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Abstract
Non-peptidic thrombin inhibitors (TIs; 177 compounds) with diverse groups at motifs P1

(such as oxyguanidine, amidinohydrazone, amidine, amidinopiperidine), P2 (such as cyano-

fluorophenylacetamide, 2-(2-chloro-6-fluorophenyl)acetamide), and P3 (such as pheny-

lethyl, arylsulfonate groups) were studied using molecular modeling to analyze their

interactions with S1, S2, and S3 subsites of the thrombin binding site. Firstly, a protocol com-

bining docking and three dimensional quantitative structure–activity relationship was per-

formed. We described the orientations and preferred active conformations of the studied

inhibitors, and derived a predictive CoMSIA model including steric, donor hydrogen bond,

and acceptor hydrogen bond fields. Secondly, the dynamic behaviors of some selected TIs

(compounds 26, 133, 147, 149, 162, and 177 in this manuscript) that contain different

molecular features and different activities were analyzed by creating the solvated models

and using molecular dynamics (MD) simulations. We used the conformational structures

derived from MD to accomplish binding free energetic calculations using MM-GBSA. With

this analysis, we theorized about the effect of van der Waals contacts, electrostatic interac-

tions and solvation in the potency of TIs. In general, the contents reported in this article help

to understand the physical and chemical characteristics of thrombin-inhibitor complexes.

Introduction
Thromboembolic diseases are among the principal causes of mortality in the world. Vein
thrombosis can progress to pulmonary embolism. These disorders, identified with the term
venous thromboembolism (VTE), affect several million people around the world [1]. VTE is
the third leading cause of cardiovascular-related death, after myocardial infarction and stroke
[2].

The central role of the serine protease thrombin in thrombosis and haemostasis makes it an
attractive target for antithrombotic therapy [3]. Thrombin catalyzes the conversion of soluble
fibrinogen to insoluble fibrin in the clotting cascade, and also acts on other substrates such as
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factor V, factor VIII, factor XI, and factor XIII. It is widely believed that an oral thrombin
inhibitor (TI) could provide a new standard of care in anticoagulation therapy.

The discovery of small molecule TIs is an important goal for anti-thrombotic therapy [4]. In
the last years, potent and selective inhibitors have been reported, such as pyridones, acet-
amides, oxyguanidines, aminopiperidines, amidines, and amidinohydrazones [5–13]. These
sets have shown that subtle structural differences in compounds (due to the presence of similar
scaffolds or the same scaffolds with different substituents) can lead to big differences in their
thrombin inhibitory activities.

The knowledge of the relevant structural features that positively influence the activity of TIs
is important for the design of potent compounds. Molecular modeling has demonstrated to be
a powerful support to investigate bioactive compounds and their structure-activity relationship
(SAR) with the main purpose of identifying the molecular features that contribute to a high
bioactivity. These methods have been applied for studying TIs. Several quantitative structure-
activity relationship (QSAR) models were reported using approaches such as classic QSAR
[14], CoMFA/CoMSIA [15,16], topological descriptors [17], and artificial neural networks
[18]. Other reports used docking and molecular dynamics (MD) simulations to study struc-
tural features of several TIs identified wit a high activity [19–21]. In general, these reports do
not include an analysis of the interactions between inhibitors and different subsites of the
thrombin binding site. An exception is the work of Nilsson et al. [22]. These authors designed a
set of compounds to bind to the S2 and S3 subsites with no interactions in S1, and developed a
classic QSAR model to study the chemical features that are important for the prediction of
their binding constants. Other exception is the work of Bhunia et al. [23], which used three
dimensional (3D) QSAR and MD simulations to profile structural determinants for the selec-
tivity of representative diverse classes of thrombin-selective inhibitors.

In the current work, we applied some of the popular molecular modeling methods to study
the interactions of TIs with S1, S2, and S3 subsites of the thrombin binding site. We studied the
orientations and SAR for 177 TIs by using a protocol that includes docking and the 3D-QSAR
method CoMSIA. Additionally, we analyzed the dynamical behavior for some selected com-
pounds (26, 133, 147, 149, 162, and 177) by using MD and free energy calculations. By means
of a comparison of the selected systems, we gained further insight into the role played by differ-
ent TI molecular constituents in the binding affinities due to interactions with different subsites
in the thrombin active site.

Materials and Methods

Data set
The primary structures and activities of 177 TIs were taken from the literature [5–13]. Inhibi-
tory activities were collected and transformed into log(103/Ki) values. Ki values are in nM and
represent the enzyme inhibition constants. TI structures are in Fig 1 and their biological activi-
ties used in this study are summarized in Table 1. The chemical structures were sketched using
the molecular editor of Maestro 9.0 software suite [24].

Docking
The use of docking has extended in the last decades because successful applications to research
in medicinal chemistry. Typically, docking programs are able to closely reproduce the binding
orientations of the inhibitors in complexes for which crystallographic data are available [25–
27]. Docking was performed using Glide [28], which is part of the Maestro 9.0 software suite
[24]. Protein coordinates were extracted from the crystal structure of the thrombin–inhibitor
complex with the code 1T4U in Protein Data Bank [6]; the protein structure was refined and
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completed using the Protein Wizard Preparation module also available in Maestro software. A
grid box of 30Å × 30Å × 30Å was centered on the center of mass of the inhibitor in this crystal
structure. The module LigPrep 2.4 [29] was used to assign ionization states, stereochemistries,
and ring conformations of the ligands. Docking parameters were used as in previous works
[30], Glide standard (SP) and extra-precision (XP) modes were used. The better docking poses
for each ligand were examined according to their relative total energy scores. Among docking
poses, the more energetically favorable conformation was selected by considering the total
energy value.

CoMSIA calculations
Compound structures and inhibitory activities as log(103/Ki) values were considered for CoM-
SIA calculations. The relative alignment of the compounds to set field calculations was inside
the binding site. For this, the 3D conformations previously obtained by docking simulations
were used. QSAR modeling was performed using the Sybyl 7.3 software of Tripos [31]. The
data set was divided into two sub data sets (143 and 34 compounds were in training and test
sets respectively) for external validation process. The molecules contained in the training set
were placed in a rectangular grid extended beyond 4 Å in each direction from the more external
coordinates of each molecule. The interaction energies between a hypothetical atom (a sp3

hybridized carbon atom with +1 charge) and all compounds were computed at the defined
points, using a volume-dependent lattice with 2.0 Å grid spacing. Then, partial least squares
(PLS) method was applied using standard Sybyl parameters, and considering an optimal num-
ber of components determined by optimization of leave-one-out (LOO) cross-validation Q2

value (using SAMPLS [32] sampling method). Similarity was expressed in terms of steric

Fig 1. Structures of TIs.

doi:10.1371/journal.pone.0142774.g001
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Table 1. Experimental and predicted thrombin inhibitory activities (log(103/Ki) (nM)) using CoMSIA-SDAmodel.

