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Abstract
We propose an approach to detection of essential genes/proteins required for cancer cell

survival. A gene is considered essential if a mutation with high impact upon the function of

encoded protein causes death of the cancer cell. We draw an analogy between essential

cancer proteins and well-known AbrahamWald’s work on estimating the plane critical areas

using data on survivability of aircraft encountering enemy fire. Wald reasoned that parts

with no bullet holes on the airplanes returned to the airbase from a combat flight are the

most crucial ones for the airplane functioning: a hit in one of these parts downs an airplane,

so it does not return back for the survey. We have envisaged that the airplane surface is a

cancer genome and the bullets are somatic mutations with high impact upon protein func-

tion. Similarly we propose that genes specifically essential for tumor cell survival should

carry less high-impact mutations in cancer cells compared to polymorphisms found in nor-

mal cells. We used data on mutations from the Cancer Genome Atlas and polymorphisms

found in healthy humans (from 1000 Genomes Project) to predict 91 protein-coding genes

essential for melanoma. These genes were selected according to several criteria, including

negative selection, expression in melanocytes and decrease in the proportion of high-

impact mutations in cancer compared with normal cells. The Gene Ontology analysis

revealed enrichment of essential proteins related to membrane and cell periphery. We

speculate that this could be a sign of immune system-driven negative selection of cancer

neo-antigens. Another finding is the overrepresentation of semaphorin receptors, which can

mediate distinctive signaling cascades and are involved in various aspects of tumor devel-

opment. Cytokine receptors CCR5 and CXCR1 were also identified as cancer essential pro-

teins and this is confirmed by other studies. Overall, our goal was to illustrate the idea of

detecting proteins whose sequence integrity and functioning is important for cancer cell sur-

vival. Hopefully, this prediction of essential cancer proteins may point to new targets for

anti-tumor therapies.
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Introduction
The recent progress in genome sequencing in the context of large cancer studies conferred a
new vision on tumor as a result of mutator phenotype [1]. Instead of earlier point of view that
cancer cell has mutations affecting only specific oncogenes or tumor suppressor genes it
became clear that its genome is literally filled up with various somatic abberations [2]. A cancer
cell clone’s survival and evolution strategy is to change its genome quickly using damage or
modulation of DNA repair systems [3]. Some mutations are the drivers of the cancer process
and occur in the cancer-related genes. However, most mutations occurring throughout the
whole genome are not relevant to the tumor progression and represent passenger mutations.
They do not help cancer cells to survive and may experience a negative selection [4].

In recent works where data from cancer genome sequencing were analyzed a pivotal atten-
tion is paid to identification of genes significantly mutated in cancer compared to the germline
genome. A statistical study made on thousands of samples has reported more than 200 poten-
tial cancer driver genes [5]. The acquisition of specific mutations in these genes is the driving
force of malignant transformation.

Our study represents an alternative approach to analysis of cancer genome data. The idea is
inspired by a well-known fact from the history of applied statistics, namely AbrahamWald's
aircraft problem [6]. Wald proposed to search for aircraft vulnerability zones by estimation of
the bullet-free patches on airplanes which returned to the airbase from a combat flight. Indeed,
it is the bullet-free areas on the machine surface are essential for the aircraft performance. If
bullets hit those areas, then the machines crashed and the data on aircraft vulnerability became
unobservable (Fig 1, left panel). So the bullet-free zones on the returned aircrafts were essential
for the plane functioning and hence needed more armor.

We have envisaged that the airplane surface is a cancer genome and bullets are somatic
mutations with high impact upon protein function. The sites with decreased number of such
variants may be essential for cancer survival since the cells with mutations in these sites die and
their genomes are not sequenced by cancer projects (Fig 1, right panel).

Expectedly, we were not alone in such way of thinking. In the beginning of cancer genomics,
it was suggested to search homozygous DNA deletions as immutable features of cancer cells
[7]. In his recent work, Polak et al. analyzed hypomutated sites in cancer genome and found
them in accessible regulatory DNA due to enhanced repair in these sites [8].

