both samples, as opposed to 25 precursors where the two samples differed in the presence of
the corresponding mature products. For example, we detected both let-7e-5p and let-7e-3p in
the global library, while only let-7e-5p was found in the LV library. Our data also showed that
86 out of 161 precursors found in global library (52.76%) and 51 out of 95 precursors found in
LV (53.68%) expressed both 5p and 3p mature sequences at detectable levels (i.e.> 10 read
counts). Moreover, 5p was the dominant product for more than half of the precursors in both
LV (64.21%) and global library (53.98%), while only for five of 84 precursors a switch in arm
preference between the two samples was observed.

A single mature miRNA can derive from multiple precursors [24]. This represents a com-
mon feature, which is widespread across evolution. Our analysis found 13 pairs of precursors,
six exclusively present in the global library, each encoding the same mature sequence.

Novel Sheep miRNAs: Nomenclature
Novel conserved miRNAs were named after their homologs in other species and assigned to
their corresponding families, when possible (S1 Table). However, concerning the 29 precursors
exhibiting significant similarity with the cow precursors belonging to the miR-2284/2285 fam-
ily, the conservation analysis of their mature sequences returned multiple matches with mem-
bers of the family. Therefore, such miRNAs were named after their closest matching mature
sequences, taking specifically into account the seed area, when possible. In a few cases, we used
the same name for highly similar sequences and added a progressive letter at the end (e.g. oar-
miR-2285la and oar-miR-2285lb) (S1 Table).

Table 1. Summary of novel sheepmiRNAs.

Specificity LV only GL only LV + GL Total

Precursors 12 76 84 172

Mature 19 115 130 264

The table contains a detailed summary of the novel miRNAs discovered. It shows the number of

precursors, and relative mature sequences, found in the Left Ventricle library (LV), the Global Library (GL)

or both libraries (LV + GL).

doi:10.1371/journal.pone.0143313.t001

Table 2. Conservation of novel sheepmiRNAs.

Conservation Conserved > = 5 species Conserved < 5 species Conserved 1 species Non Conserved Total

Precursors 112 10 29 21 172

Mature 177 16 45 26 264

The table shows the number of precursors, and relative mature sequences, which are non-conserved, conserved in more than five species, less than five

species and in one species only. The latter include a distant homolog of miR-219 from Drosophila pseudoobscura, and the miRNAs of the miR-2284/2285

family from Bos taurus.

doi:10.1371/journal.pone.0143313.t002
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We identified 24 novel sheep-specific miRNA precursors. Three were detected in both LV
and global library, three were specific to LV and the remaining 18 were only detected in the
global library. We performed a BLAST analysis of their mature sequences against the miRBase
database, to check if they were related to any known miRNA from other species. Despite no
significant match of its precursor with any other stem-loop sequence in miRBase, one mature
sequence shared some similarity, including six bases in the seed region, with miR-359-3p from
Caenorhabditis briggsae, thus we decided to use the same nomenclature. No significant homol-
ogy to any miRNA from any other species was identified for the 23 remaining sequences, thus
we assigned them provisional names oar-miR-N1 to oar-miR-N22. Two of these precursors
encoded the same mature sequence, oar-miR-N14-3p, therefore they were named with the
same number followed by the additional numbers 1 and 2 (oar-miR-N14-1, oar-miR-N14-2),
according to miRBase nomenclature rules [60]. Most of the 23 precursors gave rise to one
mature product only, while four had both arms expressed. However, most of the 26 mature
sequences encoded by these precursors had a rather low reads count. In particular, 22
sequences had less than 100 reads, three had a read count between 100 and 1000, while only
one of them, that was detected in the LV sample only, had> 1000 reads (oar-miR-4005-5p)
(S1 Table).

Identification of Known miRNAs in the Left Ventricle and Other Tissues
Our analysis also reported 100 known miRNA precursors from the global library encoding 159
mature sequences, 45 of which had not yet been reported in miRBase and were mostly non-
dominant mature forms, i.e. the least expressed of the two mature products from a given
precursor.

Specifically, 85 out of 100 precursors were also detected in LV, encoding a total of 126
mature sequences (S2 Table).

A total of 2,319,350 reads from LV and 4,762,811 reads from the global library were mapped
to these miRNA mature sequences, accounting for 41.88% and 52.39% of the total mappable
reads from LV and the global library, respectively.

The analysis was not able to account for 70 and 53 known mature miRNAs from LV and
the global library, respectively. This could be due to the very rapid turnover rates of some miR-
NAs or to their specificity to different tissues than the ones considered in this study.