Compounds 1–23

compound R, R1, R2, Q Exp. Log(103/Ki) Calc. Log(103/Ki)

1 R = Me; R1 = 2-Cl phenyl; Q = CH2 2.68 2.12

2 R = Me; R1 = 2-CN phenyl; Q = CH2 2.00 1.56

3 R = Me; R1 = 2-OMe phenyl; Q = CH2 2.17 2.10

4 R = Me; R1 = 2-NH2 phenyl; Q = CH2 1.06 1.40

5a R = Me; R1 = 2-(MeSO2)Ph; Q = CH2 1.92 -

6 R = Me; R1 = 2-(PheSO2)Ph; Q = CH2 2.32 2.84

7 R = Me; R1 = 3-(MeSO2)Ph; Q = CH2 0.69 0.73

8 R = Me; R1 = 2,4-(MeSO2)2 Ph; Q = CH2 0.13 0.14

9 R = Me; R1 = 8-quinolinyl; Q = CH2 2.17 1.77

10 R = Me; R1 = 5-isoquinolinyl; Q = CH2 1.88 2.05

11 R = Me; R1 = 1,2,3,4-tetrahydro-8-quinolinyl; Q = CH2 1.51 1.37

12 R = Me; R1 = 1,1-dioxido-2,3-dihydro-1-benzothien-6-yl; Q = CH2 0.99 0.82

13 R = Me; R1 = 2-(MeSO2)Ph; Q = C(–C2H4–) 2.11 2.06

14 R = Me; R1 = 2-(MeSO2)Ph; Q = CHOH 0.86 0.71

15 R = Me; R1 = 2-(MeSO2)Ph; Q = CHF 0.94 0.83

16 R = Me; R1 = 2-(MeSO2)Ph; Q = CF2 0.44 0.68

17 R = Me; R1 = 2-(MeSO2)Ph; Q = C = CH2 1.49 1.20

18a R = Me; R1 = 2-(MeSO2)Ph; Q = bond -0.42 -

19 R = OMe; R1 = 2-(MeSO2)Ph; Q = CH2 1.46 1.49

20 R = Et; R1 = 2-(MeSO2)Ph; Q = CH2 1.53 1.91

21 R = Cl; R1 = 2-(MeSO2)Ph; Q = CH2 1.41 1.40

22 R = CH2OH; R1 = 2-(MeSO2)Ph; Q = C(–C2H4–) 0.40 0.43

23 R = F; R1 = 2-(MeSO2)Ph; Q = C(–C2H4–) 1.31 1.34

Compounds 24–77

compound R, R1, R2, Q Exp. Log(103/Ki) Calc. Log(103/Ki)

24 R = Cl; R1 = allyl; R2 = cyclopentyl; Q = CH2 1.68 1.55

25 R = Cl; R1 = Me; R2 = cyclohexyl; Q = CH2 1.48 1.62

26b,c R = Cl; R1 = Me; R2 = cyclopentyl; Q = CH2 0.43 1.46

27 R = Cl; R1 = Pr; R2 = cyclopentylmethyl; Q = CH2 1.42 1.66

28 R = Cl; R1 = Pr; R2 = cyclobutylmethyl; Q = CH2 1.80 1.87

29b R = Cl; R1 = Pr; R2 = cyclopropylmethyl; Q = CH2 1.64 1.57

30b R = Cl; R1 = 2-carboxyethyl; R2 = cyclopropylmethyl; Q = CH2 0.67 1.61

31 R = Cl; R1 = 3-methoxy-3-oxopropyl; R2 = cyclopropylmethyl; Q = CH2 1.42 1.79

32 R = Cl; R1 = 2-methoxyethyl; R2 = cyclopropylmethyl; Q = CH2 0.81 0.58

33a R = Cl; R1 = 2-(1-pyrrolidinyl)ethyl; R2 = cyclopropylmethyl; Q = CH2 0.69 -

34b R = Cl; R1 = 2-(4-morpholinyl)ethyl; R2 = cyclopropylmethyl; Q = CH2 0.80 1.45

35 R = Cl; R1 = 2-(2-pyridinyl)ethyl; R2 = cyclopropylmethyl; Q = CH2 1.23 1.13

36 R = Cl; R1 = 2-(3-pyridinyl)ethyl; R2 = cyclopropylmethyl; Q = CH2 1.33 1.37

37 R = Cl; R1 = 2-(4-pyridinyl)ethyl; R2 = cyclopropylmethyl; Q = CH2 1.28 1.33

38 R = Cl; R1 = allyl; R2 = 3-furylmethyl; Q = CH2 1.70 1.16

39 R = Cl; R1 = 3-furylmethyl; R2 = cyclopropylmethyl; Q = CH2 1.77 1.73

40 R = Cl; R1 = allyl; R2 = 2-thienylmethyl; Q = CH2 0.83 0.94

41 R = Cl; R1 = Et; R2 = 4-pyridinylmethyl; Q = CH2 -0.20 -0.34

42 R = Cl; R1 = Et; R2 = Bn; Q = CH2 1.04 1.68

43 R = Cl; R1, R2 = –(CH2)5–; Q = CH2 0.06 0.60

44 R = Cl; R1, R2 = –CH2-CH2-O-CH2-CH2–; Q = CH2 -0.88 -1.25

(Continued)
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Table 1. (Continued)

