
RESEARCH ARTICLE

miRLocator: Machine Learning-Based
Prediction of Mature MicroRNAs within Plant
Pre-miRNA Sequences
Haibo Cui1*, Jingjing Zhai2, Chuang Ma2,3*

1 School of Computer Science and Information Engineering, Hubei University, Wuhan, 430070, China,
2 Center of Bioinformatics, College of Life Science, Northwest A&F University, Yangling, 712100, China,
3 Biomass Energy Center for Arid and Semi-Arid Lands, Northwest A&F University, Yangling, Shaanxi,
712100, China

* child@hubu.edu.cn (HC); cma@nwafu.edu.cn (CM)

Abstract
MicroRNAs (miRNAs) are a class of short, non-coding RNA that play regulatory roles in a

wide variety of biological processes, such as plant growth and abiotic stress responses.

Although several computational tools have been developed to identify primary miRNAs and

precursor miRNAs (pre-miRNAs), very few provide the functionality of locating mature miR-

NAs within plant pre-miRNAs. This manuscript introduces a novel algorithm for predicting

miRNAs named miRLocator, which isbased on machine learning techniques and sequence

and structural features extracted from miRNA:miRNA* duplexes. To address the class

imbalance problem (few real miRNAs and a large number of pseudo miRNAs), the predic-

tion models in miRLocator were optimized by considering critical (and often ignored) factors

that can markedly affect the prediction accuracy of mature miRNAs, including the machine

learning algorithm and the ratio between training positive and negative samples. Ten-fold

cross-validation on 5854 experimentally validated miRNAs from 19 plant species showed

that miRLocator performed better than the state-of-art miRNA predictor miRdup in locating

mature miRNAs within plant pre-miRNAs. miRLocator will aid researchers interested in dis-

covering miRNAs from model and non-model plant species.

Introduction
MicroRNAs (miRNAs) are small (~22 nucleotides), non-coding RNA molecules with impor-
tant regulatory roles in gene expression. In plants, mature miRNAs are mostly generated from
the cleavage of hairpin-structured miRNA precursors (pre-miRNAs) derived from long pri-
mary transcripts (pri-miRNAs)[1]. MiRNAs target a large number of protein-coding genes
and are involved in various biological processes, including plant development, growth, abiotic
stress responses and pathogen responses[2–4].The genome-wide identification of miRNAs is
critical for obtaining a better understanding of the complex post-transcriptional regulation
mechanisms involved in these biological processes. Next-generation sequencing (NGS)
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technologies have the ability to discover miRNAs in a high-throughput manner. However, this
type of experimental method remains time-consuming because it requires the identification of
expressed miRNAs from millions of sequencing reads and has a limited ability to detect miR-
NAs that exhibit low, linkage,stress, developmental and/or cell-specific expression[5]. There-
fore, experimental technologies must be complemented with computational approaches to
identify miRNAs at the genome scale, regardless of the availability of NGS sequencing data
[5,6].

A number of computational approaches called miRNA predictors have been developed over
the past few years, but most of these actually predict pri-miRNAs and/or pre-miRNAs [7]. The
prediction of mature miRNAs involves determination of the location of mature miRNAs
within pre-miRNA sequences. The existing computational approaches for miRNA prediction
can be broadly separated into two categories: rule-based approaches[8,9] and machine learning
(ML)-based approaches[5,6,9–13].

The rule-based approaches identify mature miRNAs based on several criteria determined
through an analysis of known miRNAs, such as at most four unpaired nucleotides in putative
miRNA duplexes and at least 70% sequence similarity with known miRNAs. This approach
has inherent limitations for the identification of novel miRNAs with characteristics that differ
from those of known miRNAs.

ML is a branch of artificial intelligence that applies various mathematical algorithms to
improve the performance of prediction systems for the discovery of knowledge from novel
datasets. ML was recently applied to the identification of mature miRNAs through the integra-
tion of thousands of sequence and structural properties extracted from miRNA sequences and/
or miRNA duplexes. Notable ML-based miRNA predictors include miRdup[5], miRdu-
plexSVM[6], miRAlign[9], MatureBayes[10], MaturePred[13] and ProMiR[14]. Although the
application of ML technologies has resulted in a marked improvement in the miRNA predic-
tion accuracy relative to that obtained with rule-based approaches, several problems in ML-
based miRNA prediction remain unsolved.

