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Abstract

Active contour models are of great importance forimage segmentation and can extract
smooth and closed boundary contours of the desired objects with promising results. How-
ever, they cannot work well in the presence of intensity inhomogeneity. Hence, a novel
region-based active contour model is proposed by taking image intensities and ‘vesselness
values’ from local phase-based vesselness enhancement into account simultaneously to
define a novel multi-feature Gaussian distribution fitting energy in this paper. This energy is
then incorporated into a level set formulation with a regularization term for accurate seg-
mentations. Experimental results based on publicly available STructured Analysis of the
Retina (STARE) demonstrate our model is more accurate than some existing typical meth-
ods and can successfully segment most small vessels with varying width.

Introduction

Active contour models [1-4] have become very popular in the past few decades, and widely
used in a wide range of problems including image segmentation and computer vision, which
dynamically deforms object contours based on a predefined energy functional from image
information and can, by minimizing this functional, yield smooth and closed boundary con-
tours of the desired objects with sub-pixel accuracy [5-7]. These models can be coarsely catego-
rized into two kinds: edge- [8-11] and region-based models [12-14].

Edge-based active contour models [15, 16] typically utilize image gradients as a driving
force to identify object boundaries and attract the contour toward object boundaries. These
models can be capable of extracting the boundaries of the desired objects in high-contrast
images with clear and strong contour information. However, they may suffer from boundary
leakage problem in the presence of image noises, weak contrast and intensity inhomogeneity,
which in general occurs in a variety of medical images with varying contrast. In addition,
they also cannot correctly find the boundaries of the desired objects if initial curve placement
is far away from object boundaries due to the local nature of image gradients. These
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limitations of edge-based models have restricted their application range and in turn pro-
moted the development of region-based active contour models, which are first introduced by
Chan and Vase [13] (called the CV model), and have been subjected to more and more
attentions.

Region-based models [17-20] tend to model the foreground and background regions of a
given image to guide the motion of contour curve based on the assumption that image intensi-
ties are statistically homogeneous in each region, which means that the whole image can be
divided into multiple image regions with different statistical properties of image intensities.
Therefore, these models are robust against initial curve placement and insensitivity to image
noises without using image gradients. However, they may produce erroneous segmentation
results, especially in some cases where the desired objects cannot be easily distinguished using
statistical information of image intensities, or have an expensive computational cost [16, 21].
These drawbacks, together with the complex problem of keeping a tradeoff among all of
weighting parameters, have made these models barely useful for certain small objects, like
blood vessels in retinal images.

Recently, a variety of region-based active contour models has been proposed ceaselessly by
using local intensity statistical information [22-24] for more accurate image segmentation,
especially in the presence of intensity inhomogeneity. Li et al. [25] improved the CV model
using regularized distance and a local binary fitting (LBF) model to alleviate these problems
caused by intensity inhomogeneity. This method is, to some extent, able to deal with intensity
inhomogeneity using local intensity information, but sensitive to initialization and fails to
extract the boundaries of object with low contrast. Wang et al. [26] proposed an active contour
model driven by local Gaussian distribution fitting (LGDF) energy, which described the local
image intensities by Gaussian distributions with different means and variances. The means and
variances of local intensities are considered as spatially varying functions to identify the differ-
ences between the foreground and background regions. Hence, it has exhibited certain capabil-
ity of handling intensity inhomogeneity and image noises, and of distinguishing regions with
different intensity variances. However, it, using solely local intensity information, may fail to
extract completely the desired objects.

In this paper, a novel region-based model is proposed by taking multiple image features
rather than single intensity information into account simultaneously to construct a Gaussian
distribution fitting energy for accurate image segmentation, called Multi-feature Gaussian dis-
tribution fitting (MGDF) model. Specifically, image intensities and their corresponding 'vessel-
ness values' from local phase-based vesselness enhancement [27] are used to construct this
fitting energy in the neighborhood of each pixel, and this energy is incorporated into a level set
formulation with a regularization term for image segmentations, and evaluated based on pub-
licly available retinal images [28] for the extraction of blood vessels.

The remainder of this paper is organized as follows: Section Background reviews several
existing typical active contour models, and then a novel model is introduced in section Meth-
ods where local phase-based enhancement and a novel energy functional are presented in
detail. Finally, this novel model is evaluated completely in Section Experimental results and
analysis, followed by the discussions and conclusions.