However, we focused not on the cancer genome, but rather on cancer proteome. We
searched for the hypomutation phenomenon from the viewpoint of protein functioning. Our
goal was to identify proteins that are depleted by functionally important amino acid changes in
cancer. These proteins are conserved and therefore are essential for cell survival during cancer
evolution. As a reference we used polymorphisms reported in 1000 Genomes Project [9]. In
fact, we have compared evolution of protein sequences during development of cancer with
such evolution during 200,000 years of development of humanity from its last bottleneck [10].
We believe that our approach is able to detect proteins whose sequence integrity and function-
ing is more important for cancer cells than for normal tissues. Hopefully, these predicted can-
cer-essential proteins may represent vulnerability zones for tumor cells and hence serve as new
targets for anti-cancer drugs.

Results and Discussion
The purpose of our analysis was to identify cancer proteins under negative selection i.e.
depleted with functionally important amino acid changes. These conserved proteins may be
essential for cell survival during cancer evolution and hence can be regarded as possible targets
for anticancer therapy (Fig 1).
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For our analysis we chose the melanoma somatic mutation dataset available from TCGA
website. Our approach is assumed to be more applicable to tumors triggered by point muta-
tions rather than by copy-number alterations [11], such as lung tumors or melanomas. Those
former cancers provide much more statistics on protein sequences to make the prediction
robust and melanoma is characterized by the highest somatic mutation frequency compared to
other cancers [12]. Also the melanoma dataset contained the highest number of variants com-
pared to other types of cancer, total 181,175 variants.

Defining a subset of skin melanoma proteins under negative selection
In order to find protein-coding genes experiencing negative selection during cancer evolution
we used dN/dS as an indicator of selective pressure [13]. The same logic was accepted by Ostrow
et al. [14] when they studied positive selection in cancer genomes.

We calculated dN/dS ratio for all human protein coding genes using SKCM data. Genes car-
rying less than 11 variants were excluded from the analysis in order to obtain more robust

Fig 1. Analogy between bullet-free plane critical areas and hypomutated proteins essential for cancer.Undamaged areas on the returned planes are
critical for the aircraft performance. Similarly we propose that proteins with reduced number of deleterious somatic mutations compared to germline are
essential for cancer cell survival.

doi:10.1371/journal.pone.0142819.g001
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estimates of dN/dS ratio. Gene was considered to be under negative selection if the correspond-
ing dN/dS value was smaller than the predefined threshold. In attempt to avoid the threshold
choice by an arbitrary decision we plotted genome-wide distribution of dN/dS values for three
cancer types with largest number of point mutations: two types of lung cancers and skin mela-
noma (Fig 2). As can be seen from the histograms, the local minima are observed at dN/dS
value of about 0.25. We used this threshold as a first filter to select essential cancer genes which
were supposed to be under negative selection.

Our next step was to remove genes which are not expressed in melanoma cells and hence
cannot be recognized as essential for this cancer. We calculated the average expression for each
gene across 374 cancer samples and removed genes with the expression levels in the lowest
20%.

Then we turned to the evaluation of genetic variants observed in SKCM and 1KG data. We
divided mutations into two classes: those with high impact on the protein function and other
non-significant mutations, including synonymous variations. The functional effect of non-syn-
onymous substitutions was predicted via dbNSFP database (see Methods). Indels, stop gains/
losses and splice sites variations were also classified as mutations with high functional impact.

Finally we selected genes which are depleted by functionally important variants in cancer as
compared to normal tissues, i.e. the genes where fraction of mutations with high functional
impact f for 1KG data was greater than the same fraction for cancer data, f1KG > fSKCM. After
all steps we obtained 91 protein-coding genes designated hereinafter as “essential cancer pro-
teins”, S1 Table.

Skin melanoma essential protein subset is significantly enriched by
plasma membrane proteins: a possible link to immune surveillance
By manual looking through the list, one could mark some distinct categories among those pro-
teins (Table 1). Most represented categories include membrane transport proteins, such as ion
channels and solute carriers, neural proteins of various functions, cell adhesion molecules, etc.
In order to describe the resulting list more formally we performed functional enrichment anal-
ysis using WebGestalt website [15].