First, the majority of these ML-based miRNA predictors were designed to identify animal
miRNAs[9,10,12,14]. Therefore, only a few of these approaches can predict plant miRNAs
[5,6,13], because the sequence and structural features of miRNA duplexes differ between ani-
mals and plants [1,5]. Second, all of these ML-based miRNA predictors (except miRdup) were
developed based on a limited number of reference miRNAs compiled by their authors. More-
over, these predictors are no longer updated (re-trained) even when more experimentally vali-
dated miRNAs become available. In this study, we demonstrated that a larger sample size
could provide a more accurate location of mature miRNAs within pre-miRNAs. Finally, the
problem of class imbalance (a few positive samples [real miRNAs] and a large number of nega-
tive samples [miRNA-like segments]) were usually ignored in the prediction of mature miR-
NAs. It is unclear how the ratio between positive and negative samples (RPNS) affects the
performance of ML-based miRNA predictors. Additionally, it is not known which RPNS is
more suitable for unbalanced data.

In this manuscript, we present an ML-based system named miRLocator forthe computa-
tional prediction of mature miRNAs within plant pre-miRNAs. miRLocator was constructed
based on 440 sequence and structural features extracted from miRNA duplexes. We explored
the effect of class imbalance on the prediction performance of miRNA predictors and opti-
mized the prediction models in miRLocator with an appropriate machine learning algorithm
(random forest) and RPNS(1:5). A ten-fold cross-validation evaluation using 5854 experimen-
tally validated miRNAs from 19 plant species demonstrated that the prediction performance of
miRLocator was comparable to or better than that achieved with the state-of-art miRNA pre-
dictor miRdup. miRLocator was implemented in Python and provides functions for ML-based
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training and prediction processes using user-specified datasets. miRLocator is available at
https://github.com/cma2015/miRLocator.

Materials and Methods

Flowchart for the Training and Testing of ML-Based miRNA Predictors
The general process for the training and testing of ML-based miRNA predictors is shown in
Fig 1.

Fig 1. Training (A) and testing (B) procedures for ML-basedmiRNA prediction.

doi:10.1371/journal.pone.0142753.g001
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The training procedure involves the following steps (Fig 1A):

1. Obtain a set of experimentally validated miRNAs and their corresponding pre-miRNA
sequences.

2. Fold the secondary structure of each pre-miRNA sequence using the RNAfold program in
the ViennaRNA package (http://www.tbi.univie.ac.at/RNA; Version 2.1.8).

3. Generate positive and negative sample sets to train the ML-based miRNA predictors. miR-
Locator predicts mature miRNAs based on features extracted from miRNA duplexes.
Therefore, the positive sample set should consist of miRNA duplexes derived from experi-
mentally validated miRNAs. To avoid redundant information, only one miRNA duplex
should be included in the positive sample set if both the 5' and 3' strands of the miRNA
duplex are functional. The negative samples should consist of pseudo miRNA duplexes
derived from segments randomly selected from pre-miRNA hairpins. In this study, the ran-
domly selected segments were limited to the same sequence length as that of the experimen-
tally validated miRNAs within the same pre-miRNAs. The ratio between positive and
negative samples can be designated to obtain optimized prediction models.

4. Encode positive and negative samples with sequence and structural properties extracted
from miRNA duplexes. The importance of each feature in distinguishing positive and nega-
tive samples can be measured through the random forest (RF)-based feature ranking algo-
rithm (Gini importance) using the scikit-learn Python package (http://scikit-learn.org). The
RF-based Gini importance calculates the mean decreases in impurity at each node of the
trees obtained after the removal of the feature of interest from the feature matrix[15].