Background

There is a variety of region-based active contour models proposed in last few years, but only a
few typical models are widely used and improved in image segmentations with promising accu-
racy. In this section, we will review several typical region-based active contour models for the
benefit of the reader.
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CV Model

The CV model is first proposed by Chan et al. [13] base on the assumption that images to be
segmented are simplified into multiple regions where image intensities are statistically homo-
geneous. Let Q C R be the 2D image domain, and I: Q C R be a given gray image, for each
pixel point x in image domain Q, the CV model can be expressed by:

2

B =] 1109 el H(o()ds
inside(C i (1)

+ 2»2[ () — o] (1 — H($(x)))dx + j VH((x))|dx

J outside(C)

where C is the needed contour curve, who can be represented by the zeros level set of Lipschitz
function ¢(x): Q C K. ¢; and ¢, are the average intensities of the image I(x) inside and outside
C. VH(-) is the gradient of Heaviside function H(-), which is usually approximated by H(¢) =
11 4 2arctan(2) ] with a small positive constant £ to roughly specify the internal and external
of ¢. For simplification purposes, we define H;(¢) = H(¢) and H,(¢) = 1-H(¢) for the internal
and external of ¢. 4, 1, and v are weighting parameters for intensity-based and length penalty
terms, respectively. According to the assumption mentioned above, ¢; and ¢, should be quite
different due to the statistical homogeneity of image intensities from different regions specified
by C. When image intensities are severe inhomogeneous, ¢; may be approximately equal to ¢,,
causing the model to lose of the capability of identifying the foreground and background
regions. In addition, this model solely utilizes the global information of image to drive the
motion of curve contour and ignores the local information [29] around a neighborhood of
each pixel point.

LBF Model

To overcome the disadvantages of the CV model, the LBF model [25] is proposed by replacing
the global information with the local information of image, which can be given by:

g =[] Rl 0l 0000
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where K,(-) is a Gaussian kernel with standard deviation o; R(-) is a regularization term to
penalize the length of contour curve and the deviation from a signed distance function [10, 17],
whose weighting parameters are v and g, respectively. f(x) and f,(x) are spatially varying func-
tions to locally approximate the intensities inside and outside the contour curve, which are
quite different from the two constants ¢; and ¢, in the CV model due to the localization proper-
ties introduced by K,(-). It plays a key role in highlighting the differences between the fore-
ground and background regions with intensity inhomogeneity. Therefore, the model can
alleviate these problems caused by intensity inhomogeneity and achieve satisfactory results.
However, this model typically relies on the initial curve placement so as to avoid the local mini-
mums of the energy functional. Furthermore, it is not sufficient enough to use solely f;(x) and
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f>(x) in energy functional for accurate image segmentation, especially in the presence of image
noises and intensity inhomogeneity.

LGDF Model

To accurately segment the desired objects, the LGDF model [26] is proposed by using more
complex statistical characteristics of local intensities, which characterizes local intensity infor-
mation via partition of neighborhood defined in a circular window, resulting in the local fitting
energy being expressed as:

BT = — [ o(x — y)logp, (I(y))H,(¢(x))dydx
— Il o(x = y)logp, .(I(y)) Hy(¢(x))dydx + R(¢(x))

where the pixel point x is used to define the local circle region, which is divided into N disjoint

(4)

sub-regions {Q,}) .. p;.(I(y)) denotes a posteriori probability of intensity I(y) specified by a
pixel point y in the ith sub-region, whose spatial weighting is given by w(x-y) relying on the dis-
tance between x and y, and they can be given respectively by:

(wx) - 1<y>>2>

1
piIly) = \/ﬁ—ai(x) exp ( 20 (x)

(5)

ol ) = e ) ©)

where u,(x) and 0;(x) are local intensity means and standard deviation respectively. a is a con-
stant such that [w(-) = 1 in the local neighborhood of the point x, 7>0 is a scale parameter.