The enrichment of 91 essential protein subset by Gene Ontology [16], KEGG [17] and
PharmGKB drug target [18] categories had shown a significant trend towards membrane pro-
teins, specifically, proteins of plasma membrane and cell periphery (Fig 3, S2 Table). Obviously,
such general categories cannot fully decipher possible molecular pathways or cell proliferation
mechanisms. However, there may be a mechanistic interpretation of the overrepresented
plasma membrane proteins. It is widely recognized that cancers escape from host immunity
through evolution of cancer clones [19]. We have hypothesized that one of the mechanisms

Fig 2. Genome-wide distribution of dN/dS ratio for three cancer types. Skin melanoma, uterine endometrial carcinoma and lung adenocarcinoma
contained most of the data on cancer mutations. Local minima are reached when dN/dS is approximately 0.25 (denoted by arrows). We considered proteins
with dN/dS below this threshold to experience negative selection.

doi:10.1371/journal.pone.0142819.g002
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leading to conservation of plasma membrane and cell periphery protein sequence in melanoma
could be a result of such immune escape. More specifically, high impact mutations in cell
periphery and plasma membrane proteins may lead to formation of major histocompatibility
complex (MHC) II-dependent neo-antigens [20]. MHC II-restricted protein epitopes reactive
to T-helper lymphocyte subpopulation, as widely known, are formed by digestion of phagocy-
tized extracellular proteins and cell periphery proteins accompanying internalized membrane
parts. The fact that such mutations are depleted in cell surface and periphery proteins reflects
escape of melanoma cells from CD4+-T-cell mediated immunity. Recently it has been reported
that adoptive immunity induced against a T-helper-1 (MHC II-restricted) neo-antigen epitope
provided tumor regression in a patient with metastatic cholangiocarcinoma [21]. Significant
response of CD4+-T-cells against personalized tumor neo-epitopes was also found in patients
with metastatic melanoma [22]. Thus, we may observe the enrichment by cell periphery pro-
teins in target subset as a result of purifying selection against formation of neo-antigen T-
helper epitopes. When a plasma membrane protein is extensively mutated in a cancer cell, it is
digested after vesicle internalization and its mutant peptides bind MHC II as neo-epitopes
which are not recognized by immune system as self-epitopes. Having such neo-epitopes
expressed, a cancer cell cannot avoid the immune surveillance and is eliminated (Fig 4). Nota-
bly, despite MHC II itself is expressed in limited cell types, such as professional antigen-pre-
senting cells, melanoma cells are reported to express various types of the receptor [23].

Immunoediting of the cancer genome against antigen formation as described recently [24]
is in a good correspondence with our hypothesis.

CCR5 and CXCR1 chemokine receptors as essential melanoma
proteins
One of the proteins in our subset is a C-C chemokine receptor type 5 (CCR5), the chemokine
receptor which was extensively studied due to its ability to provide HIV fusion with the target
cell. Moreover, a deletion of this protein known as CCR5-Δ32 protects its carrier against
selected strains of the virus [25]. Thus, in case of changed amino acid sequence of the receptor

Table 1. List of protein-coding genes with amino acid sequences under negative selection in skinmel-
anoma genomes (essential cancer proteins). Genes were filtered as described here. Categories were
defined by manual biocuration.

Category Gene names

Membrane transport ABCA3, CATSPER1, SLC12A8, SLC24A1, SLC26A7, SLC27A5,
SLC45A1, SLC5A6, SLC9A3, TMC7

Neuronal contacts,
synapses

CADPS2, EPB41L1, MRGPRX3, MRGPRX4, NRP2, PLXNA2, SEMA4F,
SEMA6C, THBS4, UNC5B

Cell contacts, adhesion CDH11, GJB4, GJB5, ITGB5, LRFN1, LRG1, PCDHB13, PCDHGA12,
PCDHGC5

Metabolic enzymes AKR1B1, ENGASE, GCNT3, INPP5B, NMNAT3, NNT, TGM5, UBIAD1

Proteases and peptidases ADAMTS15, BMP1, CAPN11, CAPN12, CASP10, PM20D1, TMPRSS9

Nucleic acid binding ADAR, ERCC6, NFATC2, ZNF195, ZNF493, ZNFX1

Receptor for cytokines and
hormones

CCR5, CXCR1, EDAR, MC2R, TNFRSF10A

Protein kinases DAPK2, MLKL, PTK2B

Cancer pathway related BCL2L12, MYCT1, RSPO1

Other CRISPLD2, CYP2J2, EPB41L4B, FGF5, GPR115, HBB, IPO13, LRRC15,
MIB2, MYH9, MYO18A, NVL, OR2C3, PDIA4, PDPR, PLD2, PVRL4,
RHPN2, SH3BP4, SMYD1, STEAP3, STK11IP, STOX1, TBC1D9B,
TMEM104, TMEM63B, TTC7A, UNC45A, VPS18, XPO6

doi:10.1371/journal.pone.0142819.t001
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it does not serve as a cofactor for the virus particle. Drugs blocking CCR5, e.g. maraviroc, are
considered as a therapy of choice for the treatment of HIV infection.