5. Build miRNA predictors using different ML algorithms and feature sets and evaluate the
performance of miRNA predictors through the widely used 10-fold cross-validation algo-
rithm. The best miRNA predictor can then be selected based on the experimental results
from the 10-fold cross-validation.

The testing process was iteratively performed for each pre-miRNA. As shown in Fig 1B, the
RNAfold algorithm was implemented first to obtain the secondary structure of the given pre-
miRNA. All of the possible miRNA duplexes were then generated to predict candidate miRNAs
ranging from 16nt to 30nt and scored using the trained miRNA predictor. A post-processing
approach was subsequently applied to select the most probable miRNA as the prediction.

Collection of Experimentally Validated miRNAs and Their
Corresponding Pre-miRNAs
The miRNA data used in this study were obtained from the miRBase database (http://www.
mirbase.org; Release 21), which is a collection of mature miRNAs and their corresponding pre-
miRNAs generated through experimental and computational approaches. A total of 7009
experimentally verified plant miRNAs and their pre-miRNA sequences were automatically
downloaded from the miRBase database using the miRdup software (http://www.cs.mcgill.ca/~
blanchem/mirdup; Version 1.4) with the command "java -jar miRdup.jar -k Viridiplantae". To
effectively evaluate the performance of miRNA predictors trained with miRNAs from individ-
ual species, we excluded 37 species annotated with less than 100 experimentally verified miR-
NAs. This filtration resulted in 5854 experimentally verified miRNAs generated from 4626
pre-miRNAs of 19 plant species (Fig 2 and S1 Table), including five monocotyledon plant spe-
cies (Brachypodiumdistachyon, Oryza sativa, Zea mays, Aegilopstauschii andTriticumaestivum)
and twelve dicotyledonous plant species within the Brassicaceae(Arabidopsis thaliana,
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Fig 2. Experimentally validated miRNAs obtained from themiRBase database. (A) Statistical results of pre-miRNAs carrying experimentally validated
miRNAs on their 5' and/or 3' arms. (B) Anatomy of the miRNA duplex in the pre-miRNA hairpin. "miRNA duplex (5p)" and "miRNA duplex (3p)" represent the
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Arabidopsis lyrata, and Brassica rapa), Fabaceae(Glycine max andMedicagotruncatula), Rosa-
ceae(Malusdomestica and Prunuspersica), Vitaceae (Vitisvinifera), Salicaceae(Populustricho-
carpa), Solanaceae(Nicotianatabacum and Solanumtuberosum) andMalvaceae
(Gossypiumraimondii) families. Functional miRNAs generated from both the 5' and 3' arms of
the pre-miRNAs were observed in almost all of the studied plant species with the exception of
M.domestica, N.tabacum and G. raimondii(Fig 2).

Feature Characterization of Mature miRNAs
Positive and negative samples were encoded with a numerical vector of length 440 that inclu-
dedthe sequence and structural properties of the miRNA duplexes and their combinations
(Table 1 and S2 Table).A total of 197sequence properties, including the miRNA sequence
length, the types of nucleotides surrounding the start and end of the "miRNA duplex (5p)" and

5' and 3' strands of the miRNA duplex, respectively. "Loop", "Helix" and "Bulge" are three common structural elements in the secondary structure of pre-
miRNAs.

doi:10.1371/journal.pone.0142753.g002

Table 1. Sequence and structural features used in miRLocator.

Type Feature
Number

Feature Description

miRNALen 1 miRNA length

MNC 4 Frequency of four nucleotides

DNC 16 Frequency of 16 dinucleotides

NT(5p) (5+1+5)*4*2 Type of nucleotides surrounding the start and end of the miRNA duplex
(5p) within the [-5,5] region. A, C, G and U are encoded as0001, 0010,
0100, and 1000, respectively.

NT(3p) (5+1+5)*4*2 Type of nucleotides surrounding the start and end of the miRNA duplex
(3p) within the [-5,5] region.