Using local intensity means and variances, this model can achieve a relatively accurate seg-
mentation results in the presence of image noises and intensity inhomogeneity. Besides, it is
insensitive to the initial curve placement. However, it may not be adequate in certain cases
where more image information rather than single intensity information needs to be considered
effectively for image segmentations, especially for small vessels in retinal images. For example,
this model is used to extract the vessels in the region specified by a green rectangle shown as in
Fig 1(A), and its corresponding segmentation result with red color is given in Fig 1(B), where
several small vessels cannot be segmented adequately, but the background pixels have been
already segmented incorrectly, confirmed by black circle regions. This means that the LGDF
model is not adequate for the extraction of these small vessels where the intensity inhomogene-
ity is quite severe. To segment accurately these blood vessels, the other image information
besides image intensities has to be taken into account simultaneously.

Methods

To identify correctly and extract completely small vessels, active contour models have to allevi-
ate these problems caused by intensity inhomogeneity by using more image information,
which is generally obtained by different feature descriptors [27, 30] and characterizes the
natures of certain objects. In this section, local phase-based vesselness enhancement filter [27]
is chosen to extract vesselness features and viewed as a probability-like estimate of vesselness
features, called 'vesselness value' in this paper. Larger vesselness value indicates the underlying
object is more likely to be a vessel structure. Therefore, these vesselness values together with
image intensities can be used to define a novel fitting energy for the extraction of vessels, which
will be introduced respectively in the following.
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Fig 1. Retinal image and blood vessel extraction by active contour [26]. Image (A) is a randomly chosen
region in a retinal image and (B) is the segmentation results of the LGDF model without ideal segmentations
pointed by black circles.

doi:10.1371/journal.pone.0143105.g001

Local phase-based vesselness enhancement

Local phase [27] is, as an important local feature, derived from quadrature filters under the
concept of monogenic signals, which can be viewed as a complex filter pair in the spatial
domain, and the real and imaginary parts correspond to line and edge filters, respectively.
Hence, the angle 0 between the real and imaginary parts can act as an important indicator of
local features for line and edge information of an image, and has been extensively used for edge
detection, symmetry analysis, and vesselness enhancements with promising results.

In the specific implementation of local phase, quadrature filters usually utilize a pair of even
and odd filters with phase difference of n1/2, denoted respectively by E/ and O/, at scale m and
orientation j. For each pixel point x of an image I, the filter response ¢/, is given by ¢/ =
e (x)+ 0 (x)-iwithée (x) = I(x) * Bl and o/ (x) = I(x) * O , where * denotes a convolu-
tion operation and i = v/—1 is an imaginary unit. To obtain an orientation invariant phase
map, it is necessary to replace the imaginary part o/, with its absolute value so that

E = + |0 |-i,and combine all responses of different directions to yield a single response

] e
at each scale, defined as q,, = Z ¢ with ] directions. By combining the responses from all of
j=1
scales, the overall response P is given below:

M
> 4,04,/
P=r
> gl
m=1

where M is the number of scales and f>1 is a weighting parameter. To make the phase map
more regular, the response P needs to be normalized with a small positive number ¢ to produce
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a final vesselness map, which can be given by:

P-|P|

LP =
P? 4 o

(8)

The effects of local phase-based enhancement on retinal images are shown in Fig 2, where a
variety of small vessels is highlighted clearly regardless of intensity inhomogeneity. Among of
Fig 2, (A) is a given retinal image region for vesselness enhancements, the green channel of (A)
is shown in (B). The normalized enhancement results of (B) are shown in Fig 2(C) and 2(D)
with scales of 1 and 2, respectively. From these enhanced images, we can find that the positions
of blood vessels are highlighted from the background and the enhancement effects are not
greatly different at different scales, which also can be seen in their corresponding real and
imaginary parts shown in Fig 2(E)-2(H), respectively. Moreover, images (E) and (G) stress the
positions of vessels, which are used as a vesselness map; while images (F) and (H) stress the
edges of vessels. This vesselness map has a positive value inside the vessels but a negative value
in the background, and has a zero value at the edge of the line structures, which can provide an
important guide for the extraction of blood vessels.

