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Abstract

Many visual depictions of probability distributions, such as error bars, are difficult for users
to accurately interpret. We present and study an alternative representation, Hypothetical
Outcome Plots (HOPs), that animates a finite set of individual draws. In contrast to the sta-
tistical background required to interpret many static representations of distributions, HOPs
require relatively little background knowledge to interpret. Instead, HOPs enables viewers
to infer properties of the distribution using mental processes like counting and integration.
We conducted an experiment comparing HOPs to error bars and violin plots. With HOPs,
people made much more accurate judgments about plots of two and three quantities. Accu-
racy was similar with all three representations for most questions about distributions of a
single quantity.

1 Introduction

Various visual representations, such as error bars, are intended to help the viewer reason about
the distribution of values that a random variable could take. For example, examine Fig 1 and
try to answer the question posed below the figure (Answer given at the end of this paragraph).
If you find it difficult to answer the question using the plot, you are not alone. We ran an exper-
iment in which 96 viewers were shown this figure and asked to estimate Pr(B > A). The correct
answer to the question posed for Fig 1 is Pr(B > A)=.75 (i.e., 75%). Over half of the viewers
underestimated the true probability by 0.5 (the majority guessing somewhere around 0.2 or
0.25 as their answer).

The visualization you viewed in Fig 1 presents information about a probability distribution
for each variable shown. In doing so, the plot aligns with guidelines for reporting quantitative
data that suggest presenting such distributional information whenever observed values may
not reliably reflect the underlying population [40]. For example, a weather forecasting model
may offer a probability distribution over weather outcomes at a particular time. As another
example, consider outcome data from 32 subjects in a lab experiment. From the data, a sam-
pling distribution of the mean is derived. It provides a model of the probability density of the
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Fig 1. Fictitious scenario. Scientists have measured the concentration of two chemical solutes (A and B,
each measured in parts per million) in many vials of sea water. Horizontal blue lines are the means, dashed
vertical bars capture 95% of the measurements for each solute, and you may assume independence.
Question: in what percentage of vials is there more of solute B than A (Probability(B > A)? Answer below.

doi:10.1371/journal.pone.0142444.g001

mean outcome for other hypothetical experiments with 32 subjects, assuming the true mean
and standard deviation are those estimated using the data from the real subjects. The task of
uncertainty depiction is to visually represent the distributional information so that a user can
integrate it into their interpretation.

An error bar, like that in Figs 1 and 2 left provides a static, abstract representation of a uni-
variate distribution. The error bar shows a range around the central tendency (e.g., mean or
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Fig 2. An illustration of our different study conditions. Error bars convey the mean of a distribution of
measurements (outcomes) along with a vertical “error bar” capturing a 95% confidence interval. Violin plots
extend this idea by showing the distribution in a mirrored histogram. Hypothetical Outcome Plots (HOPs)
present the same distribution as animated frames (that can be played in sequence or manually flipped
through). Each frame contains a horizontal bar representing one outcome. An animated version of this figure
is available in the animated manuscript (S1 File).

doi:10.1371/journal.pone.0142444.9002
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median). The length of the bar may represent 1 standard deviation, or enough to cover 95% of
the random draws from the distribution. When the error bar is based on a sampling distribu-
tion of the mean of some underlying distribution, it is called a confidence interval. Unfortu-
nately, despite their widespread usage, the interpretation of errors bars, is notoriously difficult,
as evidenced by the high error rate among the viewers we observed of Fig 1. Though our partic-
ipants are “lay readers” who may not have advanced knowledge of statistics, the high levels of
error we observe are unlikely to stem from a lack of expertise. Research shows that even experts
fail at making correct statistical inferences from error bars [6].

As alternatives, analysts sometimes use other static, abstract representations of distributions
ranging from the well-known box plots to rarer forms such as violin plots (Fig 2, center), gradi-
ent plots, and other variants [37]. These forms are often more expressive of the distribution
and can avoid biases associated with reading error bars [11]. However, such forms require
additional knowledge of the visual encoding to decode the distributional information. They
can also require more statistical background knowledge to interpret.