Genomic Distribution
The novel miRNA precursors identified from our study were widely distributed throughout
the genome with the exception of chromosome 8 where no miRNAs were located (Fig 4A). We
discovered an average of 6.4 novel miRNAs/chromosome representing an ~3.5-fold increase in
the number of miRNAs per chromosome (Fig 4B). The highest increase was of 6-fold on the X
chromosome, where we identified 33 novel miRNAs, 26 of which were conserved in Bos taurus
and other species on the X chromosome as well. Further, we discovered novel miRNAs on
chromosomes 6, 7, 17, 20, 23, 25 and 26, where no miRNAs had been previously identified.

Overall, chromosome 18 had both the highest number of miRNAs (60) and highest density
(0.87), calculated as the number of miRNAs per Mbp (Fig 4C). Five of 60 miRNAs on chromo-
some 18 were discovered in this study. Chromosome 6, and 22 had the lowest number of miR-
NAs (two each) and the lowest densities (0.017 and 0.039, respectively), if we exclude
chromosome 8.
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Identification of Novel miRNA Clusters
AmiRNA cluster is a group of precursors with an inter-miRNA distance of less than 10kb on
the same genomic strand [24,61,62]. A miRNA cluster can be transcribed as a single polycis-
tronic primary transcript and then processed into shorter pre-miRNAs to ultimately yield dis-
tinct mature miRNAs [63]. A simple analysis of the genomic locations of known sheep
precursors recovered 10 clusters expressed in both samples and a large cluster spanning about
40 Kb on chromosome 18 containing 23 and 37 miRNA precursors expressed in LV and global
library, respectively.

Moreover, the genomic analysis of novel miRNAs identified 7 novel miRNA clusters con-
taining 17 precursors encoding a total of 30 mature miRNAs. With the exception of one cluster
consisting of two precursors of miR-2285m, from the miR-2284 family, the novel clusters were
evolutionarily conserved. In particular, the cluster miR-452/miR-3431 was found in the cow

Fig 4. Genomic distribution of the identified miRNAs. (a) The figure shows the chromosomal distribution of the novel (red) and known (blue) miRNAs. The
known and novel clusters are represented by blue and red bars, respectively. (b) The stacked column chart shows the total number of miRNAs per
chromosome, highlighting the fractions of known (blue) and novel (red) ones. We report miRNAs on chromosomes 6, 7, 17, 20, 23, 25 and 26 for the first
time. (c) The chart shows the miRNA density per chromosome, calculated as the number of miRNAs per Mbp (Megabase pair).

doi:10.1371/journal.pone.0143313.g004
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genome, while the remaining five clusters were conserved in several species, including cow and
human. Three of the novel discovered miRNAs, miR-18a, miR-20a and miR-92a, belonged to
the miR-17/92 cluster on chromosome 10, joining miR-17 and miR-19b that were already
reported in miRBase. The miR-17/92 is a well-studied conserved cluster consisting of six miR-
NAs [64–66]. miR-19a was the only miRNA of the conserved cluster that we did not detect and
that is not reported in miRBase to date.

Aside from the well-established oncogenic role played by the miRNAs of this cluster, miR-
17-92 is implicated in both normal and pathological functions of the heart [66–68]. Specifically,
the cluster regulates cardiomyocyte proliferation and dysregulation of this cluster during car-
diovascular morphogenesis results in a lethal cardiomyopathy.

Three of the remaining conserved clusters that we identified were located on sheep chromo-
some X as well as their homologs in human and cow. Moreover, miR-222, which we found
expressed in LV, joined miR-221 which was already reported in miRBase, to form a conserved
cluster also on chromosome X.

Finally, we identified cluster mir-34b/c on chromosome 15 and mir-365a/193b on chromo-
some 24. The first was conserved in both human and cow, as well as in several other species,
while the latter was conserved in human and gorilla only.

IsomiRs
A common feature of miRNAs is the presence of different variants of the same mature
sequence, called isomiRs. RNA-Seq has allowed more detailed characterization of this phenom-
enon, once thought due to experimental artifacts. Evidence shows that isomiRs are functional
variants with a specific biological role [69,70]. Indeed, they have been frequently observed in
many species, tissues and conditions and recent studies have reported cases of functional iso-
miRs exhibiting significant overlapping targeting properties with their reference counterpart
[71]. Although many types of variations have been observed, isomiRs can be classified into
three main categories: 5’ isomiRs, 3’ isomiRs and polymorphic isomiRs. The first two categories
consist of shifted sequences which can also differ in length from the reference sequence and
can be sub-classified into templated and non-templated, depending on whether the additional
nucleotides at the 5’ or 3’ end do or do not match the reference stem-loop sequence, respec-
tively. These variants appear to be the most commonly observed, especially the templated 3’-
shifted variants, and are likely to derive from imprecise Drosha and Dicer cleavage [69].
Polymorphic isomiRs are rarer isoforms which exhibit internal nucleotide substitutions and
are probably caused by editing events, such as A-to-I editing, which is the most prevalent type
of RNA editing so far [72,73]. Given the crucial role of the seed sequence on miRNA function,
the most interesting isomiR forms are those affecting the seed region, such as the 5’-shifted iso-
miRs and the seed-edited isomiRs.

