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Abstract
Toxoplasmosis, a zoonotic disease caused by Toxoplasma gondii, is an important public

health problem and veterinary concern. Although there is no vaccine for human toxoplas-

mosis, many attempts have been made to develop one. Promising vaccine candidates uti-

lize proteins, or their genes, from microneme organelle of T. gondii that are involved in the

initial stages of host cell invasion by the parasite. In the present study, we used different

recombinant microneme proteins (TgMIC1, TgMIC4, or TgMIC6) or combinations of these

proteins (TgMIC1-4 and TgMIC1-4-6) to evaluate the immune response and protection

against experimental toxoplasmosis in C57BL/6 mice. Vaccination with recombinant

TgMIC1, TgMIC4, or TgMIC6 alone conferred partial protection, as demonstrated by

reduced brain cyst burden and mortality rates after challenge. Immunization with TgMIC1-4

or TgMIC1-4-6 vaccines provided the most effective protection, since 70% and 80% of

mice, respectively, survived to the acute phase of infection. In addition, these vaccinated

mice, in comparison to non-vaccinated ones, showed reduced parasite burden by 59% and

68%, respectively. The protective effect was related to the cellular and humoral immune

responses induced by vaccination and included the release of Th1 cytokines IFN-γ and IL-

12, antigen-stimulated spleen cell proliferation, and production of antigen-specific serum

antibodies. Our results demonstrate that microneme proteins are potential vaccines against

T. gondii, since their inoculation prevents or decreases the deleterious effects of the

infection.
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Introduction
T. gondii is an obligate intracellular protozoan parasite that infects warm-blooded animals and
causes toxoplasmosis. This wide host range makes T. gondii one of the most successful proto-
zoan parasites. In pregnant women, the infection can lead to miscarriage, neonatal malforma-
tions, ocular complications, and severe cognitive impairment in the fetus [1, 2]. Furthermore,
the infection can be fatal for immunocompromised patients such as those with AIDS [3, 4],
organ transplant recipients [5, 6], or those with neoplastic disease [7]. In addition, toxoplasmo-
sis can cause substantial economic losses to the farming industry [8, 9]. The most important
interventions for toxoplasmosis rely on chemotherapeutic agents. However, the agents in use
are inadequate, expensive, and often toxic [10, 11]. Until now, there is no commercial vaccine
for use in humans, whereas a vaccine developed for veterinary use showed limited efficacy [12–
14]. Therefore, the development of an effective vaccine or immunotherapy against human
toxoplasmosis would be particularly valuable for preventing both primary fetal infection and
reactivation in immunocompromised individuals. In addition, vaccination might reduce eco-
nomic losses by preventing abortions in farm animals. Attenuated and inactivated parasites,
genetically engineered antigens, and DNA vaccines are among potential vaccines for toxoplas-
mosis and have been tested for their immunological effects in animal models. Because of poor
efficiency or biosafety concerns, only few vaccines have been licensed for use [15]. The charac-
terization of molecules that play a role in the pathogenesis of T. gondii infection may constitute
an important step in vaccine development.

Most of the studies performed on antigens involved in imparting protective immunity
against T. gondii were focused on molecules that belong to 3 major protein families: surface
antigens (SAGs), dense granule excreted-secreted antigens (GRAs), and rhoptry antigens
(ROPs). However, the microneme proteins are particularly promising as vaccine antigens
because they are responsible for host-cell recognition, binding, secretion of rhoptry organelles,
and cell penetration of all apicomplexans [16–19]. Among the micronemes (MICs), T. gondii
microneme protein 1 (TgMIC1), TgMIC4, and TgMIC6 form a complex that exerts a very
important role in host cell invasion [18]. We have previously reported that a lactose-affinity
fraction (Lac+) purified from the soluble tachyzoite antigen of the T. gondii RH strain is consti-
tuted of TgMIC1 and TgMIC4, and that vaccination of C57BL/6 mice with Lac+ induces pro-
tective immunity against T. gondii [20, 21]. Such protection was demonstrated by increased
survival rate and reduced tissue parasitism, as well as a Th1-specific immune response [20].
Yet the production of Lac+ from tachyzoites is an arduous task that involves several purifica-
tion procedures and provides low protein yields, making unfeasible its use in vaccine develop-
ment. Therefore, in the present work, we have generated recombinant TgMIC1, TgMIC4, and
TgMIC6 proteins, which were evaluated individually or in several combinations for their ability
to induce protective immunity in mice against infection by T. gondii.

Materials and Methods

2.1. Animal ethics statement
All the experiments were developed in accordance to ethical principles in animal research
adopted by Brazilian Society for Laboratory Animal Science and approved by the Ethics Com-
mittee on Animal Experiments, Ethical Committee of Ethics in Animal Research (CETEA) of
the College of Medicine of Ribeirão Preto of the University of São Paulo (protocol number,
065/2012). All efforts were made to minimize animal suffering and the numbers of mice
required for each experiment.
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2.2. Mice and parasites
Female C57BL/6 (H-2b) mice aged 6–7 weeks were purchased from the animal house of the
Campus of Ribeirão Preto, University of São Paulo. All mice were bred and maintained in
small groups inside isolator cages with light/dark cycle of 12 hours, besides food and water ad
libitum were provided, in the animal housing facility of School of Medicine of Ribeirão Preto,
University of São Paulo. Cysts of the ME49 strain, which has low virulence for mice, were
obtained from the brain of orally infected C57BL/6 mice, and maintained by monthly passage
of 20 cysts per animal.

2.3 Preparation of soluble T. gondii antigens (STAg)
The tachyzoites of the RH strain obtained from the peritoneal exudate of infected mice were
washed three times with phosphate-buffered saline (PBS, 10 mM sodium phosphate containing
0.15 M NaCl, pH 7.2) by centrifugation at 1,000 × g and suspended in PBS containing 0.8M
phenyl methyl sulfonyl fluoride (Sigma Chemicals, St. Louis, USA). This parasite suspension
was then sonicated (Vibra-cell; Sonics & Materials Inc., Danbury, USA) and centrifuged at
15,000 × g for 15 min, at 4°C. Supernatant was used as antigen source (STAg).

2.4. Isolation of lactose-binding proteins (Lac+)
Twenty milligrams of STAg was submitted to affinity chromatography on a 5-ml α-lactose-
agarose column (Sigma Chemicals) previously equilibrated at 4°C with PBS containing 0.5 M
NaCl. After washing the column with equilibrating buffer, the adsorbed material (Lac+) was
eluted with 10 mL of 0.1M lactose in equilibrating buffer, concentrated, and dialyzed against
water in an ultradiafiltration system using 10,000-Da cutoff membrane (YM10 -Amicon1

Division; W.R. Grace & Co., Beverly, USA).