45 R = Cl; R1, R2 = –(CH2)6–; Q = CH2 0.33 0.73

46 R = Cl; R1, R2 = –CH2-CH2-CH(Bn)-CH2-CH2–; Q = CH2 -0.18 0.40

47 R = Cl; R1, R2 = –CH2-CH2-N(Ph)-CH2-CH2–; Q = CH2 -0.46 -0.36

48 R = Cl; R1, R2 = –CH2-CH2-N(2-pyridinyl)-CH2-CH2–; Q = CH2 0.19 0.23

49 R = Cl; R1, R2 = –CH2-C(–C4H4–)C-CH2-CH2–; Q = CH2 0.77 1.03

50 R = Me; R1 = allyl; R2 = cyclopentyl; Q = CH2 2.00 1.56

51b R = Me; R1 = Pr; R2 = cyclobutylmethyl; Q = CH2 1.77 1.74

52 R = Me; R1 = Et; R2 = cyclohexyl; Q = CH2 2.22 2.04

53 R = Me; R1 = 6-amino-6-oxohexyl; R2 = cyclohexyl; Q = CH2 2.10 1.86

54 R = Me; R1 = allyl; R2 = cyclohexyl; Q = CH2 2.05 1.97

55 R = Me; R1 = 3-ethoxy-3-oxopropyl; R2 = cyclopropylmethyl; Q = CH2 1.19 1.09

56b R = Me; R1 = Pr; R2 = 3-furylmethyl; Q = CH2 2.05 1.54

57b R = Me; R1 = Bu; R2 = 3-furylmethyl; Q = CH2 2.10 1.57

58 R = Me; R1 = iPn; R2 = 3-furylmethyl; Q = CH2 2.16 1.99

59 R = Me; R1 = cyclopropylmethyl; R2 = 3-furylmethyl; Q = CH2 1.96 1.63

60 R = Me; R1 = iPr; R2 = 3-furylmethyl; Q = CH2 1.17 1.43

61 R = Me; R1 = cyclobutyl; R2 = 3-furylmethyl; Q = CH2 1.66 1.81

62 R = Me; R1 = cyclohexylmethyl; R2 = 3-furylmethyl; Q = CH2 1.68 1.80

63 R = Me; R1 = 2-methoxyethyl; R2 = 3-furylmethyl; Q = CH2 1.55 1.50

64 R = Me; R1 = 3-amino-3-oxopropyl; R2 = 3-furylmethyl; Q = CH2 0.96 1.18

65 R = Me; R1 = 2-(ethylsulfanyl)ethyl; R2 = 3-furylmethyl; Q = CH2 2.22 2.01

66 R = Me; R1 = Pr; R2 = 3-thienylmethyl; Q = CH2 1.32 1.43

67 R = Me; R1 = Pr; R2 = 3-pyridinylmethyl; Q = CH2 1.28 1.94

68b R = Me; R1 = Pr; R2 = 4-F bencyl; Q = CH2 1.68 1.37

69 R = Me; R1 = cyclopropylmethyl; R2 = 4-pyridinylmethyl; Q = CH2 1.62 1.35

70 R = Me; R1 = Pr; R2 = 1,3-thiazol-2-ylmethyl; Q = CH2 0.71 0.52

71 R = Me; R1 = cyclopropylmethyl; R2 = 3-thienylmethyl; Q = CH2 1.51 1.37

72b R = Me; R1 = Pr; R2 = 2-pyridinylmethyl; Q = CH2 1.03 2.29

73 R = Me; R1 = cyclopropylmethyl; R2 = 3-pyridinylmethyl; Q = CH2 1.47 1.50

74 R = Me; R1 = Pr; R2 = 4-pyridinylmethyl; Q = CH2 1.14 1.00

75b R = Me; R1 = cyclopropylmethyl; R2 = 2-pyridinylmethyl; Q = CH2 1.07 1.27

76 R = Me; R1 = Pr; R2 = 3-furylmethyl; Q = C(–C2H4–) 2.40 2.52

77b R = Me; R1 = cyclopropylmethyl; R2 = 3-furylmethyl; Q = C(–C2H4–) 2.40 0.96

Compounds 78–94

compound R, R1, Q, Q1 Exp. Log(103/Ki) Calc. Log(103/Ki)

78 R = Me; R1 = (2-Cl phenyl)SO2; Q = CH2; Q1 = O 2.08 1.96

79 R = Me; R1 = (2.3-dichlorophenyl)SO2; Q = CH2; Q1 = O 2.03 2.19

80 R = Me; R1 = (2-OMe phenyl)SO2; Q = CH2; Q1 = O 1.96 1.73

81 R = Me; R1 = (2-OCF3 phenyl)SO2; Q = CH2; Q1 = O 1.96 1.74

82b R = Me; R1 = (3-Me phenyl)SO2; Q = CH2; Q1 = O 2.22 1.83

83 R = Me; R1 = (2-(MeSO2) phenyl)SO2; Q = CH2; Q1 = O 1.70 1.68

84 R = Me; R1 = (2-CN phenyl)SO2; Q = CH2; Q1 = O 2.04 2.02

85 R = Me; R1 = (2-CF3 phenyl)SO2; Q = CH2; Q1 = O 2.36 2.23

86b R = Me; R1 = (5-Cl thiophen-2-yl)SO2; Q = CH2; Q1 = O 2.04 1.19

87b R = Me; R1 = (naphthalen-1-yl)SO2; Q = CH2; Q1 = O 1.36 1.07

88 R = Me; R1 = (3-pyridinyl)SO2; Q = CH2; Q1 = O 1.44 1.71

89 R = Me; R1 = (quinolin-8-yl)SO2; Q = CH2; Q1 = O 2.33 1.86

90a R = Me; R1 = 2-CF3 bencyl; Q = CH2; Q1 = O 0.38 -

(Continued)
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Table 1. (Continued)

91 R = OMe; R1 = (2-Cl phenyl)SO2; Q = CH2; Q1 = CH2 0.00 -0.17

92b R = Me; R1 = (2-OMe phenyl)SO2; Q = bond; Q1 = O 0.00 1.20

93 R = Me; R1 = (2-OMe phenyl)SO2; Q = (CH2)2; Q1 = O -0.11 0.24

94b R = Me; R1 = (2-CN phenyl)SO2; Q = C(–C2H4–); Q1 = O 1.40 1.50

Compounds 95–114

compound R. R1 Exp. Log(103/Ki) Calc. Log(103/Ki)

95b R = Me; R1 = H 1.50 1.45

96 R = Me; R1 = 2-CF3 1.85 1.40

97 R = Me; R1 = 2-NO2 1.80 1.27

98 R = Me; R1 = 2-NH2 1.28 1.41

99 R = Me; R1 = 2- CO2Me 1.55 1.40

100 R = Me; R1 = 3-Cl 1.41 1.17

101b R = Me; R1 = 3-CF3 0.35 1.05

102 R = Me; R1 = 3-Me 1.44 1.34

103 R = Me; R1 = 3-NO2 0.94 0.95

104 R = Me; R1 = 3-NH2 1.50 1.40

105 R = Me; R1 = 2.3-diCl 1.66 1.14

106 R = Me; R1 = 4-NO2 0.49 0.91

107 R = Me; R1 = 4-NH2 0.40 0.45

108b R = Me; R1 = 2.3 -CH = CH-CH = CH- 1.46 1.11

109b R = H; R1 = 2-Cl 0.72 0.88

110 R = CO2Me; R1 = 2-Cl -0.57 -0.53

111 R = OMe; R1 = 2-Cl 1.36 1.58

112 R = Et; R1 = 2-Cl 1.41 1.48

113 R = CH2OH; R1 = 2-Cl 0.31 0.40

114 R = Cl; R1 = 2-Cl 1.52 1.05

Compounds 115–126

compound R Exp. Log(103/Ki) Calc. Log(103/Ki)