Multi-feature Gaussian Distribute Fitting (MGDF)

Inspired by the LGDF model, a novel local fitting energy is defined by using image intensities
and their corresponding 'vesselness values' from the vesselness map, which are viewed as two
independent random variables to extend the LGDF model in the hope of improving its perfor-
mances of image segmentation. This energy can be calculated around the neighborhood of
point x by:

£ — [t~ pog (p.(10)) (V) )y
= [t = g (p.. 1)) .. (V) )

ot (@ —10)
p(1) = mmm”( o) ) (10)

i

(W@ -V
PUVO) = = p< o ) (11)

where p; .(I(y)) and p; ,.(V(y)) denote the posteriori probability of I(y) and V(y) in the intensity
image and the vesselness map, located at the pixel point Y in the ith sub-region. 4} and 1 are
weighting parameters for intensity- and vesselness-based terms, respectively. u(x), o (x) and
u/(x), o) (x) are local means and standard deviations in the neighborhood of the point x for

intensity image and vesselness map, respectively. For the whole image region, this energy can
be given by:

prer = | (z J ~ olx ~ p)log (p,. (1)) (V)" ))H,-w(x))dydx (12)

To obtain smoother contour curves and more accurate image segmentations, this energy
functional needs to be regularized by penalizing its length and deviation from a signed distance
function. Furthermore, to keep fine details of the boundaries of the desired objects, we
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Fig 2. The results of the local phase-based vesselness enhancement. (A) is a randomly chosen retinal image region; (B) is the green channel of (A); (C)
and (D) are the normalized results at scales 2 and 3, respectively, whose real and imaginary parts are given by (E) ~ (H)

doi:10.1371/journal.pone.0143105.9002

introduce the Y-neighborhood term to penalize the presence of isolated connected compo-
nents in the segmented images according to the previous studies [31], which can be given by:

(e

where y and k>1 are scale parameters for a local neighborhood and the sensitivity of the local
neighborhood, respectively. To combining all of these penalty terms, the complete regulariza-
tion term can be rewritten as:

Rio() = IVl + ] 50V00 - ' (D)

where 77 is the weighting parameter for the Y-neighborhood term. Adding the new regulariza-
tion term and setting N = 2, the entire energy of the MGDF model can be given by:

B — | ey ML) + () HL(00))x + R (909) (15)

(x,y) = j — o(x = y)log(p,. (1)) p, (V) )dy (16)

Qi
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By calculus of variations, it can be shown that the parameters u!(x), u (x), 6! (x) and ¢} (x)
3

EM LGDF

that minimize satisfy the following Euler—Lagrange equations [32-34]:

[ o= ntat0 - 10 (80) =0 (17)
[ ot =) = v 06N =0 (18)
[t = netay* = i) = 1)) (070 = 0 (19)
o= it = @) - v (60) = 0 (20)

From Eq (17) to Eq (20), we can obtain

jw(x — DI H(6()dy

ul(x) = (21)

Jw(x—y)Hi(aﬁ(y))dy
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Minimization of the energy EM"“" in Equation. Eq (15) with respect to ¢ can be achieved
by solving the gradient descent flow equation:

9 _
ot

9 . VQb ) ) KVK (k—1)
V26— div( ~2) ) —p—
*“( s ’”(wl T o7’

) = o) [logwé%) +loglol() + %} dy (20

SOl — el 4 A1el - el +volnin( 05 )
Nz
(23)

(u (x) = V)’

el x) = [olx ) [logm/%) Hlog(ol )+

where 6(¢) = ;% is the derivative of H(¢).

Experimental Results and Analysis
Experimental Data

To objectively evaluate the segmentation performances of our model, the public and available
image datasets (STructured Analysis of the Retina, STARE) [28] are used for segmentation
experiments (S1 File), which can be available at http://www.ces.clemson.edu/~ahoover/stare/.
This dataset contain 20 color photographic images of the fundus, 10 of which show evidence of
pathology, acquired by a Topcon TRV-50 fundus camera (Topcon, Tokyo, Japan). They have
the same size of 605x700, along with two different manual segmentations generated by clinical
experts working in the field of retinal image, and the first manual segmentations are used as
ground truth for quantitative analysis.