The analysis of our miRNA reads showed a predominance of the reference form of mature
miRNAs in both the LV and the global samples (60.48% in LV, 55.70% in global library)
although a significant percentage was present for other forms as well. The most frequent iso-
miR type identified in our data was the templated 3’ isomiR (extended/truncated/shifted)
(13.54% in LV, 20.34% in global library), followed by the non-templated 3’ isomiR (9.65% in
LV, 11.05% in global library), the polymorphic isomiR (9.39% in LV, 8.29% in global library)
and the templated 5’ isomiR (extended/truncated/shifted) (5.67% in LV, 3.47% in global
library). Non-templated 5’ isomiRs as well as templated and non-templated forms extended or
truncated at both 5’ and 3’ ends were rare (< 1.3% in LV,< 1.2% in global library). Fig 5A
illustrates the distribution of the different types of isomiRs in both samples.
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Fig 5. isomiRs distribution. (a) The figure shows the distribution of the different types of isomiRs calculated on the total of mapped reads from both samples
(LV and global library). The reference form was predominant (57.54%), while the most frequent isomiR types were the templated and non-templated (NT) 3’
isomiR and the polymorphic isomiR. (b) The predicted precursor structure for oar-miR-1a. (c) The mature and star sequences of miR-1a identified by
miRDeep2. (d) The dominant mature product of miR-1a is encoded in the 3p arm (oar-miR-1a-3p). It is a 5' isomiR of the conserved miR-1-3p, which lacks the
first nucleotide (human and cow sequences are reported for comparison).

doi:10.1371/journal.pone.0143313.g005
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For each novel identified conserved miRNA, the candidate mature products corresponded
to either the miRBase reference versions or their 3’ isoforms, except for miR-1. Our analysis,
indeed, detected 2 highly conserved precursors of miR-1 (EValue< 1e-18), for which the dom-
inant mature product, as given rise by the 3p arm on both LV and global library, was a 5’-
shifted isomiR of the conserved mature miR-1 (miR-1a-3p) (Fig 5B, 5C and 5D). In particular,
this variant lacks the first nucleotide, thus affecting the seed area and, presumably, its targeting
properties. We performed a functional analysis in order to investigate potential functional dif-
ferences between our 5’-isomiR and its reference counterpart and the results are shown in the
Analysis section.

Validation of known and novel miRNAs by Stem-Loop qRT-PCR
In order to validate the expression of the novel candidate miRNAs described in the previous
sections, we selected 10 miRNAs and performed Stem-Loop qRT-PCR on RNA from the LV
sample. Stem-Loop qRT-PCR is a reliable and widely used method for the detection and quan-
tification of mature miRNAs [74]. In particular, we selected 5 miRNAs that were detected in
both the LV and OT samples (oar-miR-145-5p, oar-miR-146b-5p, oar-miR-378-3p, oar-miR-
423-5p and miR-145-5p) and 5 miRNAs specifically observed in the LV sample only, including
a non-conserved miRNA (oar-miR-222-3p, oar-miR-330-3p, oar-miR-324-5p, oar-miR-
2285x-3p and oar-miR-4005-5p). The experiment confirmed the expression of all 10 miRNAs
in LV, as shown in Table 3, thus validating the RNA-Seq and computational analysis. We also
successfully validated the expression of 4 known miRNAs in the LV sample (oar-miR-21, oar-
miR-493-5p, oar-miR-494-3p, oar-miR-133-3p) (see Table 3). More details on the experimen-
tal procedure and the probes used are given in the Methods section.

Table 3. Validation of known and novel miRNAs by Stem-Loop qRT-PCR.