MFE 1 Minimum free energy (MFE) of the miRNA duplex

mlBulge 1 Maximal length of an miRNA without bulge in the miRNA duplex

bpNum 1 Number of base pairs in the miRNA duplex

dist2 Loop 1 Distance of the duplex to the terminal loop

dist2Helix 1 Distance of the duplex to the start of the helix

numLoop 1 Number of loops in the miRNA duplex

numBulges 1 Number of bulges in the miRNA duplex

perfectBP 3*2 Presence and start position of perfect base pairs with 5, 10, and 20nt

numBP_WinX 3 Average number of base pairs obtained by scanning the miRNA duplex
with a window of length Xnt (X = 4, 6, and 8)

Bulges 7*2 Presence of bulges in the area surrounding the start and end of the
miRNA within the [-3,3] region

posEntropy (5+1+5)*2 Entropy values of the areas surrounding the start and end of the miRNA
in the[-5,5] region

monoSSq 4*3+1 Number of different combinations of four nucleotides (A,C,G, and U) and
three structure symbols (‘(‘, ‘)’, and ‘.’). One additional feature was added
for undefined combinations. ‘(‘, ‘)’, and ‘.’ represent paired, paired, and
unpaired nucleotides in the secondary structure of the pre-miRNA,
respectively.

diSS 16*9+1 Number of different combinations of 16 dinucleotides and nine di-structure
symbols. One additional feature was added for undefined combinations.

triplets 32+1 Number of 32 combinations of mononucleotide and triplets of structure
symbols. One additional feature was added for undefined combinations.

doi:10.1371/journal.pone.0142753.t001
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"miRNA duplex (3p)", and the mono- and di-nucleotide compositions in the miRNA sequence,
were analyzed. In addition, 30 structural properties, including the number of base pairs, loops
and bulges in the miRNA duplex and the minimum free energy (MFE) of the miRNA duplex,
were selected based on previous studies related to miRNA prediction [5]. We also introduced
22 structural features related to the positional entropy of the RNA secondary structure. Posi-
tional entropy can be used to quantify the ‘cleavage specificity’ of each position in an RNA frag-
ment [16] and was defined using the following formula:

HðiÞ ¼ log2ð�
X

j
ðpi;jlogpi;j þ ð1� pi;jÞlogð1� pi;jÞÞÞ; ð1Þ

where 1� i< j� n, n is the pre-miRNA sequence length and pij represents the probability of
base pairing between i and j. H(i) ranged from 0 (pij = 1 for some j) to log2(n) (pij = 1/n for
each j).

The remaining 191 features consisted of different combinations of the sequence and struc-
tural properties extracted from the miRNA duplexes (‘monoSSq’, ‘diSS’, and ‘triplets’). For
example, ‘A(‘ in the ‘monoSSq’ list represents an A nucleotide base-paired in the miRNA
duplex, ‘AU(.’ in the ‘diSS’ list indicates a paired A nucleotide with a neighboring unpaired U
nucleotide in the miRNA duplex, and ‘A(.)’in the ‘triplets’ list represents an unpaired A with
two paired neighboring nucleotides in the miRNA duplex.

Machine Learning Algorithms
Many ML algorithms have been developed to construct binary classifiers in the fields of bioin-
formatics and computational biology [17].In this study, we focused on five widely used ML
algorithms: random forest (RF), support vector machine (SVM), naïve Bayesian network (NB),
decision tree (DT) and k-nearest neighbors (kNN). The RF algorithm involves an ensemble of
decision trees grown based a randomly selected subset of samples and features[18]. SVMmaps
input data into a high-dimensional feature space with a linear or non-linear kernel function
(i.e., radial basis function [RBF]) and formulates the classification problem to find the optimal
hyper-plane with the minimal expected classification error for the test samples [14]. The opti-
mal hyper-plane can be determined with the penalty parameter C and various kernel function
parameters, such as gamma (γ) for the RBF kernel. The NB is another supervised ML algorithm
based on the application of Bayes' theorem, which assumes that the likelihood of the features is
Gaussian. The kNN is a type of instance-based ML algorithm that classified a sample based on
the majority of the k-nearest neighbors. All of these ML algorithms were implemented with
functions in the "scikit" library written in the Python programming language.