At the same time, a role of CCR5 in cancer has been widely discussed. It is known that this
receptor is often overexpressed in some cancer types [26]. CCR5 expression has been induced
after oncogenic transformation of cells [27]. Evidences are accumulating that this receptor’s
signaling through its ligand, CCL5, provides cancer progression, e.g. metastasis. CCR5 antago-
nist drugs have been shown to block metastasis of basal breast cancer [28] and Src-induced

Fig 3. Enrichment of the essential cancer protein subset by Gene Ontology, KEGG and PharmGKB drug target categories. P-values were adjusted
using Benjamini-Hochberg correction for multiple comparisons. Number of essential proteins falling into category is depicted within each bar.

doi:10.1371/journal.pone.0142819.g003
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prostate cancer [29] in mice. It was proposed to use well-tolerable CCR5 inhibitor drugs, which
are already approved for use in HIV infection, in clinical trials for metastatic cancers [28]. An
observational trial that studied the effect of maraviroc on metastatic colorectal cancer had been
completed, but no results have been reported yet [29].

As for melanoma, it was found that functional CCR5 is important for progression of this
tumor: CCR5−/− mice show reduced tumor volume and increased survival rate compared to
wildtype mice [30, 31]. Vivanco et al. also reported that melanoma growth and metastasis was
inhibited in CCR5−/− mutant mice [32]. The authors have proposed that CCR5/CCL5 signaling
negatively affects CD8 T-lymphocyte effects. Thus, melanoma cells expressing functional
CCR5 may thereby contribute to the immune escape.

The fact that C-C chemokine receptor type 5 is one of essential cancer proteins positively
illustrates applicability of our approach. This receptor is a druggable cancer target, at least, for
adjuvant therapy.

Another important cytokine receptor in our list is CXCR1. It binds interleukin-8 protein
(CXCL8) which is a major chemotaxis agent in innate immunity. Notably, CXCR1 and above-
mentioned CCR5 use the same signaling pathways and are closely related in their function
[33]. As for the latter, CXCR1 is known to be used by melanoma cells for outgrowth and metas-
tasis [34]. Recently, it was shown that elevated expression of this receptor is correlated with
tumor malignancy [35]. Most likely, CCR5 and CXCR1 are used by melanoma cells to survive
in inflammatory environment.

Fig 4. Hypothetical scheme for negative selection against neoantigens derived from cell surface proteins. Preferential involvement of surface
proteins to MHC-restricted antigen presentation is known in the art [20]. Cancer cells exposing MHC-II epitopes with mutated antigens are more likely to be
eliminated by T-cell mediated immune surveillance.

doi:10.1371/journal.pone.0142819.g004
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Semaphorin pathway is potentially important for melanoma survival
Another promising enrichment among the essential cancer proteins is related to the sema-
phorin receptor complex and axon guidance pathway (Fig 3, S2 Table). Semaphorins are
involved in cell guidance during development and in adult tissues [36]. These proteins were
recently shown to function as suppressing and promoting agents in various cancer types via
transactivation of receptor tyrosine kinases [37]. Notably, both types of semaphorin-binding
receptors, plexins and neuropilins, are represented in our list and may be involved in cancer
cell survival [38]. Plexin A2 (PLXNA2) protected cancer cells from death after human papillo-
mavirus infection [39]. For neuropilin-2 (NRP2), there is an evidence of its role in malignant
melanoma where its expression was correlated with tumor progression [40]. These results pro-
vide a background for further experimentation to discover cancer drug targets among sema-
phorin complex proteins [36].

Protein interactions between essential melanoma proteins
In order to understand how predicted essential melanoma proteins cooperate with each other,
we analyzed corresponding protein-protein interactions using STRING database [41]. We have
selected only high-confident interactions with score greater than 0.9. Interacting preys were
reported for 46 of 91 genes of interest (Table 2). Most of protein interactions are known for
cytokine receptors CCR5 (115 preys) and CXCR1 (77 preys), of them about 70 interactions
involve common partners. Another pair of interactors which are characterized by many com-
mon partners consists of caspase-10 (CASP10) and TRAIL-R1 death receptor (TNFRSF10A).

Table 2. Protein-protein interactions: the number of preys reported for essential melanoma proteins
as baits according to STRING database. Only highly reliable interactions with score greater than 0.9 were
considered.