2.5. Construction of the expression plasmid
A cDNA library fromME49-PDS T. gondii tachyzoites was kindly provided by Dr. Ian Manger,
Department of Microbiology and Immunology, Stanford University School of Medicine (Stan-
ford, CA, USA) and was used as the template for the initial PCR, to amplify the TgMIC1 and
TgMIC4 genes, using the following specific primers: TgMIC1 50(TCGCATTCTCATTCGCCG
GCA)30 and 30(TCAAGCAGAGACGGCCGTAGGACT)50 and for TgMIC4 50(ATCACGCCTGC
AGGTGATGAC)30 and 30(TCATTCTGTGTCTTTCGCTTCAAG)50. These primers were
designed on the basis of published sequences (GenBank accession numbers: TgMIC1—
Z71786.1 and TgMIC4—AF143487.2). Two additional PCR steps have been performed for
introducing the recombination sites attB1 and attB2 at both 50—(50-GGGGACAAGTTTGTAC
AAAAAAGCAGGC-30) and 30—end (50-GGGGACC ACTTTGTACAAGAAAGCTGGG-30) of the
cDNA. The PCR products were cloned into a pDONR201 vector (Invitrogen, Carlsbad, CA) to
obtain the pENTR-TgMIC1 and pENTR-TgMIC4 constructs used to transform DH5α Escheri-
chia coli competent cells. The DNA from several Kanr clones were sequenced. Inserts from
pENTR-TgMIC1 and pENTR-TgMIC4 were transferred into pDEST17 vectors (Invitrogen)
through a second recombination step and yielded pEXP17-TgMIC1 and pEXP17-TgMIC1.
Plasmids were used to transform DH5α E. coli cells to select the Ampr expression. Plasmids
extracted from DH5α E. coli were transformed in E. coli BL21-DE3 competent cells to produce
fusion proteins with N-terminal 6-histidine (6xHis) tag. The pET 21b plasmid containing full-
length TgMIC6 gene was kindly provided by Professor Stephen Matthews, Division of Molecu-
lar Biosciences, Imperial College London (UK).
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2.6. Expression of TgMIC1, TgMIC4, and TgMIC6 proteins
E. coli BL21 (DE3) (Novagen) cells transformed with pDEST17-MIC1, pDEST17-MIC4, or
pET21b-MIC6 were grown on Luria-Bertani (LB) agar plates containing ampicillin (100 μg/
mL) and chloramphenicol (34 μg/mL). Individual colonies were grown in 5 mL LB medium
supplemented with ampicillin (100 μg/mL) at 37°C at 220 rpm. After 18 h, in 5 mL of LB
medium supplemented with antibiotics. An aliquot of each culture was used to inoculate sepa-
rately to 500 mL of fresh LB medium containing antibiotics. Cells were grown for 2–2.5 h until
an optical density (OD600) of 0.4–0.6 was reached, when the expression was induced with the
addition of 0.5 mM isopropyl-β-D-thiogalactopyranoside (IPTG). The culture was grown for
additional 4 h and harvested by centrifugation at 4,500 × g for 20 min at 4°C.

2.7. Isolation of inclusion bodies using centrifugation
Cell pellets were suspended in disruption buffer consisted of 50 mM Tris-HCL pH 7.5 contain-
ing, NaCL 100mM, EDTA 5mM, PMSF 0,1 mM, 4 μl DNase (20,000 U) and lysozyme 1mg
\mL. The cell pellets were stirred for 30 min at room temperature and disrupted by sonication
(Sonics and Materials, Vibra cell) for 2 min × 10 (pulse on, 1 s; pulse off, 1 s; temperature of
probe, 4°C; and amplitude, 80%). After ultra-sonication, the mixture was centrifuged at
15,200g for 15 min at 4°C. The pellet containing insoluble recombinant TgMICs proteins
(inclusion bodies) were washed three times with 50 mM Tris–HCl, 100 mMNaCl, PMSF 0,1
mM and 0.5% Triton X-100 (pH 8.0), and finally with the same buffer without Triton X-100.

2.8. Inclusion body solubilization and refolding by gradient dialysis
The pellets were suspended in buffer containing 8 M urea, 50 mM glycine and 100 mM Tris–
HCl, (pH 7.4) and solubilized overnight with stirring at room temperature, the solubilized
inclusion body was centrifuged at 15,200g for 40 min at 4°C, and the supernatant was collected.
Refolding was done with chaotropic agents’ concentration gradient dialysis using a previously
described method, with modifications [22]. The solutions of denatured proteins were dialyzed
against 2 L of freshly made 4, 2, 1, 0.5, and 0 M urea, respectively, with 100 mM Tris-HCl (pH
7.4). With each concentration, the protein was dialyzed 24 h at 4°C. After the urea removal the
samples were dialyzed against 5 mM Tris-HCl (pH 7.4) an ultradiafiltration system using
10,000-Da cutoff membrane (YM10 -Amicon1 Division; W.R. Grace & Co., Beverly, USA).

To remove endotoxin impurities, endotoxin-free columns (Bio_Rad, 0,5x10 cm) were
packed with 1ml polymyxine B suspended in pyrogen-free water. The microneme proteins
fractions were pumped over the columns with a flow rate of 1 ml/min and collected in sterile
pyrogen-free tubes. The endotoxin level was measured with a Chromogenic End-point Endo-
toxin Assay Kit (Chinese Horseshoe Crab Reagent Manufactory, Xiamen, China). Less than 0.1
EU/ml of endotoxin was detected in the final protein preparations.

2.9. Immunization
C57BL/6 mice were subcutaneously (s.c.) injected with TgMIC1 (10 μg), TgMIC4 (10μg),
TgMIC6 (10μg), TgMIC1-4 (5 μg of each protein), TgMIC1-4-6 (3.3μg of each protein), or Lac
+ (10 μg) emulsified in Freund’s complete adjuvant (Sigma Chemicals). Animals were boosted
at the same dose and regimen on day 15 and 30 after first injection, now emulsified in Freund’s
incomplete adjuvant (Sigma Chemicals). A control group was injected at the same regimen
with PBS emulsified in Freund’s adjuvant (vehicle). Fifteen days after the last injection, blood
and spleen samples were collected to assess serum IgG, in vitro T cell proliferation, and cyto-
kine concentrations.
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2.10. Determination of T. gondii-specific IgG and IgG subclass titers
Specific antibody responses were analyzed by enzyme-linked immunosorbent assay (ELISA).
For total IgG detection, the collected serum samples were diluted 1:25, 1:50, 1:100, 1:200, and
1:400. For isotype detection, the serum samples were diluted 1:100. The assays were performed
in microtiter plates (Nunc, Naperville, USA), which were coated with STAg (50 μL per well) at
a concentration of 10 μg/mL in 50 mM sodium carbonate buffer, pH 9.6, overnight, at 4°C. The
plates were then washed three times in PBS containing 0.05% Tween 20 (PBS-T) (pH 7.4).
Non-specific binding sites were blocked with PBS-T containing 1% bovine serum albumin
(BSA; blocking buffer), for 1 h, at 37°C. Serum samples (50 μl) were added to duplicate wells in
blocking buffer. Plates were then incubated at 37°C for 1 h, washed four times, and incubated
with horseradish-peroxidase-conjugated goat anti-mouse IgG, IgG1, or IgG2b (Santa Cruz Bio-
technology), at 1:5000 dilution in blocking buffer, for 1 h, at 37°C. After washing with PBS-T,
reactions were developed with the TMB (3,30,5,50-tetramethylbenzidine) Substrate Kit,
according to the manufacturer’s instructions (Pierce Chemical Co., Rockford, USA). The reac-
tion was stopped 15 min later by addition of 25μL of 1M sulfuric acid to each well. The absor-
bance was read at 450 nm by using a Microplate Scanning Spectrophotometer (PowerWavex;
Bio-Tek Instruments, Inc., Winooski, USA).