115 R = 3-amino-3-iminopropyl 0.34 0.73

116 R = 5-amino-5-iminopentyl 1.16 0.94

117 R = 4-[amino(imino)methyl]cyclohexyl -0.32 0.27

118b R = 4-[amino(imino)methyl]phenyl 0.96 0.54

119 R = 3-[amino(imino)methyl]phenyl 1.00 0.77

120 R = 1-ethanimidoyl-4-piperidinyl -0.11 0.85

121 R = [methyl(4-pyridinyl)amino]methyl 1.96 2.27

122b R = 1-[amino(imino)methyl]-4-piperidinyl 2.34 1.09

123b R = 1-[amino(imino)methyl]-3-piperidinyl 0.50 0.03

124 R = 3-{[amino(imino)methyl]amino}ethyl 1.48 1.23

125b R = 3-{[amino(imino)methyl]amino}propyl 1.89 1.45

126 R = 3-{[amino(imino)methyl]amino}butyl 0.59 0.41

Compounds 127–150

compound R. R1. R2 Exp. Log(103/Ki) Calc. Log(103/Ki)

127 R = phenyl; R1 = CN; R2 = 2-guanidinooxy-ethyl 2.64 3.10

128 R = pyridin-2-yl; R1 = CN; R2 = 2-guanidinooxy-ethyl 2.92 3.34

129 R = 3-methylpyridin-2-yl; R1 = CN; R2 = 2-guanidinooxy-ethyl 2.00 2.45

130 R = 4-methylpyridin-2-yl; R1 = CN; R2 = 2-guanidinooxy-ethyl 2.54 2.67

131 R = 5-methylpyridin-2-yl; R1 = CN; R2 = 2-guanidinooxy-ethyl 2.92 2.71

132 R = 6-methylpyridin-2-yl; R1 = CN; R2 = 2-guanidinooxy-ethyl 3.10 2.43

(Continued)
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Table 1. (Continued)

133c R = 5-Cl-pyridin-2-yl; R1 = CN; R2 = 2-guanidinooxy-ethyl 3.24 3.35

134 R = 8-quinolyl; R1 = CN; R2 = 2-guanidinooxy-ethyl 3.42 2.96

135 R = 3-Cl-phenyl; R1 = CN; R2 = 2-guanidinooxy-ethyl 2.77 2.73

136 R = 3-F-phenyl; R1 = CN; R2 = 2-guanidinooxy-ethyl 2.50 2.46

137b R = 3.4-diF-phenyl; R1 = CN; R2 = 2-guanidinooxy-ethyl 2.75 3.43

138 R = 2-SO2Me-phenyl; R1 = CN; R2 = 2-guanidinooxy-ethyl 3.19 2.94

139b R = 1-oxy-2-pyridyl; R1 = CN; R2 = 2-guanidinooxy-ethyl 2.89 3.29

140a R = 5-Cl-1-oxy-2-pyridyl; R1 = CN; R2 = 2-guanidinooxy-ethyl 3.18 -

141 R = pyridin-2-yl; R1 = CN; R2 = 2-methylguanidinooxy-ethyl 2.05 1.71

142 R = pyridin-2-yl; R1 = CN; R2 = (6-aminopyridin-3-yl)methyl 1.96 2.30

143 R = pyridin-2-yl; R1 = CN; R2 = (6-amino-2-methylpyridin-3-yl)methyl 3.11 2.87

144 R = pyridin-2-yl; R1 = CN; R2 = (3-fluoropyridin-2-yl)methyl 1.48 2.06

145 R = pyridin-2-yl; R1 = CN; R2 = (3-aminobenzo[d]isoxazol-6-yl)methyl 1.72 1.57

146 R = Ph; R1 = Cl; R2 = (6-NH2-2-Me-3-pyridyl)methyl 1.99 2.54

147c R = Ph; R1 = Cl; R2 = (6- NH2-2.4-dimethyl-3-pyridyl)methyl 2.48 2.45

148 R = 4-F-1-naphthyl; R1 = Cl; R2 = (6-NH2-2-Me-3-pyridyl)methyl 2.55 2.54

149c R = 5-Cl-2-pyridyl; R1 = Cl; R2 = (6-NH2-2-Me-3-pyridyl)methyl 3.16 2.69

150 R = 5-Cl-1-oxy-2-pyridyl; R1 = Cl; R2 = (6-NH2-2-Me-3-pyridyl)methyl 3.05 2.89

Compounds 151–163

compound R Exp. Log(103/Ki) Calc. Log(103/Ki)

151b R = 2.2-difluoro-2-phenylethyl 1.33 1.61

152 R = 2.2-difluoro-2-(pyridin-3-yl)ethyl 1.47 1.33

153 R = 2.2-difluoro-2-(quinolin-8-yl)ethyl 2.57 2.48

154 R = 2.2-difluoro-2-(isoquinolin-5-yl)ethyl 2.33 2.88

155b R = phenylsulfonyl -0.11 0.19

156 R = 2-methyl-2-(pyridin-2-yl)propyl 1.24 1.55

157 R = 2-methyl-2-(pyridin-3-yl)propyl 0.89 0.42

158b R = 2.2-difluoro-2-(1-fluoronaphthalen-4-yl)ethyl 2.51 2.87

159 R = 2.2-difluoro-2-(pyridin-2-yl)ethyl 2.07 2.07

160 R = 2.2-difluoro-2-(quinolin-3-yl)ethyl 0.77 1.02

161 R = 2-(5-chloropyridin-2-yl)-2.2-difluoroethyl 2.75 2.55

162b,c R = (1-(pyridin-2-yl)cyclopropyl)methyl 1.24 0.95

163b R = (1-(pyridin-3-yl)cyclopropyl)methyl 0.85 1.53

Compounds 164–177

compound R. R1. R2 Exp. Log(103/Ki) Calc. Log(103/Ki)

164 R = 2.2-difluoro-2-phenylethyl; R1 = CN; R2 = H 2.64 2.16

165 R = 2.2-difluoro-2-phenylethyl; R1 = Me; R2 = H 2.89 2.31

166 R = 2-(4-fluorophenyl)ethyl; R1 = Me; R2 = H 1.89 1.84

167 R = 2-(3.4-difluorophenyl)ethyl; R1 = Me; R2 = H 1.33 1.55

168 R = 2-(2.4-difluorophenyl)ethyl; R1 = Me; R2 = H 1.82 1.88

169 R = 2-(4-trifluoromethylphenyl)ethyl; R1 = Me; R2 = H 1.33 1.82

170b R = 2-(4-methoxyphenyl)ethyl; R1 = Me; R2 = H 1.96 1.63

171 R = 2-(3.4-dimethoxyphenyl)ethyl; R1 = Me; R2 = H 0.92 1.56

172b R = 2-(4-ethylphenyl)ethyl; R1 = Me; R2 = H 1.18 1.23

173 R = 2-(5-indanyl)ethyl; R1 = Me; R2 = H 1.36 1.64

174 R = 2-(1-naphthyl)ethyl; R1 = Me; R2 = H 1.92 1.76

175b R = 2.2-diphenylethyl; R1 = Me; R2 = H 2.17 1.67

176 R = 2.2-difluoro-2-phenylethyl; R1 = Cl; R2 = H 2.77 2.25

(Continued)
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occupancy, electrostatic interactions, local hydrophobicity, hydrogen bond (HB) donor, and
HB acceptor properties, using a 0.3 attenuation factor in all CoMSIA applications.