Novel miRNAs in LV

miRNA Ct Std Dev

miR-146b-5p 33.129 0.398256617

miR-151-5p 26.257 0.634608124

miR-378-3p 20.907 0.181923092

miR-423-5p 29.107 0.114140675

miR-145-5p 27.725 0.284937142

miR-222-3p 30.578 0.713898269

miR-330-3p 30.898 0.977237439

miR-324-5p 26.172 1.767929513

miR-2285x-3p 28.181 0.25621647

miR-4005-5p 28.181 0.25621647

U6 snRNA (control) 25.338 0.144719684

Known miRNAs in LV

miRNA Ct Std Dev

miR-21-5p 26.25 0.221885857

miR-493-5p 34.25 0.41585374

miR-493-4p 21.73 1.291861135

miR-133-3p 14.44 2.278697632

U6 snRNA (control) 18.59 1.383107503

The experiments confirmed the expression of 10 novel and 4 known miRNAs in the left ventricle (LV). For

each miRNA and the control U6, the table reports the threshold cycle (Ct) and the standard deviation (Std

Dev).

doi:10.1371/journal.pone.0143313.t003
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Analysis of Left-Ventricle Specific miRNAs
Our data allowed the discovery and characterization of novel miRNAs in the ovine left-ventri-
cle and in other tissues. We primarily focused this study on microRNAs of sheep left ventricle,
as this is the integral cardiac chamber involved in the development of heart failure. The ovine
model has been an appropriate surrogate to study human heart failure, as it closely resembles
the human heart in size, coronary anatomy as well as a predictable pattern of left ventricular
remodeling following a myocardial infarction. As part of a larger project designed to look at
both control tissue from a normal sheep heart and that of an infarcted, diseased heart, we
sought to first create a roadmap of the normal miRNAome of the sheep–particularly the left
ventricle.

Further, our results recovered miRNAs that were already deposited in miRBase. Additional
quantitative analysis will be necessary to assess significant differential expression of the
detected miRNAs in the tissues examined [75]. However, large differences in the reads count of
a miRNA between two different conditions may provide a meaningful estimate of its tissue-
specificity [40].

We performed a simple fold-change analysis with the tool DESeq, that allows the analysis of
RNA-Seq data from experiments without replicates [76].

Among the known miRNAs, miR-133a-3p, miR-22-3p and miR-26b, showed a much higher
expression in LV compared to global library, in terms of normalized reads count (Fold Changes
were 7.87, 4.29, and 4.07, respectively). These miRNAs were already known to be crucially
involved in cardiac functions and diseases in human. In particular, miR-133 is typically
enriched in cardiac and skeletal muscle and is involved in cell specification, differentiation and
development [77]. Moreover, miR-133 has been proven to restrict injury-induced cardiomyo-
cyte proliferation and its down-regulation is a prerequisite for the initiation of apoptosis, the
development of fibrosis, and prolongation of the QT interval [77,78]. miR-22 and miR-26b
had the second and third highest fold-changes. Recent studies showed that miR-22 functions
as an integrator of Ca(2+) homeostasis and myofibrillar protein content during stress in the
heart and that it has a role as a critical regulator of cardiomyocyte hypertrophy and cardiac
remodeling [79,80]. miR-26b is known to be involved in cardiac hypertrophy as well, its down-
regulation being required for the induction of pressure-induced cardiac hypertrophy [81].

A functional enrichment analysis of the predicted targets for miR-133a-3p, miR-22-3p and
miR-26b performed by using the tool IPA (Ingenuity1 Systems, www.ingenuity.com), indeed
reflected their proven role in heart specific functions and diseases, being Cardiovascular Dis-
ease reported among the top 5 Diseases and Disorders (P< 0.01). In particular, the signifi-
cantly associated terms includedMyocardial Infarction (P< 0.0001), Ischemia of Heart
(P< 0.001) and Proliferation of Cardiac Fibroblasts (P< 0.05). Cardiac Hypertrophy Signaling
was reported among the pathways in which the three miRNAs could be significantly involved
(P< 0.05), while the associated IPA toxicity list included terms such as Increases Cardiac Pro-
liferation (P< 0.0001), Increases Cardiac Dilation (P< 0.01) and Cardiac Necrosis/Cell Death
(P< 0.05). The most significant predicted targets involved in heart specific functions and dis-
eases included IL6, ITGB2, PTGS1, PTGS2, ADRB3 and MAPK13 (see S3 Table).

Our analysis also showed higher expression of miR-125b in LV compared to the global
library. miR-125b is a known miRNA in sheep. A recent study demonstrated that the overex-
pression of this miRNA during human embryonic stem cell (hESC) differentiation into myo-
cardial precursors and cardiomyocites (CM) results in the up-regulation of early cardiac
transcription factors and accelerates progression of hESC-derived myocardial precursors to an
embryonic CM phenotype [82]. Moreover, miR-125b was reported to protect the myocardium
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from ischaemia/reperfusion injury in mouse by preventing p53-mediated apoptotic signaling
and suppressing TRAF6-mediated NF-kB activation [83].