Gene name(s) Number of interacting preys

CCR5 115

CXCR1 77

PLD2 45

NFATC2 44

INPP5B 36

PTK2B 35

CYP2J2 31

MC2R 27

ERCC6 26

ADAR 25

ITGB5 24

AKR1B1, CASP10, PLXNA2 15

CDH11, OR2C3 12

GCNT3, NMNAT3 11

TNFRSF10A 10

UNC5B 8

BMP1, HBB, MYH9 7

NRP2, SLC27A5 6

EPB41L1, FGF5, IPO13, SLC9A3 4

PVRL4, RSPO1, STEAP3, THBS4, VPS18 3

ABCA3, CATSPER1, NNT, PDIA4, STK11IP, UBIAD1 2

EDAR, MIB2, MLKL, MYCT1, MYO18A, UNC45A 1

doi:10.1371/journal.pone.0142819.t002
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The interaction map of proteins hypomutated in melanoma (Fig 5) can be easily subdivided
to several main networks. First, three G-coupled receptors CCR5, CXCR1 and MCR2 form a
triangle of many interactions. A role of these receptors in melanoma where they probably pro-
mote cancer cell survival and metastasis is partly described above.

The largest network component between integrin ITGB5, protein kinase PTK2B, sema-
phorin receptors (PLXNA2) and phospholipase D2 (PLD2) is defined by their interactions
with FYN protein. The latter is a well-known protein kinase from the Src family and is involved
in the series of cellular functions, such as T-cell immunity, axon guidance and is also consid-
ered as a potential proto-oncogene [42]. Little is known about its function in melanoma and
there is some evidence that Fyn cannot be a medication target in advanced melanoma. In par-
ticular, when it was inhibited by saracatinib drug along with other Src kinases, no benefit was
observed in advanced melanoma [43]. However, based on our data, more attention should be
paid to study of Fyn role in melanoma separately from other Src kinases, such as Src itself, Yes,
etc.

Unexpectedly, amongst hypomutated proteins, some partners of TP53 tumor suppressor
were found. They include, inter alia, physically interacting proteins, caspase-10 (CASP10) and
TRAIL-R1 death receptor (TNFRSF10A). In contrast to these results, components of TRAIL
apoptosis pathway are considered to have antitumor effect, when active [44]. This contradic-
tion awaits further deciphering.

Fig 5. Interaction map for essential melanoma proteins. The map was built using STRING database with high-confidence interaction score threshold 0.9.
Size of the octagon is proportional to the number of partners of corresponding protein. Line width reflects the number of common partners between two baits.
Doubled green lines denote known direct physical protein-protein interactions. Prey proteins interacting with three or more baits are shown as blue ovals:
FYN, TP53, ADCY2 and POMC.

doi:10.1371/journal.pone.0142819.g005
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Conclusions
The cancer genome concept developed over the past decade has literally revolutionized our
understanding of cancer molecular biology [45]. Results of cancer genome projects are espe-
cially promising for evidence-based and personalized medicine, disclosing driver genes which
provide tumor development and progression [5]. At the same time, not all driver proteins may
serve as targets for drug therapies. Many cancers are primarily caused by tumor suppressors
which are irreversibly inactivated by gene mutations. In these cases, drug therapy represents a
big challenge due to difficulties in complementation of the lost function [46]. Therefore, search
for new drug targets is the primary task of post-cancer-genome studies.

Positive selection regulates, at the level of corresponding genes, amino acid sequences of
driver cancer proteins during clone competition accompanying tumorigenesis. Necessity of
oncogenes and tumor suppressors to be mutated in most cancers inspires researchers to imple-
ment scoring systems to select hypermutated driver genes [5]. In contrast to these useful
efforts, instead we focused on proteins whose corresponding genes are hypomutated in tumor,
i.e. experience negative selection during cancer evolution. We believe that these proteins may
provide additional drug targets especially in the cases where cancer drivers represent suppres-
sors functionally destroyed by mutations.

With our approach aggregating evolutional dN/dS parameter as a measure of negative selec-
tion, gene expression and functional impact of amino acid changes, we have predicted 91 pro-
tein-coding genes to be essential in melanoma and found several significant enrichments. For
example, the list contained increased number of cell surface and cell periphery proteins. In our
opinion, it could be a sign of immune system-driven negative selection of cancer neo-antigens
[22]. Furthermore, some examples of hypomutated proteins represent known cancer-related
proteins, such as cytokine receptors CCR5 and CXCR1 [33].