Molecular dynamics and MM-GBSA calculations
Complexes of the compounds 26, 133, 147, 149, 162, and 177 inside thrombin active site were
studied by MD simulations. All simulations were performed using the NAMD software pack-
age [33]. The initial coordinates for the MD calculations were taken from the docking experi-
ments. To mimic the aqueous environment, an equilibrated water box with sides of 100 Å,
centered on the mass center of each inhibitor, was used to solvate the thrombin-ligand system.
Protein and inhibitors were described using the optimized potential for liquid simulations
CHARMM force field [34] and the CGenFF force field [35], respectively. In turn, the water
molecules belonging to the solvent box were described using the flexible TIP3P potential
[36,37].

Energy minimization was performed on the models using conjugate gradient method
(20.000 steps) to reduce any close contacts. Afterwards, the system was further equilibrated
during 2.0 ns. The production run consisted of an MD simulation of 5.0 ns. In all cases, we
applied a constraint to the backbone amino acids, we used the NPT ensemble at 300 K, we set a
time step of 1 fs to solve the equations of motion, and we set a switched cutoff distance of
9.0 Å.

The free energy calculations were accomplished using the MM-GBSA method [38]. This
method combines molecular mechanics energy and implicit solvation models at a reasonable
computational cost, leading to outstanding results in several biological systems in recent years
[39–41]. We applied this method to 500 snapshots extracted from the 5.0 ns production MD
trajectories (explicit TIP3P water molecules and ions were removed for this).

Protein–ligand binding free energy using MM-GBSA was calculated as the difference
between the energy of the bound complex and the energy of the unbound protein and inhibitor
compound. The method allows for free energy decomposition into contributions originating
from different types of physico-chemical interactions. Specifically, the energy is calculated for
the protein–ligand complex, the ligand, and the protein, and their energies were computed
using the CHARMM force field with the generalized Born implicit solvent model, in order to
calculate the averaged binding free energy (ΔG) according to the following equation:

DGbinding ¼ DEMM þ DGsolv � TDS ð1Þ

where ΔEMM includes ΔEinternal (bond, angle, and dihedral energies), ΔEelect (electrostatic), and
ΔEvdw (van der Waals) energies; ΔGsolv is the electrostatic solvation energy (polar and non-
polar contributions). The polar contribution is calculated using the Generalized Born (GB)
model, while the non-polar energy is estimated using the solvent accessible surface area
(SASA). The conformational entropy change ‒TΔS can be computed by normal-mode analysis
on a set of conformational snapshots taken from MD simulations, but many authors have
been reported that the lack of the evaluation of the entropy is not critical for calculating the

Table 1. (Continued)

177c R = 2-(4-methylphenyl)ethyl; R1 = Me; R2 = Me 1.43 1.53

a QSAR outliers.
b test set compounds.
c compounds selected for MM-GBSA calculations

doi:10.1371/journal.pone.0142774.t001
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MM-GBSA (or MM-PBSA) free energies for similar systems [38,42,43]. In this work
MM-GBSA calculations were also achieved in NAMD software [33]; the entropy term ‒TΔS
was not calculated to reduce computational time.

Results and Discussion

Docking results
First, we applied docking methodology in order to reproduce the crystal structures of throm-
bin-ligand complexes for compounds 13, 24, 128, 151, and 165 (accession codes in PDB:
1T4U, 1T4V, 3C27, 2R2M, and 3LDX respectively). This initial test was used to assess the qual-
ity of the docking method to reproduce known structures. In Fig 2 is shown that the docked
structures fitted in an acceptable way with available inhibitor X-ray crystal structures; all the
inhibitors were adequately oriented. The values of the root mean square deviation (RMSD) for
the docked structures with respect to the co-crystal inhibitor structures considering all heavy
atoms were< 2.0 Å in almost all the cases analyzed. Considering that 2.0 Å is the threshold
value that differentiates between correct and incorrect docking solutions [44], we can state that
Glide found the correct binding mode of the ligands in four of the five cases analyzed. Despite
compound 13 had the RMSD value above 2.0 Å, it had the expected orientation in the throm-
bin binding site. The high RMSD value for compound 13 was due to a small displacement of
P2 group, and a different orientation of the P3 group of the docked conformation with respect
to the conformation in the crystallographic structure.

The remaining compounds were docked following the same docking protocol. The analysis
of the docking poses obtained for all 177 ligands shows that all compounds adopt the same
binding mode (Fig 3; mol2 files are in S1 File). This similar binding mode was expected since

Fig 2. Alignment of inhibitor docked structures on inhibitor X-ray reference structures, for the TI complexes. (A) Compound 13 (PDB: 1T4U); (B)
compound 24 (PDB: 1T4V); (C) compound 128 (PDB: 3C27), (D) compound 151 (PDB: 2R2M); (E) compound 165 (PDB: 3LDX). Crystal structures are
represented in yellow, and docking results are represented in purple. Docking accuracy is reported by means of RMSD values.

doi:10.1371/journal.pone.0142774.g002
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Fig 3. Alignment of all docked structures within the thrombin binding site (docked ligands are in green stick representation in A-E). (A) Full view of
the binding site. (B) Subsite S1, residues of the VSWGEGCmotif are represented with white spheres, DACEmotif is represented as an orange loop, Ser195
is represented with yellow sticks. (C) Subsite S1, residues of the DACEmotif are represented with orange spheres, VSWGEGCmotif is represented as a
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all compounds contain groups with suitable features to occupy S1, S2, and S3 subsites of the
thrombin binding site.