2.11. Cytokine level quantification
The spleens aseptically removed from mice, fifteen days after the last immunization procedure,
were gentle disrupted and passed through nylon mesh in RPMI medium. Single-cell suspen-
sions were depleted of erythrocytes by hypotonic shock, and suspended in RPMI medium
(Sigma Chemicals) supplemented with 10% fetal calf serum, 10 mMHEPES, 2 mM L-gluta-
mine, 1 mM sodium pyruvate, and 50μM β-mercaptoethanol. The cells were then seeded in
flat-bottom 24-well microtiter plates (Corning, USA) at density of 1 × 106 cells per well, in 1
mL of the culture medium alone or medium with STAg (10 μg/mL) in duplicate. Cells were
stimulated with concanavalin A (2 μg/mL) as positive control. The plates were incubated in
atmosphere containing 5% CO2 at 37°C. The optimal STAg concentration was previously
determined by a dose response assay. Cell-free supernatants were harvested and assayed for IL-
12p40 and IL-4 concentrations following a 24-h culture, IL-10 concentration, 72-h culture, and
IFN-γ concentration, 96-h culture. Cytokine production in supernatants was quantified using
an ELISA kit, according to the manufacturer’s instructions (OptEIA set; Pharmingen, San
Diego, CA).

2.12. Lymphoproliferation assay
Spleen cells, prepared as described previously, were suspended in RPMI medium (Sigma
Chemicals) supplemented with 10% fetal calf serum, 10 mMHEPES, 2 mM L-glutamine, 1 mM
sodium pyruvate, and 50μM β-mercaptoethanol. They were distributed in flat-bottom 96-well
microtiter plates (Corning) at a density of 5 × 105 cells per well, in 200 μL of culture medium
alone or medium with STAg (10 μg/mL) in triplicate. Cells were stimulated with concanavalin
A (2 μg/ml) as positive control. The plates were incubated for 3 days in atmosphere containing
5% CO2 at 37°C and pulsed with 1 μCi [3H]thymidine per well for an additional 18-h period.
The cells were next harvested onto glass fiber filters and incorporated radioactivity (counts per
minute [cpm]) was measured in a liquid scintillator. The results are expressed as mean counts
per minute (count) for three replicates.

Microneme Proteins Confers Protection against Toxoplasmosis

PLOS ONE | DOI:10.1371/journal.pone.0143087 November 17, 2015 5 / 18



2.13. Challenge and infection
One month after the last immunization procedure, the mice were orally infected with 80 cysts
of the ME49 strain and were monitored and recorded for 30 days to compute the survival rates.
During this period, the infected mice were closely monitored two times a day (at 8 am and 6
pm) for their clinical appearance. The mice were weighed daily and monitored for clinical
signs of infection–weight loss, ruffled fur, hunched posture, decrease in appetite, weakness/
inability to obtain feed or water, lethargy and morbidity. If obvious sufferings were observed,
the mice were immediately euthanized using CO2 in a custom flow metered chamber. At the
end of the experimental window, all the remaining mice were euthanized with CO2.

To evaluate the effect of immunization on tissue cyst burden, the brain of the mice infected
with 40 cysts was removed 1 month after the challenge and homogenized in 1 mL of PBS, by
passing it through a 25-×-8-gauge needle (Becton Dickinson, Curitiba, Brazil). Cysts were sepa-
rated from the brain tissue by using a previously described method, with modifications [23].
Homogenates were centrifuged in 16% dextran gradient (industrial grade, average molecular
weight: 170,000; Sigma Chemicals) in PBS, at 3,000 × g for 15 min at 4°C. The mean number of
cysts per brain was determined by phase-contrast microscopy at 100× magnification and
counting five samples (8 mL each) of each pellet. The results are expressed as means ± SD for
each group.

Additionally, blood samples from groups of 4 infected mice were collected 30 days after T.
gondii challenge and the serum cytokine levels were analyzed by ELISA as described above.
Blood samples from these mice were collected after the injection with anesthetics Ketamine
(Syntec Brasil Ltda, SP, Brazil)/Xylazine (Schering-Plough Coopers, SP, Brazil), (10/0.5 mg per
100 g body weight) by i.p. route and then the mice were euthanized with CO2.

2.14 Statistical analysis
Statistical determinations of the difference between means of experimental groups were per-
formed using one or two-way analysis of variance (ANOVA) followed by Bonferroni’s post-
test using GraphPad Prism software (GraphPad Software, San Diego, CA, USA). Values were
considered significant when p<0.05. All experiments were performed at least three times.

Results

3.1. Expression and purification of TgMIC1, TgMIC4, and TgMIC6
recombinant proteins
Fig 1 shows the electrophoretic profile of samples harvested from recombinant clone cultures
before (lane 1) and after induction (lane 2) for the expression of TgMIC1 (panel A), TgMIC4
(panel B), and TgMIC6 (panel C). The T. gondiimicroneme proteins expressed in E. coli were
insoluble and contained inclusion bodies. They were diluted in refolding buffer containing 8M
urea, until concentrations as low as 100μg/ml were reached. Sequential dialysis removed the
denaturing agent and provided high yields of soluble proteins. SDS-PAGE of the purified
recombinant proteins showed a single band for each preparation, with molecular masses of
70-kDa for TgMIC1, 80-kDa for TgMIC4, and 30-kDa for TgMIC6 (Fig 1, lane 3 of Panels A,
B, and C). These masses are compatible with the predicted molecular mass for each protein
together with a polyhistidine-tag. The immunoreactivity of TgMIC1 and TgMIC4 preparations
with anti-Lac+ mouse serum was confirmed by western blot analysis; however, no reactivity
was observed with TgMIC6 preparation (Fig 1, panel E). The Lac+ fraction provided two
major protein bands with molecular masses of 53 and 68-kDa (Fig 1, panel D), both of which
were identified in the serum sample from anti-Lac+ mice (Fig 1, panel E). This recognition

Microneme Proteins Confers Protection against Toxoplasmosis

PLOS ONE | DOI:10.1371/journal.pone.0143087 November 17, 2015 6 / 18



indicates that the recombinant TgMIC1 (rTgMIC1) and TgMIC4 (rTgMIC4) had antigenic
similarities with the corresponding native proteins. The lack of rTgMIC6 recognition by anti-
Lac+ serum was predictable, since this microneme protein is not a constituent of the Lac+ frac-
tion purified from the parasite, as already demonstrated and now reinforced by the electropho-
retic profile of Lac+ shown in Fig 1, panel D.

3.2. Humoral immunity elicited by vaccination with microneme proteins
To evaluate whether immunization protocol (Fig 2) with microneme proteins could elicit spe-
cific humoral responses, serum samples from immunized and control mice were collected fif-
teen days after the last booster, and specific IgG levels were analyzed by ELISA. High IgG titers
were detected in the sera of all immunized mice. Notably, the titers were higher in the sera
from the mice immunized with combinations of microneme proteins, i.e., TgMIC1-4,
TgMIC1-4-6, and Lac+ than in the sera from the mice immunized with individual proteins,
i.e., TgMIC1, TgMIC4, or TgMIC6 (Fig 3A). We also examined whether a skew toward Th1 or
Th2 immunity could be inferred from the levels of specific IgG1 and IgG2b subclasses detected
in the serum samples. Immunized mice in all groups presented higher serum levels of specific
IgG1 and IgG2b, in comparison to the sera of the non-immunized mice (Fig 3B). A signifi-
cantly higher IgG2b value than IgG1 was observed in mice immunized with combinations of
recombinant microneme proteins (TgMIC1-4, TgMIC1-4-6) or with the native complex Lac+
(obtained from STAg and comprising TgMIC1-4), while no significant differences were

Fig 1. SDS-PAGE and western blot analysis of native and recombinant microneme proteins. SDS-PAGE of recombinant proteins (panels A, B, and C,
Coomassie Blue stained) or native (panel D, silver-stained) proteins. Heterologous expression was noted in E. coli (DE3) and recombinant proteins were
detected in inclusion bodies. Lane 1: protein expression before induction. Lane 2: protein expression after induction. Lane 3: purified and refolded histidine-
tagged recombinant proteins, displayed apparent molecular masses of 70-kDa (TgMIC1, panel A), 80-kDa (TgMIC4, panel B), and 30-kDa (TgMIC6, panel
C). Panel E shows the electrophoretical profile of the Lac+ fraction, composed of the native proteins TgMIC1 (53-kDa) and TgMIC4 (68-kDa). Lane M:
Molecular mass markers. Reactivity of recombinant and native microneme proteins with anti-Lac+ mouse serum was examined by western blot (Panel E),
developed with peroxidase-conjugated goat anti-mouse IgG.

doi:10.1371/journal.pone.0143087.g001
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observed in the control group (PBS), suggesting that these microneme proteins elicited promi-
nent Th1 immunity.