Implementation details

In the course of vesselness enhancement, local phase-based filter was implemented by setting
the center frequency to 5m/7, the bandwidth to 2 octaves, the size of filter to 15x15, and scales
to 3 respectively, which were recommended by the previous studies [27] according to the
nature of retinal images. After obtaining the desired enhancement images, our model is imple-
mented based on image intensities and their corresponding 'vesselness values' from vesselness
map with a level set framework, where the partial and temporal derivatives in Eq (25) are dis-
cretized as central and forward differences, respectively. And then the level set function ¢ is ini-
tialized as a binary step function which takes a negative constant value -¢, inside a region €,
and a positive constant value ¢, outside, which we set to 2 in this paper. Spatial weighting w(-)
can be truncated as a (27+1)x(27+1) mask for the computational efficiency of our model,
where 7 is the smallest odd number no less than 2¢. Unless otherwise specified, other parame-
ters in our experiments are set as follows:o = 3, A = 4| = 1.05,4; = 4, = 1.0, time step
At=0.1, v = 0.00065%x255x255 and y = 17 = 1 by default.

Evaluation Criteria

For purposes of quantitative evaluations, segmentation results are compared with their corre-
sponding standard segmentation results and the results by other methods [25, 26] in terms of
sensitivity (Se), specificity (Sp), accuracy (Acc) and the area under a receiver operating
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characteristic curve (Auc) [35], which can be given respectively by:

S P

T (28)
tn

P = tn + fn (29)

ip+in (30)

Tttt

Auc

Se + Sp
-1 (31)
where tp,fn,tn and fp denote the true positive (correctly identified vessel pixels), false positive
(incorrectly identified vessel pixels), true negative (correctly identified background pixels) and
false negative (incorrectly identified background pixels), respectively. Among of the four mea-
sures, Se and Sp demonstrate the effectiveness of segmentation algorithms: the former for the
desired pixels with positive values while the latter for the undesired pixels with negative values.
Acc indicates the overall segmentation performance, and Auc reflect the tradeoffs between the
Se and Sp according to [35]. In addition, vessel segmentation can be in essence referred as to an
imbalanced data classification problem, where vessel pixels are much less than the background
pixels. In such a case, the final performances of a method are mainly reflected by Acc and Auc.
Paired t-test on these evaluation measures is implemented using the SPSS version 21.0 (SPSS
Inc., Chicago, IL, USA). A p value of 0.05 is considered statistically significant, according to
these papers [36], in order to evaluate the segmentation performances of different methods.

Experimental Results

According to the implementation details above, the segmentation results of the MGDF model
for three randomly chosen retinal image regions are shown in Fig 3, where the first column cor-
responds to the segmentation results highlighted by red contour curves, and the second column
to the differences between these segmentation results and their corresponding manual segmen-
tations. From Fig 3, it is easy to find that our proposed model is able to accurately extract most
of the desired contours of blood vessels, including relatively small parts, some of which cannot
be identified visually in original images due to the presence of severe intensity inhomogeneity.
Moreover, these obtained contour curves can successfully overlap their corresponding manual
segmentations, as shown in the second column in Fig 3. This indicates clearly that our pro-
posed model can be at least comparable to manual segmentation in performance when ignor-
ing the subtle parts of blood vessels. On the other hand, Fig 3 also shows that the segmentation
results of our model contain lots of isolated components caused probably by image noises, and
they are slightly different from the manual segmentations which present more details for small
vessels. However, these components account for a relatively small portion of the whole seg-
mentation results. Therefore, we can roughly reach a conclusion that our proposed model is
competent for the extraction of vessels with varying width.

Fig 4 also illustrates the performance differences when comparing our proposed model with
several existing typical active contour models (i.e., the CV, LBF and LGDF models), where blue
and red colors correspond to the contours of blood vessels obtained by manual and different
models (i.e., the CV, LBF, LGDF and our models), respectively. These obtained contour curves
by different models can be compared among one another, relative to manual segmentation
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Fig 3. The segmentation results by the proposed model in contrast to the manual segmentations. The
first row corresponds to the segmentation results by the proposed model based on three randomly chosen
retinal image regions; and the second row shows the differences between these segmentation results and

their corresponding manual segmentations.

doi:10.1371/journal.pone.0143105.g003
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Fig 4. The segmentation results of different models with red color are compared with the manual
segmentation with blue color. (A) ~ (D) correspond to the CV, LBF, LGDF and MGDF models, respectively.