Cross-Validation Algorithm
Cross-validation is a commonly used approach to evaluate the binary prediction performance
of ML systems. For the ten-fold cross-validation algorithm, positive and negative samples are
randomly divided into ten subsets of approximately equal sizes. For each round of cross-valida-
tion, nine of these ten subsets are selected to form the training datasets used to train the ML
systems, and the tenth subset is used as the testing dataset to evaluate the prediction perfor-
mance of the trained ML system throughreceiver operating characteristic (ROC) curve analy-
sis. The ROC curve reflects the variability of the true positive rate (sensitivity) against the false
positive rate (1-specificity) at all possible thresholds. The value of the area under the curve
(AUC) can range from 0 to 1, with a higher AUC value indicating that the classifier has a
higher discriminative capability to differentiate positive samples from negative samples. After
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all of the subsets are used as the testing dataset, the mean value of the ten AUCs is considered
the final performance of ML systems.

Post-Processing of Prediction Scores to Locate Mature miRNAs within
Pre-miRNAs
Because the location and length of the mature miRNAs are unseen by the miRNA predictors
during the testing procedure, all of the possible miRNA duplexes with candidate miRNAs rang-
ing from 16nt to 30nt were generated for each tested pre-miRNA sequence and scored using
the trained miRNA predictor. We applied a post-processing approach to determine the length
and location of the predicted miRNAs by considering the score of all of the candidate miRNAs.
For a given position p on the pre-miRNA hairpin, the summed prediction score was calculated
as

SðpÞ ¼
X

16�L�30
scoreðp; LÞ: ð2Þ

The start position of the predicted miRNA(ppred) was identified as the position at which S(p)
reaches the maximal value. The length of the predicted miRNA was determined as the length
that yields the maximal value of score(ppred, L). miRLocator outputs the predicted miRNA and
its corresponding passenger strand for the tested pre-miRNA sequence.

The accuracy of different ML prediction systems in predicting mature miRNAs within pre-
miRNAs was evaluated by comparing the start and end positions of the predicted miRNAs
with those of the true miRNAs[5].The cumulative frequency of the correctly predicted miRNAs
was calculated at different resolutions d(0� d� 10nt). In this manuscript, the resolution d
represents the start (end) of the predicted miRNAs located within d nucleotides of the true
start (end) position.

Results and Discussion

Performance Evaluation of miRNA Predictors Constructed with Different
ML Algorithms
In the binary classification case, appropriate ML algorithms are required to address the sample
imbalance problem. Following the training procedure shown in Fig 1A, we evaluated the per-
formance of different ML algorithms for the classification of real and pseudo miRNA duplexes.
First, we generated a positive sample set consisting of 4505 miRNA duplexes supported with
experimentally validated miRNAs and a negative sample set consisting of approximately
4505�N (N = 1, 5, 10 and 50) pseudo miRNA duplexes derived from randomly selected seg-
ments within the pre-miRNA hairpins. We then encoded each sample with 440 numeric fea-
tures (Table 1 and S2 Table) and performed ten-fold cross-validation and ROC analyses to
evaluate the performance of the miRNA predictors constructed with five ML algorithms(RF,
SVM, NB, kNN and DT).

At an RPNS of 1:1, the AUC (area under the ROC curve) values for RF, SVM, NB, kNN and
DT were 0.917, 0.897, 0.724, 0.853 and 0.759, respectively (Table 2, Fig 3A). Comparable AUC
values were obtained for each of the tested ML algorithm at RPNS values of 1:5, 1:10 and 1:50
(Table 2). These results indicate that the performance of the different ML algorithms in classi-
fying positive and negative samples is only slightly affected by the RPNS. This finding was
likely mainly obtained because the length of the pseudo miRNAs in the negative sample set
were limited that of the real miRNAs within the same pre-miRNA sequences.