3.3 Cellular immunity elicited by vaccination with microneme proteins
We compared the proliferative response of the spleen cells from vaccinated and non-vaccinated
animals stimulated in vitro with STAg. Proliferation of the cells from immunized mice was sig-
nificantly higher than that of the cells from non-immunized mice. Cell proliferation was at
least 2 times higher in the spleen cells from the mice immunized with TgMIC1-4-6 compared
to that observed in cells from other groups of immunized mice, which was comparable to cell
proliferation from any group of mice polyclonally stimulated with Con A (Fig 4A).

The cell-mediated immunity generated by the immunized mice was also evaluated by mea-
suring the levels of cytokines (IL-12p40, IFN-γ, IL-4, and IL-10) released in the supernatant of
spleen cells cultured under STAg stimulation (Fig 4B, 4C and 4D). Spleen cells from all groups
of immunized mice displayed high IL-12 production, primarily those from mice immunized
with multicomponent preparations, because they produced twice as much IL-12 than the cells
from mice immunized with single-component microneme protein. Notably, STAg stimulation
generated IL-12 production by the spleen cells from non-immunized mice (PBS), in amounts
that were close to those released by cells from mice immunized with single-component prepa-
rations such as TgMIC1, TgMIC4, or TgMIC6. High concentrations of IFN-γwere predomi-
nantly produced by cells of all groups of immunized mice, especially by those immunized with
multicomponent preparations, such as TgMIC1-4, TgMIC1-4-6 and Lac+. High levels of IL-10

Fig 2. Experimental Protocol. (A) In the first experimental procedure mice were subcutaneously (s.c.)
vaccinated with microneme proteins emulsified in Freund’s complete adjuvant. Mice were boosted at the
same dose and regimen on day 15 and 30 after first injection, now emulsified in Freund’s incomplete
adjuvant. Fifteen days after the last injection, blood and spleen samples were collected to assess serum IgG,
in vitro T cell proliferation, and cytokine concentrations. (B)Onemonth after the last immunization procedure,
the mice were orally infected with 80 cysts of the ME49 strain and the mortality was monitored daily for 1
month. To evaluate the tissue cyst burden, the brain of the mice infected with 40 cysts was removed 1 month
after the challenge and the mean number of cysts per brain was determined. Additionally, blood samples from
mice challenged with 40 cysts were collected 30 days after T. gondii challenge and the serum cytokine levels
were analyzed.

doi:10.1371/journal.pone.0143087.g002
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Fig 3. Specific humoral responses elicited by immunization of mice with microneme proteins. The reactivity of immunoglobulins anti-STAg was
determined by ELISA in serum samples collected from both immunized (TgMICs) and control (PBS) mice 15 days after the last antigen injection. Each point/
bar represents the average absorbance ± SD of the serum samples from 4 animals. (A) Absorbance provided by the reaction of serum IgG with STAg. (B)
Absorbance provided by the reaction of serum IgG1 and IgG2a (diluted 1:25) with STAg. The average absorbance ± SD generated by the reaction of serum
IgG1 or IgG2a from each group of immunized mice was significantly higher than the corresponding values provided by control mice, with the exception of the
TgMIC6-immunized group, whose results were not significantly different of those of the control group. Three independent experiments were performed, and
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were also produced by STAg-stimulated spleen cells from all groups of immunized mice. There
was no difference in the IL-10 production pattern displayed by cells from mice that were
immunized with single- or multi-component preparations. IL-4 was not detected in any culture
supernatant (data not shown). It is noteworthy that in cells from non-immunized mice, STAg
stimulated only IL-12 production.

3.4 Protection conferred by immunization with microneme proteins
Since our results indicate that immunization with microneme proteins elicits Th1 response,
which is the type required for the development of resistance to toxoplasmosis (reviewed in ref.
[24]), we investigated if the vaccination procedure could confer protection to T. gondii infec-
tion. The serum cytokine levels on day 30 post the challenge with T. gondii cysts were deter-
mined (Table 1).

Serum concentrations of IL-12 and IFN-γwere significantly higher in animals from groups
immunized with TgMIC1-4-6 and Lac+ (Table 1). IL-4 concentrations were significantly lower
in the serum of all groups of immunized mice compared to that of the non-immunized mice,

data from one representative experiment is shown. Asterisks represent statistical significant differences (*p < 0.05) between IgG2b and IgG1 for each group
of mice (Bonferroni’s t test).

doi:10.1371/journal.pone.0143087.g003

Fig 4. Specific cell-mediated immune responses elicited by immunization with microneme proteins. Spleen cells were harvested from immunized
(indicated as TgMICs) and control mice (PBS) on day 15 post the last antigen injection and cultured in the presence of medium only, STAg (10 μg/ml), or
Concanavalin A (2 μg/ml) for 72 h. (A) Proliferation of spleen cells was measured by [3H]-thymidine incorporation assay. Each bar represents the average of
four mice per group and is representative of three independent experiments. Statistical significance is denoted as *p < 0.05 compared to the control group.
(B–D) Cytokine concentration was measured by ELISA in the supernatant of spleen cell cultures. Panels show the IL-12 (B), IFNγ(C), and IL-10 (D)
concentrations. Each bar represents the mean ± SD of triplicate samples and the results are representative of three independent experiments. Statistical
significance is denoted as *p < 0.05 compared to PBS-inoculated mice; # p < 0.05 compared to non-stimulated cells of the same group.

doi:10.1371/journal.pone.0143087.g004
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except in case of mice immunized with TgMIC6, which displayed IL-4 levels that were similar
to the control group. Only mice immunized with TgMIC1-4-6 had IL-10 levels that were sig-
nificantly higher than those in control mice.

3.5. Protection of immunized mice against T. gondii challenge
We evaluated, by enumeration of brain cysts, the effect of immunization in mice undergoing
chronic toxoplasmosis. One month post the challenge, the mice immunized with TgMIC1,
TgMIC4, TgMIC6, TgMIC1-4, TgMIC1-4-6, and Lac+, compared with non-immunized mice,
showed reductions in brain cysts by 52%, 46.9%, 27.2%, 59%, 67.8%, and 73.4%, respectively (Fig
5A). The survival period (in days) of the mice challenged with T. gondii cysts is shown in Fig 5B.
Non-immunized control mice started dying 6 days after T. gondii infection, and they were all
dead by day 11 post infection. Effective and highly significant protection was demonstrated in
mice immunized with TgMIC1-4-6 or TgMIC1-4, since 80% and 70% of the mice, respectively,
survived to the acute phase of infection, which is compatible with the high protection reported to
be conferred by immunization with the LAC+ fraction (21). Furthermore, immunization with
individual components, namely, TgMIC1, TgMIC4, or TgMIC6, was associated with a survival
rate of 40–50%, indicating that these vaccines confer partial protection against T. gondii infec-
tion. Since our results achieved significant protection in mice immunized with microneme pro-
teins, as indicated above, we investigated whether this vaccine candidate could work also to
different T. gondii strains. Alignment analysis demonstrated similarity approximately of 99%
between TgMIC1 amino acid sequences fromME49 strain when compared to other strains (Fig
6A). Similar results were also verified to TgMIC4 (Fig 6B) and TgMIC6 (Fig 6C).