The S1 subsite is a large cavity bounded in one part by the residues contained in the
sequence VSWGEGC (Val213-Ser214-Trp215-Gly216-Glu217-Gly218-Cys219). The back-
bone atoms of these residues and the side chain atoms of Val213 form a semicircle controlling
the shape of the S1 subsite (Fig 3B). The other part of the S1 subsite is bounded by the residues
contained in the sequence DACE (Asp189-Ala190-Cys191-Glu192), where Asp189 contributes
with a negative charge, Cys191 forms a disulfide bond with Cys219 from the VSWGEGC
motif, and the residues Ala190, Cys191, and Glu192 contribute with their backbone atoms (Fig
3C). The hydroxyl of the residue Ser195 and the CH2 of Gly226 also face the subsite S1. In gen-
eral, all compounds kept the electrostatic interactions between a HB donor group in P1 and the
side chain carboxylate of Asp189. The backbone carbonyle groups of Gly218 and Ala190 are
close to the site where interactions with Asp189 are formed; therefore they contribute with neg-
ative density to attract the P1 group (according to crystal structures previously reported,
Gly218 can form HB with the P1 group). The S1 subsite can bound linear or cyclic groups that
can adopt several conformations. The residue Ser195 (serine from the catalytic triad) has the
side chain hydroxyl facing the entrance of S1; polar groups in this zone can interact with this
residue (for instance, NH group in compounds 128, 151, and 165).

The S2 subsite is delimited on one side by the residues Tyr61 and Trp64 from the YPPW
insertion loop, and the His57 from the catalytic triad. On the other side S2 is delimited by the
residues Trp215 and Gly216 from the motif VSWGEGC (Fig 3D). The S2 subsite was occupied
by central aromatic group in all the docked compounds. The residues His57, Tyr61, and Trp64
form a small hole that is occupied by short substituents such as CH3, CN, or halogens. When
bigger substituents (for instance OCH3 in the low active compound 91) are present, the ligand
central aromatic ring changes its orientation to place the bulky substituent out of the hole. The
residue Trp215 exposes Cα and Cβ (CH and CH2 groups) to the S2 subsite; therefore it contrib-
utes to establish hydrophobic interactions in the portal between S2 and S1. Finally, the residue
Gly216 exposes backbone CO and NH groups, and several TIs form HBs with them (for
instance, the highly active compounds 164‒177 that contain the 3-aminopyrazin-2(1H)-one
scaffold form HB with both Gly258 backbone groups).

The S3 subsite is an ample pocket exposed to the solvent bounded in one part by the residues
contained in the sequence WRENL (Trp95-Arg96-Glu97-Asn98-Leu99). The backbone atoms
of these residues and the side chain atoms of Leu99 form a wall where three CO groups
(from Trp95, Arg96, and Glu97) are facing the S3 subsite (Fig 3E and 3F). Very close to this
wall, the side chain hydroxyl group of Tyr61 faces to the S3 subsite. The other part of the S3
subsite is delimited by the hydrophobic chemical groups of the side chains of the residues
Ile174, Trp215, and Glu217. Interestingly, S3 subsite has a hydrophilic wall (backbone CO
groups of Trp95, Arg96, and Glu97, and side chain hydroxyl group of Tyr61) and a hydropho-
bic wall (side chains of the residues Leu99, Ile174, Trp215, and Glu217). Docking results show
that the S3 subsite tolerates the presence of different aromatic groups. Very hydrophobic P3
groups were located close to the hydrophobic wall and groups with some polarity were located
close to the hydrophilic wall. Very large P3 groups were also oriented towards the hydrophobic
wall because a bigger available space in this area. For compounds that have a P1 moiety with

white loop, Ser195 is represented with yellow sticks. (D) Subsite S2, residues His57, Tyr61, and Trp64 are represented with violet spheres, and residues
Trp215 and Gly216 from the VSWGEGCmotif are represented with white spheres. (E, F) Subsite S3, residues of theWRENLmotif are represented with
brown spheres, residues Trp215 and Glu217 from the VSWGEGCmotif are represented with white spheres, and Ile174 is represented with yellow spheres.
In f several compounds that have a P1 moiety with two branches are represented: compounds with two hydrophobic branches are represented with green
sticks, and compounds with one of the branches containing a polar group are represented with pink sticks.

doi:10.1371/journal.pone.0142774.g003
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two branches (compounds 24‒77) we found that branches are distributed according to polar-
ity. If the two branches are hydrophobic, both groups are located close to the hydrophobic face
(compounds in green in Fig 3E), but if one of the branches contains a polar group, it is located
close to the hydrophilic face and the other branch is located close to the hydrophobic face
(compounds in pink colour in Fig 3E).

CoMSIA results
CoMSIA models were carried out to provide information about the structural features affecting
the thrombin inhibitory activity of the compounds under study. The use of conformations
aligned using the binding site (obtained by docking) allows identifying the relevant pharmaco-
phoric features required to best match in the binding site [45]. In this sense, the best model
reported below accounts for the desired features that characterize the most potent TIs.

Firstly, the CoMSIA models were developed by including one field, and then, these fields
were combined and the statistical quality of hybrid models was analyzed by considering Q2 val-
ues [46]. According to this analysis, we detected that compounds 5, 18, 33, 90, and 140 pre-
sented large residuals in all models; in this sense, they were excluded as outliers. Outliers are
those compounds that have unexpected biological activities and are unable to fit in a QSAR
model [47].

The list of CoMSIA models using different fields, without considering outlier compounds, is
presented in Table 2. All the combinations were tested but only the more relevant ones are
reported in Table 2 (models including one field, models including two fields with Q2 > 0.2,

Table 2. Stepwise development of CoMSIAmodels by using SAMPLS and different field combinations.

Fraction of fields included in the model

NC R2 s F Q2 sCV Steric Electrostatic Hydrophobic HB donor HB acceptor

CoMSIA-S 4 0.577 0.576 45.30 0.182 0.800 1

CoMSIA-E 4 0.582 0.572 46.37 0.219 0.782 1

CoMSIA-H 3 0.598 0.559 66.38 0.277 0.749 1

CoMSIA-D 7 0.499 0.634 18.50 0.261 0.769 1

CoMSIA-A 7 0.695 0.494 42.32 0.304 0.747 1

CoMSIA-SE 5 0.716 0.473 66.63 0.259 0.764 0.252 0.748

CoMSIA-SH 3 0.635 0.533 77.63 0.295 0.740 0.250 0.750

CoMSIA-SD 8 0.743 0.455 46.73 0.291 0.756 0.356 0.644

CoMSIA-SA 7 0.814 0.386 81.33 0.508 0.628 0.288 0.712

CoMSIA-EH 2 0.486 0.634 62.20 0.319 0.725 0.568 0.432

CoMSIA-ED 5 0.658 0.520 50.72 0.276 0.756 0.600 0.400

CoMSIA-EA 7 0.825 0.375 87.33 0.410 0.687 0.519 0.481

CoMSIA-HD 3 0.600 0.558 66.99 0.322 0.726 0.543 0.457

CoMSIA-HA 6 0.806 0.393 90.43 0.328 0.731 0.447 0.553

CoMSIA-SHD 5 0.741 0.452 75.63 0.345 0.719 0.168 0.448 0.384

CoMSIA-SHA 6 0.825 0.373 102.82 0.395 0.693 0.155 0.355 0.490

CoMSIA-SDA 8 0.871 0.322 109.20 0.543 0.610 0.186 0.350 0.464

CoMSIA-SHDA 7 0.865 0.329 118.66 0.424 0.679 0.117 0.270 0.273 0.340

CoMSIA-ALL 7 0.878 0.312 133.87 0.439 0.670 0.085 0.262 0.198 0.201 0.254

NC is the number of components from PLS analysis; R2 is the square of the correlation coefficient; S is the standard deviation of the regression; F is the