doi:10.1371/journal.pone.0143105.g004

curve. And it is easy to find that our proposed model can extract more vessels, with varying
width, than the other models, which can be seen in the region specified by black circles. As for
three other active contour models, their segmentation results are greatly different as shown in
Fig 4(A)-4(C), respectively. Specifically, the segmentation result of the CV model, as shown in
Fig 4(A), is rough and incorrect because it just involves intensity information in image global
region, without considering local image information in the neighborhood of each pixel. When
the local information of each pixel is considered during image segmentations, the segmentation
results can be greatly improved as shown in Fig 4(B) and 4(C) obtained by the LBF and LGDF
models. Both of them are able to extract easily blood vessels with strong contrast with high
accuracy. However, they cannot accurately segment a variety of small vessels due to the pres-
ence of intensity inhomogeneity and image noises. In addition, the LBF model tends to extract
some background information in the neighborhood of vessels with small width, while the
LGDF model tends to segment several isolated components.

PLOS ONE | DOI:10.1371/journal.pone.0143105 November 16,2015 12/18
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To compare our model with the most recent methods, the quantitative segmentation results
are given in Table 1 in terms of Se, Sp, Acc and Auc. This table shows that the MGDF model
has the best performances among these four active contour models with the biggest values of
Acc and Aug; while the CV model has the worst performances with the lowest values of Se, Sp,
Acc and Auc. As for the LBF and LGDF models, the latter is more accurate than the former,
with greater by 0.023, 0.016 and 0.010 for Se, Acc and Auc, respectively.

To evaluate their statistical differences, paired t-test on the final performance measures (i.e.,
Acc and Auc) is implemented based on all of segmentation results. The mean and standard
deviation of Acc is 0.589+0.087, 0.917+0.012, 0.933+0.010 and 0.954+0.009 for the CV, LBF,
LGDF and MGDF models, respectively. The difference between them is statistically significant
with p < 0.002. There are also statistically significant differences in terms of Auc according to
the mean and standard deviation of these models for the same p value. This means that phase-
based vessel enhancement contributes significantly to the final performance results. This fur-
ther confirms that in image segmentation, other texture information besides image intensities
need also be considered in both global and local image regions, because they in general play an
important role in identifying small vessels from image regions where intensity inhomogeneity
is severe.

Although our proposed model outperforms these typical active contour models in perfor-
mance, it is necessary to compare with other state-of-the art vessel segmentation methods. For
this propose, several widely used vessel segmentation methods [37-41] are chosen, together
with their publicly available results based on STARE database. The segmentation results are
seen in Table 2, which clearly shows that our proposed method is has the first highest values
for Se and Auc, and third for Acc. This demonstrates that our method can compete with these
methods according to the final measures (i.e., Acc and Auc).

Discussion

Experimental results demonstrate that our model is competent for the task of vessel segmenta-
tion, and outperforms some existing typical vessel segmentation methods, but it is necessary to
discuss the influences of the whole weighting parameters in our model, most of which have

Table 1. Segmentation performance of different models in terms of Se, Sp, Acc and Auc.

Method Se Sp Acc Auc
CcVv 0.617 0.652 0.589 0.635
LBF 0.704 0.958 0.921 0.831

LGDF 0.727 0.952 0.937 0.840
MGDF 0.758 0.965 0.952 0.862

doi:10.1371/journal.pone.0143105.1001

Table 2. The performance of different methods in terms of in terms of Se, Sp, Acc and Auc.

Model Se Sp Acc Auc

You et al [37] 0.726 0.975 0.949 0.851
Marin et al [38] 0.694 0.981 0.952 0.838
Mendonca et al [39] 0.699 0.973 0.944 0.836
Matinez et al [40] 0.750 0.956 0.941 0.853
Bankhead et al [41] 0.758 0.950 0.932 0.854
MGDF 0.758 0.965 0.944 0.862

doi:10.1371/journal.pone.0143105.t002
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been deeply analyzed in previous studies [26, 42]. Hence, our focus is placed on the analyses of
the robustness of our model for initial placement and image noises, the parameters A, 1, i =
1, 2 for intensity- and vesselness-based terms, and 7 for the Y-neighborhood regularization
term respectively.