Together, our results show that the vaccine formulation constituted by the combination of
three recombinant proteins (TgMIC1-4-6) induced the best immune response and subsequent
protection against T. gondii infection.

Discussion
In the current study, we investigated the protection conferred by immunization of C57BL/6
mice with several preparations of recombinant microneme proteins against T. gondii infection.
The assayed preparations, with the exception of TgMIC6, conferred protection against

Table 1. Serum cytokine levels of mice immunized with microneme proteins and infected with T. gon-
dii. Cytokine levels in the serum of mice immunized on days 0, 15, and 30 with the indicated preparations of
TgMICs or with vehicle (PBS), and after one month (day 60), challenged with T. gondii infection, provoked by
gavage with 40 cysts of the ME49 strain. Cytokine levels were determined by ELISA in samples collected one
month after challenge (on day 90).

Groups Cytokine (ng/ml)

IL-12 IFN-γ IL-4 IL-10

PBS 1.8±0.41 0.53±0.17 2.0±0.1 0.7±0.15

TgMIC1 5.4±1.1 1.6±0.57 1.2±0.14 * 1.0±0.54

TgMIC4 4.9±0.81 1.4±0.29 1.2±0.04 * 1.4±0.18

TgMIC6 2.1±0.58 1.2±0.39 1.7±0.08 1.7±0.81

TgMIC1-4 6.3±1.2 2.2±0.9 1.0±0.1 * 2.0±0.15

TgMIC1-4-6 7.7±0.93 * 3.1±0.72 * 0.4±0.01 * 2.3±0.16*

Lac+ 7.1±0.45 * 2.7±0.46 * 0.4±0.02 * 1.8±0.4

The results are expressed as the mean of five mice per group and are representative of three independent

experiments. Statistical significance is denoted as * p < 0.05 compared to the PBS control group.

doi:10.1371/journal.pone.0143087.t001
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infection. The most effective protection was conferred by the combination of TgMIC1,
TgMIC4, and TgMIC6 (TgMIC1-4-6), as demonstrated by an increased survival rate and
reduced tissue parasitism, which was associated with the occurrence of a Th1-specific immune
response, the essential event in the control of toxoplasmosis.

Fig 5. Number of brain cysts and survival of mice immunized with microneme proteins and infected with T. gondii.Mice immunized on days 0, 15,
and 30 with the indicated preparations of TgMICs or with the vehicle (PBS) were challenged after one month (day 60) with T. gondii infection, provoked by
gavage with cysts of the ME49 strain. (A) Cyst numbers were counted from whole brain homogenates of mice, harvested one month after challenge with 40
cysts. The results are expressed as means ± SD for each group. Significance is denoted as *p < 0.05, compared to the PBS group. (B) Survival curves of
mice that were challenged with 80 cysts of the ME49 strain and observed daily for mortality. Data are representative of six experiments with similar results.

doi:10.1371/journal.pone.0143087.g005
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The process of host cell invasion by T. gondii is complex and consists of several sequential
steps initiated by the release of proteins from secretory organelles called micronemes (MICs)
and rhoptries (ROPs) [25–27]. When released onto the parasite's surface, MICs can interact
with host cell receptors, which lead to the activation of the gliding motility machinery, and
finally culminate in host cell invasion [28–30]. Importantly, some MICs share adhesive
domains, which are disposed in various combinations and numbers [16, 31–34]. Microneme
protein 1 (TgMIC1), 4 (TgMIC4), and 6 (TgMIC6) form a complex on the surface of T. gondii
and enable parasite binding to host cells [35]. TgMIC1 and TgMIC4 are both carbohydrate-
binding proteins that interact with glycans containing terminal sialic acid and galactose

Fig 6. Cladogram analysis of TgMIC1, TgMIC4, and TgMIC6 of the T. gondii isolates.Dendrograms grouping microneme proteins of T. gondii isolates
showing similarity of approximately 99% according to their sequences. (A) TgMIC1. (B) TgMIC4. (C) TgMIC6. Amino acids sequences were obtained from
available sequence database at NCBI, and the alignment was performed using MEGA 6.06 software.

doi:10.1371/journal.pone.0143087.g006
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residues, respectively, on host cells [18, 36–38]. Studies based on gene disruption have attrib-
uted a very important role for the TgMIC1-4-6 complex in host cell invasion in tissue culture
and have established the contribution of the complex on parasite virulence in vivo [21, 39].
Although well known in terms of its structural features and adhesive properties, the role of
TgMIC1-4-6 complex in host immunity is yet to studied in detail.

We have previously reported that mice immunized with the native subcomplex Lac+, com-
prising TgMIC1 and TgMIC4 proteins, elicit a strong specific immune response that confers
protection against T. gondii infection [21]. In fact, due to the key biological role of micromeme
proteins, some of them, including TgMIC11 [40], TgMIC13 [41], TgMIC8 [42], and TgMIC3
[43] have been proposed as vaccines for the prevention of toxoplasmosis. Thus, our goals in
this work were to investigate the capacity of TgMIC1, TgMIC4, and TgMIC6 recombinant pro-
teins of inducing protective immunity in mice against T. gondii infection.

To be efficient against toxoplasmosis, a vaccine should induce both cellular and humoral
immune responses. Since a natural infection is often resolved by Th1-biased immunity [44,
45], a good vaccine must also direct T-helper cells toward the development of Th1 rather than
Th2. Moreover, a humoral response is necessary because specific antibodies limit the multipli-
cation of T. gondii by killing extracellular tachyzoites, either by activating the complement sys-
tem or by opsonizing the parasites for phagocytosis and macrophage killing [46–51].

To evaluate whether prominent Th1 immunity was induced by the administration of micro-
neme proteins, we first analyzed the isotype of serum-specific antibodies. All assayed prepara-
tions elicited both IgG1- and IgG2b-specific antibodies. The highest IgG2b/IgG1 ratio was
detected in mice immunized with combinations of recombinant microneme proteins
(TgMIC1-4, TgMIC1-4-6) or with the native complex Lac+ (isolated from STAg and compris-
ing TgMIC1 and 4), suggesting that prominent Th1 immunity was elicited in these cases. This
idea was strongly reinforced by the fact that the same groups of immunized mice had their
spleen cells stimulated by STAg to proliferate and release Th1 cytokines, but not IL-4. Notably,
high levels of IFN-γ were produced by mice immunized with TgMIC1-4-6. This is an impor-
tant finding, considering that this cytokine plays an important role in host resistance to toxo-
plasmosis in its acute phase, by restricting growth of T. gondii, and later, by preventing the
reactivation of parasites from dormant cysts [52–56]. The importance of IFN-γ in resistance to
toxoplasmosis was unequivocally demonstrated by the extreme susceptibility of IFN-γ-defi-
cient mice to T. gondii infection [55].

Pro-inflammatory responses, although essential for resistance to T. gondii infection, may
lead to tissue injury if uncontrolled. The anti-inflammatory cytokine IL-10 acts by diminishing
the detrimental effects of an excessive cellular immune response elicited during the acute phase
of the infection [56–59]. Previous studies clearly demonstrated that IL-10-deficient mice rap-
idly succumb to infection by T. gondii, because of extensive necrosis of the liver, lungs, and
intestines, which was attributed to an uncontrolled Th1 response [52, 60]. Therefore, we believe
that the IL-10 production by spleen cells from immunized mice in our model was crucial for
attenuating the Th1 immunity induced by T. gondii infection following vaccination.