Fischer ratio; Q2 and Scv are the correlation coefficient and standard deviation of the leave-one-out (LOO) cross-validation, respectively. The best model is

indicated in boldface.

doi:10.1371/journal.pone.0142774.t002
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models including three or more fields with Q2 > 0.3. The internal predictability of the models
was the criterion that was used to select the best QSAR model. We observed that CoMSIA
models using one field were statistically unacceptable (Q2 < 0.5). The analysis of the hybrid
models yielded the model CoMSIA-SDA with the best Q2 value of 0.543. This model combines
steric, HB donor, and HB acceptor fields. We included other fields and we observed that it does
not produce an improvement in the internal validation of the model CoMSIA-SDA, since
models including more fields had lower Q2 values (Table 2). The model CoMSIA-SDA was
derived by using eight components and showed contributions of the steric field of 18.6%, HB
donor field of 35.0%, and the HB acceptor field of 46.4%. In addition, it explains 87.1% of the
variance, has a low standard deviation (s = 0.322), and a high Fischer ratio (F = 109.20). The
predictions of log(103/Ki) values for the 138 TIs from the training set using model CoM-
SIA-SDA are shown in Table 1. The correlation between the calculated and experimental val-
ues of log(103/Ki) (from training and LOO cross-validation) is shown in Fig 4. Plots of the
LOO cross-validation predictions reveal that the proposed model is able to discriminate
between the most active and the less active compounds. Considering that the CoMSIA
approach was applied to a big dataset, we consider that the value of Q2 = 0.543 reflects that
there is no redundancy in the training set since each member of the training set is important
for the model [48].

We also used model CoMSIA-SDA to predict the TI inhibitory activities of the test set com-
pounds. The values are given in Table 1 and correlation between the calculated and experimen-
tal values are also represented in Fig 4. This analysis reveals that the proposed model also
predicted adequately all the compounds in the test set.

The contour plots of the CoMSIA steric, HB donor, and HB acceptor fields are presented in
Fig 5 for the best model CoMSIA-SDA. To aid in visualization, compound 134 is displayed in
the maps with a superposition of the contour plots on active-site residues. The representation
of contour plots and the thrombin active site in the same 3D space helps in delineating the rela-
tionship between the relevant chemical properties of the more active compounds and the
chemical groups of the residues in the active site.

The colored isopleths in the map represent the 3D space where the structural properties
changes are related to the changes in thrombin inhibitory potency. Green and yellow isopleths
in Fig 5A indicate regions where bulky groups increase and decrease the inhibitory activity,
respectively. A large region of yellow contour at S1 subsite suggests that bulky groups are not
desired in this zone. This feature indicates that linear groups should be prioritized rather than
branched groups in S1. Other yellow isopleths at S3 subsite near the residues Ile174 and Tyr61
and green isopleths near the residues Glu217 and Leu99 indicate that bulky groups extended to
the more hydrophilic part of S3 decrease the inhibitory activity, but groups extended to the
hydrophobic part of S3 increase the inhibitory activity. The predictions of chemical features of
substituents in S3 according to the analysis of steric fields included in CoMSIA-SDA model are
difficult since it is difficult to foresee their occupation and interactions in this wide cavity.

Cyan and purple isopleths in Fig 5B are in regions where HB donor groups favor and disfa-
vor the activity, respectively. On the other hand, in Fig 5C magenta isopleths indicate regions
where HB acceptors enhance the activity, and red isopleths indicate regions where HB accep-
tors decrease the activity. Interestingly, all the cyan and purple isopleths are located at S1 sub-
site. The cyan and purple isopleths near Asp189, Gly218, Gly226, and Tyr228 represent 3D
spaces that the model identified that are affected by the presence of HB donor groups in the
deeper region of S1. The purple isopleth near Ser214, the red isopleth near Gly216, and the
magenta isopleth near Cys191 and Glu192 indicate that the entrance to S1 is affected by the
presence of HB donor and acceptor groups. Two red isopleths in S3 indicate that HB acceptor
groups are not necessary in this zone. The first one is located near Asn98 and the other is
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exposed to solvent between Glu217 and Trp64. The magenta isopleth in S2 near His57 indicates
that HB acceptor groups such as CN are desired in this zone.

Free energy calculations results
Compounds 26, 133, 147, 149, 162, and 177 were selected as a sample for deriving free energy
calculations using MM-GBSA method. The study includes a previous conformational sampling
using MD simulations to consider averaged properties and to get more realistic conditions. Sta-
bility of the MD trajectories using the RMSD of the positions for all the protein atoms as a

Fig 4. Scatter plot of the experimental activities versus predicted activities for model CoMFA-SDA: (●) training set predictions (○) LOO cross-
validated predictions (red▲) test set predictions.

doi:10.1371/journal.pone.0142774.g004
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Fig 5. CoMSIA contour maps for TIs deriving frommodel CoMSIA-SDA. The amino acid residues
located close to the binding pocket of thrombin are represented for comparing their position with the position
of isopleths derived from the model. Compound 134 is shown inside the field. (A) Steric field: green isopleths
indicate regions where bulky groups enhance the activity and yellow isopleths indicate regions where bulky
groups disfavor the activity. (B). HB donor field: cyan isopleths indicate regions where HB donors favor the
activity, and purple isopleths indicate regions where HB donors disfavor the activity. (C) HB acceptor fields:
magenta isopleths indicate regions where HB acceptors enhance the activity, and red isopleths indicate
regions where HB acceptors decrease the activity.

doi:10.1371/journal.pone.0142774.g005
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function of simulation time was evaluated; RMSD was almost constant after the equilibration
process (2.0 ns) for all the systems (Fig 6).