The contribution of each feature to the classification of positive and negative samples was
measured using the RF-based Gini importance algorithm (see Materials and Methods section).
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At an RPNS of1:1, the top five features were in the order bpNum>

numBP_Win4> numBP_Win6> BulgeAtEnd_u1> numBP_Win8 (Table 3 and S2 Table).
The importance of these features was also demonstrated by the differences in their distribu-
tions among the positive and negative samples (Fig 3C–3E and S1 Fig). The analysis of the
bpNum feature revealed that more than 83% of the positive samples contained at least 18 base
pairs in the duplexes, whereas this proportion was lower than 40% in the negative sample set
(Fig 3C). For the numBP_Win4feature, 94.6% of the positive samples had a score of at least 3,
whereas the corresponding proportion in the negative sample set was only 58.4% (Fig 3D). The
evaluation of the BulgeAtEnd_u1feature showed that only 14.9% of the positive samples had a
bulge 1nt upstream of the miRNA end, whereas the respective proportion in the negative sam-
ple set was 38.6% (Fig 3E).Notably, our 22 introduced positional entropy-related features also
contributed to the identification of the miRNA duplexes, with eight of the features belonging
to the top50 features (S2 Table).

Feature ranking was repeated for different RPNSs. Some features, such as bpNum, mlBulge
and numbp_Win4,6, and 8, were ranked at the top with different RPNSs, whereas other fea-
tures, such as BulgeAtEnd_u1, Persent_10mer, and U), were ranked differently with different
RPNSs (Table 3 and S2 Table). Because the contributions of some features were significantly
affected by the RPNSs, we preferred to include all 440 features in the prediction of mature miR-
NAs. However, the top 100 informative features can be used to obtain effective predictions
usingRF and SVM (Fig 3B).

Overall, RF and SVM are two of the most powerful ML algorithms for the identification of
mature miRNAs. Considering the computational time required for optimizing parameters in
SVM, the RF algorithm and all 440 features were applied in miRLocator to construct the pre-
diction model formature miRNAs.

Performance Evaluation of miRNA Predictors in Predicting Mature
miRNAs within Plant Pre-miRNAs
We then evaluated the performance of miRLocator and previous miRNA predictors in locating
mature miRNAs within pre-miRNA sequences from plants. A given set of pre-miRNAs was
divided into ten subsets, nine of which were selected to constructpositive and negative sample
sets for trainingthe miRNA predictors, whereas the tenth subset was used to evaluate the per-
formance of the trained miRNA predictors. The prediction accuracy of the miRNA predictors
was calculated by comparing the start (end) positions of the predicted miRNAs with the start
(end) of the true miRNAs.

To ensure a fair comparison, different miRNA predictors should be trained with the same
training dataset and assessed with the same testing dataset. However, to the best of our knowl-
edge, only the recently published miRNA predictor miRdup provides functions to implement
the ML-based training and testing procedures using user-provided datasets. By combining line-
age-specific features with the RF algorithm, miRdup achieves a superior prediction accuracy

Table 2. AUC values of miRNA predictors constructed with different ML algorithms using different
RPNSs.

Ratio RF SVM NB kNN DT

1:1 0.917 0.897 0.724 0.853 0.759

1:5 0.930 0.888 0.725 0.861 0.752

1:10 0.938 0.878 0.723 0.851 0.738

1:50 0.938 0.876 0.727 0.848 0.728

doi:10.1371/journal.pone.0142753.t002
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relative to that obtained with other miRNA predictors, including MatureBayes, miRAlign,
MaturePred and ProMiR[5].

Fig 4 shows the cumulative frequency of the miRNA start and end positions that were cor-
rectly predicted by miRdup and miRLocator. At an RPNS of 1:1, miRLocator perfectly pre-
dicted (d = 0) the start and end positions for 25.5% and 25.0% of the true positions,
respectively. In contrast, miRdup made perfect predictions of start and end positions in 20.8%
and 14.7% of the cases, respectively. The prediction performance of miRLocator was superior
or comparable to that of miRdup at all of the other resolutions analyzed. There are two possible