We verified that vaccination with microneme proteins could positively influence the out-
come of T. gondii infection, thus accomplishing the major purpose of the present work. The
most successful vaccination procedure was the administration of the TgMIC1-4-6 preparation,
since vaccinated mice had the highest survival rate (80%) and the lowest parasite burden in the
brain. In addition, they displayed the most prominent Th1 immunity, which was equilibrated
by IL-10 production. These results indicate that vaccination with the microneme complex
TgMIC1-4-6 prevented host death in the acute phase of infection, conferring a protection that
is reflected in the chronic phase of the disease. These results are particularly relevant if we con-
sider that they were obtained in C57BL/6 mice, which are highly susceptible to T. gondii
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infection and a high mortality rate occurs during the acute phase of the infection even when
animals are challenged with a low number of encysted bradyzoites [61].

In summary, the use of the multicomponent vaccine, comprising TgMIC1, TgMIC4, and
TgMIC6, offers a promising strategy for conferring protection against toxoplasmosis. Evalua-
tion in other animal host species, including those in which a vaccine may have veterinary util-
ity, should aid in defining the applicability of this vaccine to prevent toxoplasmosis.

Acknowledgments
We would like to thank Sandra O. Thomaz and Patricia Vendruscolo for technical support.

Author Contributions
Conceived and designed the experiments: MCRB CFP. Performed the experiments: CFP ASS
CDL FA LL. Analyzed the data: MCRB ASS CFP APC EVL FA LL. Contributed reagents/mate-
rials/analysis tools: MCRB SM. Wrote the paper: MCRB CFP.

References
1. Cook GC. Toxoplasma gondii infection: a potential danger to the unborn fetus and AIDS sufferer. The

Quarterly journal of medicine. 1990; 74(273):3–19. PMID: 2183258

2. Dodds EM. Toxoplasmosis. Current opinion in ophthalmology. 2006; 17(6):557–61. PMID: 17065925

3. Luft BJ, Remington JS. AIDS commentary. Toxoplasmic encephalitis. The Journal of infectious dis-
eases. 1988; 157(1):1–6. PMID: 3121758

4. Luft BJ, Remington JS. Toxoplasmic encephalitis in AIDS. Clinical infectious diseases: an official publi-
cation of the Infectious Diseases Society of America. 1992; 15(2):211–22.

5. de Medeiros BC, de Medeiros CR, Werner B, Loddo G, Pasquini R, Bleggi-Torres LF. Disseminated
toxoplasmosis after bone marrow transplantation: report of 9 cases. Transplant infectious disease: an
official journal of the Transplantation Society. 2001; 3(1):24–8.

6. Escuissato DL, de Aguiar RO, Gasparetto EL, Muller NL. Disseminated toxoplasmosis after bone mar-
row transplantation: high-resolution CT appearance. Journal of thoracic imaging. 2004; 19(3):207–9.
PMID: 15273620

7. Israelski DM, Remington JS. Toxoplasmosis in patients with cancer. Clinical infectious diseases: an
official publication of the Infectious Diseases Society of America. 1993; 17 Suppl 2:S423–35.

8. Dubey JP, Hill DE, Jones JL, Hightower AW, Kirkland E, Roberts JM, et al. Prevalence of viable Toxo-
plasma gondii in beef, chicken, and pork from retail meat stores in the United States: risk assessment
to consumers. The Journal of parasitology. 2005; 91(5):1082–93. PMID: 16419752

9. Zou FC, Sun XT, Xie YJ, Li B, Zhao GH, Duan G, et al. Seroprevalence of Toxoplasma gondii in pigs in
southwestern China. Parasitology international. 2009; 58(3):306–7. doi: 10.1016/j.parint.2009.06.002
PMID: 19523533

10. Maser P, Wittlin S, Rottmann M, Wenzler T, Kaiser M, Brun R. Antiparasitic agents: new drugs on the
horizon. Current opinion in pharmacology. 2012; 12(5):562–6. doi: 10.1016/j.coph.2012.05.001 PMID:
22652215

11. Soeiro MN, Werbovetz K, Boykin DW, WilsonWD, Wang MZ, Hemphill A. Novel amidines and ana-
logues as promising agents against intracellular parasites: a systematic review. Parasitology. 2013;
140(8):929–51. doi: 10.1017/S0031182013000292 PMID: 23561006

12. Buxton D. Protozoan infections (Toxoplasma gondii, Neospora caninum and Sarcocystis spp.) in
sheep and goats: recent advances. Veterinary research. 1998; 29(3–4):289–310. PMID: 9689743

13. Buxton D. Toxoplasmosis: the first commercial vaccine. Parasitology today. 1993; 9(9):335–7. PMID:
15463799

14. Verma R, Khanna P. Development of Toxoplasma gondii vaccine: A global challenge. Human vaccines
& immunotherapeutics. 2013; 9(2):291–3.

15. Innes EA, Vermeulen AN. Vaccination as a control strategy against the coccidial parasites Eimeria,
Toxoplasma and Neospora. Parasitology. 2006; 133 Suppl:S145–68. PMID: 17274844

16. Soldati D, Dubremetz JF, Lebrun M. Microneme proteins: structural and functional requirements to pro-
mote adhesion and invasion by the apicomplexan parasite Toxoplasma gondii. International journal for
parasitology. 2001; 31(12):1293–302. PMID: 11566297

Microneme Proteins Confers Protection against Toxoplasmosis

PLOS ONE | DOI:10.1371/journal.pone.0143087 November 17, 2015 15 / 18

http://www.ncbi.nlm.nih.gov/pubmed/2183258
http://www.ncbi.nlm.nih.gov/pubmed/17065925
http://www.ncbi.nlm.nih.gov/pubmed/3121758
http://www.ncbi.nlm.nih.gov/pubmed/15273620
http://www.ncbi.nlm.nih.gov/pubmed/16419752
http://dx.doi.org/10.1016/j.parint.2009.06.002
http://www.ncbi.nlm.nih.gov/pubmed/19523533
http://dx.doi.org/10.1016/j.coph.2012.05.001
http://www.ncbi.nlm.nih.gov/pubmed/22652215
http://dx.doi.org/10.1017/S0031182013000292
http://www.ncbi.nlm.nih.gov/pubmed/23561006
http://www.ncbi.nlm.nih.gov/pubmed/9689743
http://www.ncbi.nlm.nih.gov/pubmed/15463799
http://www.ncbi.nlm.nih.gov/pubmed/17274844
http://www.ncbi.nlm.nih.gov/pubmed/11566297


17. Tomley FM, Soldati DS. Mix and match modules: structure and function of microneme proteins in api-
complexan parasites. Trends in parasitology. 2001; 17(2):81–8. PMID: 11228014

18. Marchant J, Cowper B, Liu Y, Lai L, Pinzan C, Marq JB, et al. Galactose recognition by the apicom-
plexan parasite Toxoplasma gondii. The Journal of biological chemistry. 2012; 287(20):16720–33. doi:
10.1074/jbc.M111.325928 PMID: 22399295

19. Soldati-Favre D. Molecular dissection of host cell invasion by the apicomplexans: the glideosome. Par-
asite. 2008; 15(3):197–205. PMID: 18814681

20. Lourenco EV, Pereira SR, Faca VM, Coelho-Castelo AA, Mineo JR, Roque-Barreira MC, et al. Toxo-
plasma gondii micronemal protein MIC1 is a lactose-binding lectin. Glycobiology. 2001; 11(7):541–7.
PMID: 11447133