The above mentioned compounds were selected from data set having in mind the differ-
ences in their activities against thrombin and their differences in the substitution and structural
characteristics of the groups located at S1, S2 and S3. In this sense, MM-GBSA paradigm
allowed finding the role of physico-chemical terms in the binding potency when different
groups located at S1, S2, and S3 are changed. Guanidinooxy groups as substituent of N-ethylace-
tamide or n-propanol, and 2-amino-6-methylpyridin-5-yl groups were considered in S1.
Methyl, Cl, F, CN, and oxo groups were considered in the aromatic ring in S2. 2,2-Difluoro-
2-arylethyl, (1-arylcyclopropyl)methyl, arylethyl, cyclopentyl groups were considered as chem-
ical features in S3.

MD allows analyzing the effect of the water media, the movement of the ligand inside the
binding site, the movement of the residues in the binding site, and the stability of HBs. In gen-
eral, from the analysis of all the simulations, it is possible to identify different water characteris-
tics in the pockets S1, S2, and S3. There are many water molecules in S3 which is the more
exposed site to the water media, most of these molecules move freely and the other ones have
occasional interactions with polar groups forming HBs. On the other hand, there are no water
molecules in S2 during MD simulations. Finally, there are some water molecules at S1 trapped
in HB networks formed between the ligands and the enzyme; these water molecules have a very
limited movement. Interestingly, it is easy to differentiate S1, S2, and S3 pockets according to
the distinct water dynamical behavior, and this is highly related to the TI characteristics in
each pocket disclosed by docking analysis. The dynamic of the studied ligands using MD simu-
lations revealed that groups at S1 form stable HB interactions, groups at S2 are anchored in a
hydrophobic cage, and groups at S3 have a free movement.

The MM-GBSA free energy calculations were employed to get quantitative estimates for the
binding free energies of the inhibitors inside the thrombin active site. We found a high correla-
tion (R2 = 0.751, Fig 7) between calculated ΔG values and the experimental ones (the experi-
mental values were expressed as ΔΔG values with respect to the most active selected compound
133). However, only six compounds were considered; due to reduced data, we cannot conclude
that MM-GBSA was able to explain the trend of the modeled TIs, but we can analyze the free
energy components such as van der Waals (VDW), electrostatic, and solvation contributions
to give detailed molecular information about the selected systems. The purpose is to evaluate

Fig 6. Time dependence of the RMSD for protein atoms from starting structures during equilibration process.RMSD for the studied systems are
represented in colors indicated at the right.

doi:10.1371/journal.pone.0142774.g006
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the role of the physico-chemical features when different substituents are presented. The results
of the predicted ΔG values and the physico-chemical components ΔEvdw, ΔEelect, and ΔGsolv for
the complexes were summarized in Table 3. To get a better view on which energy terms have
more impact on the inhibitory potency, these individual energy components were compared.
From Table 3, it can be seen that ΔEvdw has the major favorable contribution to the total free
energy, but there is no big difference among this value for different complexes. In this sense,
the VDW energy term is not primarily responsible for differentiating the binding affinity of the
selected TIs. However, some of the most negative ΔEvdw values were obtained for the most

Fig 7. Correlation between experimental ΔΔG (calculated from Ki values of compounds) and calculatedΔG values using MM-GBSA. Experimental
ΔGwas calculated from Ki values of compounds, and ΔΔGwas calculated using ΔG of compound 133 as reference.

doi:10.1371/journal.pone.0142774.g007
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active compounds 133 and 149. The solvation term also has the same effect in most of the com-
plexes with a favorable contribution to the global free energy. Strangely, this term is positive for
the most active compound 133. On the contrary, the electrostatic term was only favorable for
compound 133, and the worst contribution of this term was for the less active compound 26.

The analysis of the MM-GBSA terms indicates that not any physico-chemical property has
a preponderant role in the potency of TIs. It is expected that this behavior could be maintained
if we consider the remaining compounds considering the complexity of the thrombin binding
site in S1, S2, and S3 pockets. We previously observed that these pockets have very different
characteristics; therefore, each of them could be modulated considering different physico-
chemical features. However, the binding affinity can be the result of the combination of the
particular effect of these features in each pocket.

Conclusions
In this work, we report a theoretical study on drug design area for thrombin inhibitors (TIs).
We selected a data set of 177 compounds with diverse groups at motifs P1, P2, and P3, and
explored the 3D positioning of them inside the thrombin active site pockets S1, S2, and S3 by
docking experiments. Our approach reproduced the previously reported position of com-
pounds 13, 24, 128, 151, and 165 inside thrombin’s active site. The remaining compounds
were oriented in a similar manner. The interactions established for all compounds within
thrombin binding site were carefully described.

Additionally, predictive QSAR models were built by using CoMSIA method. We found that
CoMSIA-SDA including 138 compounds in the training set was the best among the explored
models. This model included steric, HB donor, and HB acceptor fields. It was validated by
LOO cross-validation and then it was used in the prediction of an external set which contains
34 compounds that were not included during the training process. The CoMSIA model could
be used to predict novel candidates; moreover, the interpretation of the CoMSIA fields makes
it possible to draw conclusions concerning the most appropriate features for novel analogues.

Finally, six compounds were selected and were subjected to MD and free energy calculations
using MM-GBSA method. The dynamical behavior of the systems were revealed by MD; it was
interesting to note that water molecules have completely different dynamical behavior in pock-
ets S1, S2, and S3, which is related to the desired characteristics of motifs P1, P2, and P3 of TIs.
The free energy calculations using MM-GBSA allowed studying the role of physico-chemical
parameters such as van der Waals interactions, electrostatic interactions, and solvation. It was
found that not any component was preponderant in the study of the differential potency of
inhibitors.

Table 3. Predicted MM-GBSA free energies (kcal/mol) and individual energy terms of the thrombin-inhibitor complexes for selected compounds.

compound ΔGcalc ΔGvdw ΔGelect ΔGsolv ΔΔGexp
a

26 -28.06 ± 0.10 -47.05 ± 0.10 24.65 ± 0.08 -5.65 ± 0.28 3.86

133 -62.74 ± 0.20 -51.38 ± 0.19 -15.33 ± 0.19 3.97 ± 0.32 0.00

147 -41.58 ± 0.13 -46.91 ± 0.13 10.80 ± 0.14 -5.47 ± 0.41 1.05

149 -45.05 ± 0.14 -59.34 ± 0.11 19.91 ± 0.14 -5.63 ± 0.39 0.12

162 -41.90 ± 0.22 -40.90 ± 0.23 4.58 ± 0.25 -5.58 ± 0.69 2.74

177 -35.74 ± 0.22 -52.54 ± 0.14 23.02 ± 0.26 -6.22 ± 0.62 2.49

a Experimental ΔΔG was calculated using ΔG of compound 133 as reference.

doi:10.1371/journal.pone.0142774.t003
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