Among the novel ovine miRNAs detected in our study, miR-208b showed higher expression
in LV compared to the global library. miR-208b is a well known “myomiR” in human, that is, a
muscle-specific miRNA, normally found highly expressed in cardiac tissue. This miRNA plays
an important role in muscle growth due to its involvement in myogenesis and slow myosin
heavy chain gene regulation [84,85].

The results of our analysis are also consistent with a recent work introducing the heart
structure-specific transcriptomic atlas from rat, dog and monkey, where the authors identified,
among others, miR-133a, miR-208b and miR-1 (which is discussed later in this section) as
highly expressed in myocardial tissue, including the LV [86].

None of the 11 LV-specific miRNAs identified in our study was reported as heart-specific in
human before. However, for two of them, miR-222 and miR-216b, a correlation with heart
functions and disease was previously reported. One study found that miR-222 is necessary for
exercise-induced cardiac growth and protects against pathological cardiac remodeling [87].
Another recent study reported that miR-221/222 contribute to the atherogenic calcification of
vascular smooth muscle cells [88]. miR-216b was reported to be up-regulated in rat heart fol-
lowing treatment with Doxorubicin and preceding the rise of overt lesions, and may represent
a valuable early genomic biomarker of drug-induced cardiac injury [89].

We performed a functional enrichment analysis of the predicted targets for the 11 LV-
specific novel conserved and non-conserved miRNAs identified in our study, by using IPA.
The results included Cardiovascular System Development and Function among the top 5
Physiological System Development and Function classes. In particular, the analysis identified
13 different function terms, including Vasculogenesis (P< 0.001), Activation And Permeability
Of Microvascular Endothelial Cells (P< 0.01) and Chemotaxis Of Vascular Endothelial Cells
(P< 0.001). Other significant terms associated to the LV-specific miRNAs included Heart
Disease (P< 0.001), Apoptosis (P< 0.0001) and Apoptosis Of Vascular Endothelial Cells
(P< 0.01).

The associated IPA toxicity list included heart-specific terms such as Cardiac Hypertrophy
(P< 0.05), Cardiac Hypertrophy Signaling (P< 0.05), Cardiac Fibrosis (P< 0.0001), Cardiac
Necrosis/Cell Death (P< 0.05) and Increases Cardiac Dilation (P< 0.0001), while the signifi-
cant tox functions includedMyocardial Infarction (P< 0.01). The most significant predicted
targets enriched in cardiovascular system functions and tox terms were ID3, PLAU, TIMP1,
IL8, IL2RA, PTGS2, IFNG and SOD2 (S3 Table).

Finally, we performed a functional analysis of miR-1-3p and its 5’ isomiR, oar-miR-1a-3p,
the latter detected as the predominant mature form of miR-1 in both the LV and global sam-
ples. miR-1 is well known to play a key role in the development and physiology of muscle tis-
sues including the heart. Interestingly, a recent paper reported a miR-1 polymorphic isomiR,
different than the one identified in our study, significantly expressed in the heart left ventricle
of the rat [90]. Therefore, we wanted to make some functional hypothesis on the potential bio-
logical roles of this newly discovered isomiR. The analysis reported both overlapping and spe-
cific targets for the two forms. In particular, genes such as AGTR1, ANKRD1, CAV2, IL13 and
KDR, all predicted targets for the 5’ isomiR, were associated to the Cardiovascular System
Development and Function network, which was reported among the 5 top scoring networks
specific for the 5’-isomiR. Both mature forms shared Disease and Function terms such as Car-
diovascular Disease (P< 0.0028), Organismal Injury and Abnormalities (P< 0.0028),Hemato-
logical System Development and Function (P< 0.0028) and Cellular Growth and Proliferation
(P< 0.0028), while the isomiR was also specifically enriched in terms such as Cancer and Skele-
tal and Muscular Disorders (P< 0.003), and the IL-8 signaling pathway (P< 0.002) (S3 Table).
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Our analysis suggests potential heart-specific functions of this isomiR and encourage further
experimental investigation, which we will undertake in the next phase of our project.

Conclusions
Our results define the miRNA signature of sheep left ventricle. Our findings validate previously
discovered miRNAs, as well as identify novel miRNAs in heart. Further, our data provide new
information on the identity of LV-specific miRNAs in sheep LV. We postulate that these find-
ings will be crucial for our understanding of the molecular mechanisms of protein and cell reg-
ulation in this critical pre-clinical model.
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