21. Lourenco EV, Bernardes ES, Silva NM, Mineo JR, Panunto-Castelo A, Roque-Barreira MC. Immuniza-
tion with MIC1 and MIC4 induces protective immunity against Toxoplasma gondii. Microbes and infec-
tion / Institut Pasteur. 2006; 8(5):1244–51. PMID: 16616574

22. Wang BL, Xu Y, Wu CQ, Xu YM,Wang HH. Cloning, expression, and refolding of a secretory protein
ESAT-6 of Mycobacterium tuberculosis. Protein expression and purification. 2005; 39(2):184–8. PMID:
15642469

23. Freyre A. Separation of toxoplasma cysts from brain tissue and liberation of viable bradyzoites. The
Journal of parasitology. 1995; 81(6):1008–10. PMID: 8544039

24. Aliberti J. Host persistence: exploitation of anti-inflammatory pathways by Toxoplasma gondii. Nature
reviews Immunology. 2005; 5(2):162–70. PMID: 15662369

25. Carruthers VB, Sibley LD. Sequential protein secretion from three distinct organelles of Toxoplasma
gondii accompanies invasion of human fibroblasts. European journal of cell biology. 1997; 73(2):114–
23. PMID: 9208224

26. Alexander DL, Mital J, Ward GE, Bradley P, Boothroyd JC. Identification of the moving junction complex
of Toxoplasma gondii: a collaboration between distinct secretory organelles. PLoS pathogens. 2005; 1
(2):e17. PMID: 16244709

27. Carruthers V, Boothroyd JC. Pulling together: an integrated model of Toxoplasma cell invasion. Current
opinion in microbiology. 2007; 10(1):83–9. PMID: 16837236

28. Huynh MH, Harper JM, Carruthers VB. Preparing for an invasion: charting the pathway of adhesion pro-
teins to Toxoplasma micronemes. Parasitology research. 2006; 98(5):389–95. PMID: 16385407

29. Besteiro S, Dubremetz JF, Lebrun M. The moving junction of apicomplexan parasites: a key structure
for invasion. Cellular microbiology. 2011; 13(6):797–805. doi: 10.1111/j.1462-5822.2011.01597.x
PMID: 21535344

30. Santos JM, Soldati-Favre D. Invasion factors are coupled to key signalling events leading to the estab-
lishment of infection in apicomplexan parasites. Cellular microbiology. 2011; 13(6):787–96. doi: 10.
1111/j.1462-5822.2011.01585.x PMID: 21338465

31. Carruthers VB, Tomley FM. Microneme proteins in apicomplexans. Sub-cellular biochemistry. 2008;
47:33–45. PMID: 18512339

32. Friedrich N, Santos JM, Liu Y, Palma AS, Leon E, Saouros S, et al. Members of a novel protein family
containing microneme adhesive repeat domains act as sialic acid-binding lectins during host cell inva-
sion by apicomplexan parasites. The Journal of biological chemistry. 2010; 285(3):2064–76. doi: 10.
1074/jbc.M109.060988 PMID: 19901027

33. Garcia-Reguet N, Lebrun M, Fourmaux MN, Mercereau-Puijalon O, Mann T, Beckers CJ, et al. The
microneme protein MIC3 of Toxoplasma gondii is a secretory adhesin that binds to both the surface of
the host cells and the surface of the parasite. Cellular microbiology. 2000; 2(4):353–64. PMID:
11207591

34. Kessler H, Herm-Gotz A, Hegge S, Rauch M, Soldati-Favre D, Frischknecht F, et al. Microneme protein
8—a new essential invasion factor in Toxoplasma gondii. Journal of cell science. 2008; 121(Pt 7):947–
56. doi: 10.1242/jcs.022350 PMID: 18319299

35. Reiss M, Viebig N, Brecht S, Fourmaux MN, Soete M, Di Cristina M, et al. Identification and characteri-
zation of an escorter for two secretory adhesins in Toxoplasma gondii. The Journal of cell biology.
2001; 152(3):563–78. PMID: 11157983

36. Blumenschein TMA, Friedrich N, Childs RA, Saouros S, Carpenter EP, Campanero-Rhodes MA, et al.
Atomic resolution insight into host cell recognition by Toxoplasma gondii. Embo J. 2007; 26(11):2808–
20. PMID: 17491595

37. Garnett JA, Liu Y, Leon E, Allman SA, Friedrich N, Saouros S, et al. Detailed insights frommicroarray
and crystallographic studies into carbohydrate recognition by microneme protein 1 (MIC1) of Toxo-
plasma gondii. Protein Sci. 2009; 18(9):1935–47. doi: 10.1002/pro.204 PMID: 19593815

Microneme Proteins Confers Protection against Toxoplasmosis

PLOS ONE | DOI:10.1371/journal.pone.0143087 November 17, 2015 16 / 18

http://www.ncbi.nlm.nih.gov/pubmed/11228014
http://dx.doi.org/10.1074/jbc.M111.325928
http://www.ncbi.nlm.nih.gov/pubmed/22399295
http://www.ncbi.nlm.nih.gov/pubmed/18814681
http://www.ncbi.nlm.nih.gov/pubmed/11447133
http://www.ncbi.nlm.nih.gov/pubmed/16616574
http://www.ncbi.nlm.nih.gov/pubmed/15642469
http://www.ncbi.nlm.nih.gov/pubmed/8544039
http://www.ncbi.nlm.nih.gov/pubmed/15662369
http://www.ncbi.nlm.nih.gov/pubmed/9208224
http://www.ncbi.nlm.nih.gov/pubmed/16244709
http://www.ncbi.nlm.nih.gov/pubmed/16837236
http://www.ncbi.nlm.nih.gov/pubmed/16385407
http://dx.doi.org/10.1111/j.1462-5822.2011.01597.x
http://www.ncbi.nlm.nih.gov/pubmed/21535344
http://dx.doi.org/10.1111/j.1462-5822.2011.01585.x
http://dx.doi.org/10.1111/j.1462-5822.2011.01585.x
http://www.ncbi.nlm.nih.gov/pubmed/21338465
http://www.ncbi.nlm.nih.gov/pubmed/18512339
http://dx.doi.org/10.1074/jbc.M109.060988
http://dx.doi.org/10.1074/jbc.M109.060988
http://www.ncbi.nlm.nih.gov/pubmed/19901027
http://www.ncbi.nlm.nih.gov/pubmed/11207591
http://dx.doi.org/10.1242/jcs.022350
http://www.ncbi.nlm.nih.gov/pubmed/18319299
http://www.ncbi.nlm.nih.gov/pubmed/11157983
http://www.ncbi.nlm.nih.gov/pubmed/17491595
http://dx.doi.org/10.1002/pro.204
http://www.ncbi.nlm.nih.gov/pubmed/19593815


38. Saouros S, Edwards-Jones B, Reiss M, Sawmynaden K, Cota E, Simpson P, et al. A novel galectin-like
domain from Toxoplasma gondii micronemal protein 1 assists the folding, assembly, and transport of a
cell adhesion complex. The Journal of biological chemistry. 2005; 280(46):38583–91. PMID: 16166092

39. Cerede O, Dubremetz JF, Soete M, Deslee D, Vial H, Bout D, et al. Synergistic role of micronemal pro-
teins in Toxoplasma gondii virulence. The Journal of experimental medicine. 2005; 201(3):453–63.
PMID: 15684324

40. Tao Q, Fang R, ZhangW, Wang Y, Cheng J, Li Y, et al. Protective immunity induced by a DNA vaccine-
encoding Toxoplasma gondii microneme protein 11 against acute toxoplasmosis in BALB/c mice. Para-
sitology research. 2013; 112(8):2871–7. doi: 10.1007/s00436-013-3458-4 PMID: 23749087