Fig 3. Performance of ML-basedmiRNA predictors in classifying real and pseudomiRNA duplexes. (A)ROC curve displaying the performance of
different ML-based miRNA predictors in the ten-fold cross-validation experiment.(B) Performance of ML-basedmiRNA predictors obtained with different
numbers of features.(C) Distribution of the number of base pairs in the positive and negative sample sets.(D) Distribution of the average number of base pairs
in a 4-nt sliding window in the positive and negative sample sets.(E) Frequency of bulges 1nt upstream of the miRNA end in the positive and negative sample
sets.

doi:10.1371/journal.pone.0142753.g003
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reasons for this result. First, miRLocator characterized miRNAs with more sequence and struc-
tural features, some of which (21 positional entropy-related features) were applied for the first
time to the prediction of mature miRNAs. Second, miRLocator applied an improved post-pro-
cessing approach to locate mature miRNAs within the pre-miRNAs by considering the predic-
tion score of all possible miRNA duplexes. In contrast, miRdup focused on the possible
miRNA duplexes with prediction scores higher than 0.99, leading to the failure to accurately
locate the start and end positions of the mature miRNAs within a proportion of pre-miRNA
sequences [6].

Table 3. Feature importance scores evaluated with the RF-based Gini importance algorithm.

Features Description 1:1a 1:5 a 1:10 a 1:50 a

bpNum Number of base pairs in the duplex 0.020 [1] 0.012[3] 0.009[3] 0.006[11]

numbP_Win4 Average number of base pairs in a sliding window of 4nt 0.020[2] 0.015[1] 0.010[1] 0.006[4]

numBP_Win6 Average number of base pairs in a sliding window of 6nt 0.018[3] 0.013[2] 0.010[2] 0.006[6]

BulgeAtEnd_u1 Bulge located 1nt upstream of the miRNA end 0.016[4] 0.008[6] 0.006[14] 0.003[163]

numBP_Win8 Average number of base pairs in a sliding window of 8nt 0.014[5] 0.010 [5] 0.008[5] 0.005[16]

BulgeAtEnd_u2 Bulge located 2nt upstream of the miRNA end 0.012[6] 0.007[14] 0.005[31] 0.003[177]

BulgeAtEnd_u3 Bulge located 3nt upstream of the miRNA end 0.011[7] 0.006[19] 0.005[40] 0.003[111]

Persent_10mer Presence and start position of perfect base pairs in a length of 10nt 0.011[8] 0.008[7] 0.006[13] 0.003[103]

U) Paired U nucleotide in the miRNA duplex 0.010 [9 0.006[17] 0.005[25] 0.003 [113]

mlBulge Maximal miRNA length without a bulge in the duplex 0.009[10] 0.007 [12] 0.007[10] 0.005 [26]

aThe rank of each feature is presented in the bracket.

doi:10.1371/journal.pone.0142753.t003

Fig 4. Cumulative frequency of correctly predicted start (A) and end (B) positions of miRNAs at different resolutions. For a given resolution d (0�
d� 10 nt), the start (end) of the predicted miRNAs was regarded as true if it was located within dbp from the start (end) of the annotated miRNAs.

doi:10.1371/journal.pone.0142753.g004
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We further explored whether the performance of miRLocator could be affected by the
RPNS. As the RPNS was decreased from 1:1 to 1:5, the perfect prediction of the start positions
(d = 0) produced by miRLocator increased from 25.5% to 33.5%, and the perfect prediction of
the end positions obtained by miRLocator increased from 25.0% to 32.1% (Fig 4). The use of
more negative training samples slightly improved the performance of miRLocator (Fig 4).
These results demonstrate the importance of RPNS in the accurate prediction of mature miR-
NAs. To avoid biased prediction models with a preference for pseudo miRNAs, an RPNS of 1:5
should be used in the development of ML-based miRNA predictors.

Effect of the Sample Size on the Performance of miRNA Predictors
In previous studies, researchers typically constructed ML-based miRNA predictors using all
plant miRNAs to increase the number of positive training samples. However, the effect of the
positive sample size on the performance of miRNA predictors has not yet been investigated.
Therefore, the number of miRNAs required to efficiently construct miRNA predictors is
unknown. Additionally, it remains unclear whether the prediction accuracy of mature miRNAs
is acceptable or whether miRNA predictors should be trained with a limited number of miR-
NAs from individual plant species.