It should be emphasized that the results of our research strongly depend on the available
sample size. The more mutation data is accumulated for protein, the more confidently we can
designate whether it is essential or not. Essential genes are characterized by low frequency of
high-impact mutations [47] which also may decrease the power of our approach. Hence for the
analysis we have chosen skin melanoma exome dataset [48], because this cancer is character-
ized by the highest level of point mutations. We understand that currently available amount of
data may be insufficient to identify all the essential proteins for this type of cancer.

Although our data is preliminary, this work is mostly intended to illustrate a general idea of
defining essential cancer-specific proteome. Results may become more reliable when the larger
number of individual cancer genomes will be accumulated. However, even in its present form
our list of predicted essential melanoma proteins provides a background for targeted experi-
mentation with tumor cell survival by blocking the protein candidates in vitro and in vivo.

Methods
Cancer mutation data were downloaded from the Synapse website [49], accession number
syn1729383. These data initially were obtained via The Cancer Genome Atlas [50] and were
reprocessed to filter out false positives and germline variants, details can be found in [51]. Skin
cutaneous melanoma dataset (SKCM) had the highest number of variants compared to other
datasets, total 181175 variants. Data on germline polymorphisms were downloaded from the
1000 Genomes (1KG) website [9] and annotated using ANNOVAR software [52]. Final table
contained 425069 variants located within the coding regions. Genes with less than 11 variants
either in SKCM or in 1KG data were removed from subsequent analysis.

For each human protein-coding gene the ratio of the rates of non-synonymous and synony-
mous substitutions (dN/dS) was calculated as in [14] using SKCM data on somatic mutations.
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Genes with dN/dS value greater than 0.25 (i.e. experiencing either neutral or positive selection)
were removed.

Gene expression data were obtained via the TCGA website and contained information
about 20531 genes expressed in 374 melanoma samples. The gene expression profiles that had
absolute expression levels in the lowest 20% of the dataset were removed.

Functional impact of non-synonymous single nucleotide variants in both SKCM and 1KG
data was assessed using dbNSFP resource [53]. This database compiles results from ten predic-
tion algorithms (including SIFT, Polyphen2 and MutationAssessor) into two ensemble scores,
MetaSVM and MetaLR. Larger value of score indicates that the variant is more likely to be
damaging. We considered variant to have high impact on protein functioning if either
MetaSVM or MetaLR value was greater than 70-th percentile of corresponding score. Somatic
mutation was also considered to have high functional impact if it belonged to one of the follow-
ing classes: insertion/deletion, stop loss, stop gain, or splice site mutation. For each gene we cal-
culated fraction of mutations with high functional impact f1KG and fSKCM as f = #(high func.
mutations) / #(total mutations)

Functional geneset enrichment analysis via hypergeometric test was performed using Web-
Gestalt software [15]. As a reference set we supplied list of 16172 genes with average SKCM
expression greater than 20-th percentile. Correction for multiple testing was done using Benja-
mini & Hochberg method.

A list of interactions for selected proteins was downloaded from the STRING database v. 9.1
[41] using the Python script. STRING collects various associations between proteins, such as
structural predictions, textmining, pathway analysis and experimental results from other web
resources, to form its aggregative score. High-confident interactions with the score greater than
0.9 were used for analysis. Network visualization and analysis was performed via Cytoscape
[54].

Supporting Information
S1 Table. List of protein-coding genes with amino acid sequences under negative selection
in skin melanoma genomes (“essential” cancer proteins). Column description: Gene, Entrez-
Gene: gene identifiers according to HGNC and NCBI Gene. Description: gene function
description. skcm.dnds: dN/dS ratio calculated using SKCM data on somatic mutations. quan-
tile.expression: percentile of gene expression (TCGA SKCM data). norm.neutral: number of
synonymous SNVs (1KG data). norm.high: number of mutations with high impact functional
impact (1KG data). skcm.neutral: number of synonymous SNVs (TCGA SKCM data). skcm.
high: number of mutations with high impact functional impact (TCGA SKCM data).
(TSV)

S2 Table. Enrichment of the essential cancer protein subset by Gene Ontology, KEGG and
PharmGKB drug target categories. P-values were adjusted using Benjamini-Hochberg correc-
tion for multiple comparisons.
(TSV)
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