41. Yuan ZG, Ren D, Zhou DH, Zhang XX, Petersen E, Li XZ, et al. Evaluation of protective effect of pVAX-
TgMIC13 plasmid against acute and chronic Toxoplasma gondii infection in a murine model. Vaccine.
2013; 31(31):3135–9. doi: 10.1016/j.vaccine.2013.05.040 PMID: 23707448

42. Liu MM, Yuan ZG, Peng GH, Zhou DH, He XH, Yan C, et al. Toxoplasma gondii microneme protein 8
(MIC8) is a potential vaccine candidate against toxoplasmosis. Parasitology research. 2010; 106
(5):1079–84. doi: 10.1007/s00436-010-1742-0 PMID: 20177910

43. Fang R, Nie H, Wang Z, Tu P, Zhou D, Wang L, et al. Protective immune response in BALB/c mice
induced by a suicidal DNA vaccine of the MIC3 gene of Toxoplasma gondii. Veterinary parasitology.
2009; 164(2–4):134–40. doi: 10.1016/j.vetpar.2009.06.012 PMID: 19592172

44. Denkers EY, Gazzinelli RT. Regulation and function of T-cell-mediated immunity during Toxoplasma
gondii infection. Clinical microbiology reviews. 1998; 11(4):569–88. PMID: 9767056

45. Dupont CD, Christian DA, Hunter CA. Immune response and immunopathology during toxoplasmosis.
Semin Immunopathol. 2012; 34(6):793–813. doi: 10.1007/s00281-012-0339-3 PMID: 22955326

46. Johnson LL, Sayles PC. Deficient humoral responses underlie susceptibility to Toxoplasma gondii in
CD4-deficient mice. Infection and immunity. 2002; 70(1):185–91. PMID: 11748181

47. Kang H, Remington JS, Suzuki Y. Decreased resistance of B cell-deficient mice to infection with Toxo-
plasma gondii despite unimpaired expression of IFN-gamma, TNF-alpha, and inducible nitric oxide
synthase. Journal of immunology. 2000; 164(5):2629–34.

48. Konishi E, Nakao M. Naturally occurring immunoglobulin M antibodies: enhancement of phagocytic
and microbicidal activities of human neutrophils against Toxoplasma gondii. Parasitology. 1992; 104
(Pt 3):427–32. PMID: 1641242

49. Fuhrman SA, Joiner KA. Toxoplasma gondii: mechanism of resistance to complement-mediated killing.
Journal of immunology. 1989; 142(3):940–7.

50. Schreiber RD, Feldman HA. Identification of the activator system for antibody to Toxoplasma as the
classical complement pathway. The Journal of infectious diseases. 1980; 141(3):366–9. PMID:
7365285

51. Vercammen M, Scorza T, El Bouhdidi A, Van Beeck K, Carlier Y, Dubremetz JF, et al. Opsonization of
Toxoplasma gondii tachyzoites with nonspecific immunoglobulins promotes their phagocytosis by mac-
rophages and inhibits their proliferation in nonphagocytic cells in tissue culture. Parasite Immunol.
1999; 21(11):555–63. PMID: 10583856

52. Gazzinelli RT, Wysocka M, Hieny S, Scharton-Kersten T, Cheever A, Kuhn R, et al. In the absence of
endogenous IL-10, mice acutely infected with Toxoplasma gondii succumb to a lethal immune
response dependent on CD4+ T cells and accompanied by overproduction of IL-12, IFN-gamma and
TNF-alpha. Journal of immunology. 1996; 157(2):798–805.

53. Sher A, Denkers EY, Gazzinelli RT. Induction and regulation of host cell-mediated immunity by Toxo-
plasma gondii. Ciba Foundation symposium. 1995; 195:95–104; discussion -9. PMID: 8724832

54. Suzuki Y, Orellana MA, Schreiber RD, Remington JS. Interferon-gamma: the major mediator of resis-
tance against Toxoplasma gondii. Science. 1988; 240(4851):516–8. PMID: 3128869

55. Scharton-Kersten TM,Wynn TA, Denkers EY, Bala S, Grunvald E, Hieny S, et al. In the absence of
endogenous IFN-gamma, mice develop unimpaired IL-12 responses to Toxoplasma gondii while failing
to control acute infection. Journal of immunology. 1996; 157(9):4045–54.

56. Khan IA, Matsuura T, Kasper LH. IL-10 mediates immunosuppression following primary infection with
Toxoplasma gondii in mice. Parasite Immunol. 1995; 17(4):185–95. PMID: 7624159

57. Neyer LE, Grunig G, Fort M, Remington JS, Rennick D, Hunter CA. Role of interleukin-10 in regulation
of T-cell-dependent and T-cell-independent mechanisms of resistance to Toxoplasma gondii. Infection
and immunity. 1997; 65(5):1675–82. PMID: 9125546

58. Mosmann TR, Moore KW. The role of IL-10 in crossregulation of TH1 and TH2 responses. Immunology
today. 1991; 12(3):A49–53. PMID: 1648926

59. Fiorentino DF, Zlotnik A, Mosmann TR, Howard M, O'Garra A. IL-10 inhibits cytokine production by acti-
vated macrophages. Journal of immunology. 1991; 147(11):3815–22.

Microneme Proteins Confers Protection against Toxoplasmosis

PLOS ONE | DOI:10.1371/journal.pone.0143087 November 17, 2015 17 / 18

http://www.ncbi.nlm.nih.gov/pubmed/16166092
http://www.ncbi.nlm.nih.gov/pubmed/15684324
http://dx.doi.org/10.1007/s00436-013-3458-4
http://www.ncbi.nlm.nih.gov/pubmed/23749087
http://dx.doi.org/10.1016/j.vaccine.2013.05.040
http://www.ncbi.nlm.nih.gov/pubmed/23707448
http://dx.doi.org/10.1007/s00436-010-1742-0
http://www.ncbi.nlm.nih.gov/pubmed/20177910
http://dx.doi.org/10.1016/j.vetpar.2009.06.012
http://www.ncbi.nlm.nih.gov/pubmed/19592172
http://www.ncbi.nlm.nih.gov/pubmed/9767056
http://dx.doi.org/10.1007/s00281-012-0339-3
http://www.ncbi.nlm.nih.gov/pubmed/22955326
http://www.ncbi.nlm.nih.gov/pubmed/11748181
http://www.ncbi.nlm.nih.gov/pubmed/1641242
http://www.ncbi.nlm.nih.gov/pubmed/7365285
http://www.ncbi.nlm.nih.gov/pubmed/10583856
http://www.ncbi.nlm.nih.gov/pubmed/8724832
http://www.ncbi.nlm.nih.gov/pubmed/3128869
http://www.ncbi.nlm.nih.gov/pubmed/7624159
http://www.ncbi.nlm.nih.gov/pubmed/9125546
http://www.ncbi.nlm.nih.gov/pubmed/1648926


60. Suzuki Y, Sher A, Yap G, Park D, Neyer LE, Liesenfeld O, et al. IL-10 is required for prevention of
necrosis in the small intestine and mortality in both genetically resistant BALB/c and susceptible
C57BL/6 mice following peroral infection with Toxoplasma gondii. Journal of immunology. 2000; 164
(10):5375–82.

61. McLeod R, Eisenhauer P, Mack D, Brown C, Filice G, Spitalny G. Immune responses associated with
early survival after peroral infection with Toxoplasma gondii. Journal of immunology. 1989; 142
(9):3247–55.

Microneme Proteins Confers Protection against Toxoplasmosis

PLOS ONE | DOI:10.1371/journal.pone.0143087 November 17, 2015 18 / 18