Based on the experimentally validated miRNAs collected from19 plant species, we observed
that the distributions of some miRNA-related features differed between species. For instance,
the miRNAs from A. thaliana were generally 21-nt in length and were almost never longer
than 23nt, whereas the miRNAs fromM. truncatula had a broader length range (20nt ~ 24nt)
(S2 Fig).To eliminate the effect of species specificity, an evaluation experiment was performed
using 715 experimentally validated miRNAs fromM. truncatula. We first randomly selected a
set of experimentally validated miRNAs (N = 50, 100, 150, 200, 250, 300, 350, 400, 450, 500,
550, 600, and 650) and their corresponding pre-miRNA sequences. We then evaluated the per-
formances of miRLocator and miRdup with these selected miRNAs and calculated the cumula-
tive frequency of the correctly predicted start and end positions of the miRNAs at different
resolutions using miRLocator and miRdup. This process was repeated 20 times. We subse-
quently drew abox plot of the cumulative frequencies at are solution of d = 5 for the different
sample sizes. With increases in the sample size, the prediction accuracy of miRLocator
increased from 0.61 to 0.73 and became relatively stable once the number of positive training
samples reached 400 (Fig 5). In contrast, the prediction accuracy of miRdup gradually
increased from 0.32 to 0.62at the number of positive training samples was increased from 50 to
650 (Fig 5). These results indicated that (1) miRdup strongly depends on the training sample
size to effectively predict mature miRNAs and (2) miRLocator is an option if the number of
experimentally validated miRNAs in the training dataset is limited (<400).

To confirm these results, we assessed the performances of miRdup and miRLocator with a
limited number of experimentally validated miRNAs from individual species. As expected, the
prediction performance of miRLocator was comparable to or better than that of miRdup in all
tested situations (Fig 6).

Implementation of miRLocator
miRLocator was implemented as a Python program running on a Linux/Unix platform that
requires pre-installation of the ViennaRNA package (http://www.tbi.univie.ac.at/RNA),
Python (v2.7.6) programming language and Python-related libraries, including sklearn
(v0.16.1; http://scikit-learn.org), NumPy (v1.9.1; http://www.numpy.org) and SciPy (v0.15.0;
http://www.scipy.org). The source codes of miRLocatorcan be downloaded from https://
github.com/cma2015/miRLocator. The RF-based miRNA prediction models in miRLocator
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were implemented using the "RandomForestClassifier" function in the "sklearn" library and
can be automatically trained with user-specified miRNA datasets. For a given pre-miRNA
sequence, miRLocator first scores all of the miRNA candidates with sequence lengths ranging
from 16nt to 30nt and then outputs the most probable miRNA and its corresponding passenger
strand as the final prediction result.

Conclusion
A new computational approach (miRLocator) to predict mature miRNAs within plant pre-
miRNAs was developed. We then demonstrated the importance of the ML algorithm, the sam-
ple size and the ratio between training positive and negative samples (RPNS) to address the
class imbalance problem observed in the development of ML-based miRNA predictors with
high prediction performance. We also determined the appropriate ML algorithm (RF) and
RPNS (1:5) for the prediction of mature miRNAs. miRLocator can be used to more accurately
locate mature miRNAs within plant pre-miRNA sequences compared with the state-of-art
miRNA predictor miRdup. Combined with pre-miRNA predictors[19,20], miRLocator would
aid the identification of miRNAs from model and non-model plant species.

Fig 5. Effect of sample size on the prediction accuracy of miRLocator andmiRdup.

doi:10.1371/journal.pone.0142753.g005
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S1 Fig. Distribution of numbp_Win4 (A) and numBP_Win8 (B) in the positive and nega-
tive sample sets. Numbp_Win4 and numbp_Win8 denote the average number of base pairs in
a sliding window of 6nt(a) and 8nt(b), respectively.
(TIF)

S2 Fig. Distribution of miRNA lengths in A. thaliana (A) andM. truncatula(B).
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