Robustness to Initialization and Image noises

In order to further analyze the robustness of our model to different initial placements and
image noises, our model is evaluated based on one randomly chosen image. This image is cor-
rupted by commonly used additive Gaussian noise with different standard deviations presented
in different columns. In this section, these deviations are set to 1, 3 and 5, respectively, which
are large enough relative to the width of blood vessels. Based on these noise-corrupted images,
the segmentation results of our model are obtained using different initial curve placements
underlined by green circles, as shown in Fig 5. According to these segmentation results, we can
find that the segmentation performances of our model reduces as standard deviations increase,
but our model can still extract most of vessels regardless of different initializations, as in the
first two rows in Fig 5. Besides, the two rows also show that there exist segmentation differences
in the neighborhood of small vessels which are severely corrupted by image noises. However,
these differences are small because these positions play a relatively small role in clinical applica-
tions. This means that our model is competent for clinical applications in presence of intensity
inhomogeneity, image noises and the initial curve placements. Hence, our model is to some
extent insensitive to image noises and the initial curve placements.

Although the influences of the initial curve placements on our model is small, the size of ini-
tial curves can influence the segmentation performances of our model in the neighborhood of
initial curves, as shown in the last row in Fig 5, where the bigger initial green circlers are, the
more the isolated connected components are, ignoring the impact of image noises. This may be
caused partly by the size of the desired objects. Therefore, it is desirable to initialize curves in
accordance with the size of desired objects.

The parameters Z; and A,

The parameters /; and /, are the weights of image regions inside C; while 4, and 4, for image
regions outside. They are in general recommended about 1.0 according to the previous studies
[42], but adjusted to yield better results according to the natures of intensity images and vessel-
ness maps. In segmentation experiments, these four parameters are set 2} = 1} = 1.05,

A, = ] = 1.0, which means that image intensities and the vesselness values of vesselness map
have the same effects on the motions of curve contours. When the intensity inhomogeneity is
severe, the intensity-based terms play a weak role in attracting the contour toward object
boundaries. In such case, we should choose relatively large 4" to stress the roles of vesselness
maps for the extraction of small vessels in the regions with severe intensity inhomogeneity.
However, too large 2" may lead to the extraction of isolated connected components due to the
natures of retinal images and vesselness maps, as shown in Fig 6, where blue arrows specified
the differences between segmentation results with different values of )LY, ie,1.0,1.05and 1.1
for Fig 6(A) and 6(B), respectively. Hence, it is a good tradeoff between small vessels and iso-
lated components by setting 4; = 4, = 1.05and 4} = 4, = 1.0.

The parameter n

The parameter 7 is used to control the influences of isolated connected components in seg-
mented images so as to keep fine details of the desired boundaries. When setting a large value
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Fig 5. The segmentation results of our model on a randomly chosen image with different initializations highlighted by green circles. The image is
corrupted by additive Gaussian noise with standard deviations 1, 3 and 5, showed in different rows.

doi:10.1371/journal.pone.0143105.9005

to 7, it, to some degree, can prevent the isolated components, but also reduce the ability of
identifying small vessels due to the presence of intensity inhomogeneity and image noises. In
addition, this ability is also influenced greatly by the vesselness-based weighting parameters
according to the analysis above, which suggests that it is complex to work out the optimal
value for 7 for the correct extraction of desired objects, along with minimal amount of the
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Fig 6. The Comparison of the segmentation results for different values /| in the MGDF model. This value is set to 1.0, 1.05 and 1.1 for (A), (B) and (C),

respectively.

doi:10.1371/journal.pone.0143105.9g006

undesired isolated components. In this paper, the parameter 7 is chosen to 1.0 as a tradeoff
between them.

Conclusions

In this paper, a novel region-based active contour model is proposed and employed to segment
vessels in retinal images, which takes image intensities and ‘vesselness values’ as two indepen-
dent random variables with different means and variances, and then uses the two variables to
construct a multi-feature Gaussian distribution fitting energy so as to improve the segmenta-
tion performances of the LGDF model. The novel model is evaluated and compared with the
existing typical active contours (i.e., the CV, LBF and LGDF models) based on publicly avail-
able retinal datasets, the experimental results demonstrate that our model outperforms these
typical region-based models in terms of sensitivity, specificity, accuracy and the area under a
receiver operating characteristic curve.
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