In part, static forms are a necessity of static publication media—i.e., paper. Increasingly,
information is presented with electronic formats (e.g., Web pages, PDFs, etc.) augmenting, or
even replacing, paper. These new digital forms will increasingly allow us to better convey com-
plex information through features such as interaction and animation. Depictions of distribu-
tions, for example, can be dynamic and interactive. Ideally, the new dynamic representations
can be coupled with static representations to provide a solution that can work for both elec-
tronic and paper transmission of data.

In this paper, we present and study an alternative approach for depicting distributions,
which we call Hypothetical Outcome Plots (HOPs). In its most simple variant, the HOPs
approach is to: (1) Draw a sample of hypothetical outcomes (draws) from the distribution; (2)
for each, make a plot that becomes one frame in an animated presentation. For example, Fig 2
(right) depicts several frames for a HOPs visualization for a single random variable. Each
frame contains a horizontal bar that depicts a specific outcome, one draw for that random vari-
able. An interactive controller allows the viewer to start/pause and step through frames.

There are two clear drawbacks to dynamic presentation of individual draws. First, it intro-
duces sampling error. The reader of the visualization will examine only a finite number of
frames, and thus will get an imprecise picture of the complete distribution. We explore this in
more detail in Section 6.2. Second, the reader will have to integrate information from multiple
frames, either using the visual system or some more mechanical process such as counting.
Maintaining visual stability across frames (e.g., by keeping the range of the y-axis fixed) reduces
the difficulty of visual integration but does not eliminate it.

On the other hand, there are several advantages to HOPs:

1. HOPs enable viewers to think in finite terms (i.e., counts) about individual outcomes rather
than infinite terms (i.e., probabilities) abstracted over entire distributions, which numerous
studies have shown are more difficult for humans to conceive of [23, 27];

2. HOPs do not require an analyst to add new marks (e.g., an error bar) or new encodings
(e.g., width, transparency) and do not require viewers to understand those marks and
encodings.

We present a study in which subjects make inferences about the probability distributions of
one, two, and three random variables at a time using HOPs, error bars, and violin plots. Most
critically, our results indicate that HOPs support more accurate inferences about bivariate and
trivariate distributions (e.g., the probability that quantity B is larger than A or larger than both
A and C). As we might expect error bars and violin plots perform well for simple inferences

PLOS ONE | DOI:10.1371/journal.pone.0142444 November 16,2015 3/25



@’PLOS ‘ ONE

Hypothetical Outcome Plots Outperform Error Bars and Violin Plots

about univariate distributions. However, and perhaps surprisingly, HOPs achieve comparable
performance for many such tasks.

2 Related Work

We review prior work that conveys uncertainty by showing information from probability dis-
tributions of one or more random variables, which are either the underlying probability distri-
butions or sampling distributions.

2.1 Static Depiction of Probability Distributions

Many approaches generate a static representation of a probability distribution. A common
approach is to add an uncertainty depiction as an extrinsic annotation to a plot. For example,
error bars representing confidence intervals can be superimposed on bar charts [12]. Properties
of the distribution may also be represented in summary plots using a series of marks (e.g., a
boxplot or modified box plot as in [11, 28, 37]). Extrinsic representation can result in interpre-
tation errors, however, because the statistical construct represented by an interval (such as one
standard error, or a 95% confidence interval) is not properly understood [6, 28]. Individuals
may apply heuristics for reading the error bar that are not correct, such as assuming that over-
lapping error bars always indicate a non-significant difference [13], or that error bars display a
region of uniform probability [28].

Users are also likely to underweight the uncertainty information relative to the underlying
data due to the separation of the uncertainty as separate marks. Heuristics based on the “hard”
data impact viewers’ abilities to accurately integrate information from error bars: viewers who
use bar charts with error bars superimposed are influenced by a within-bar bias, perceiving
outcomes below the top of the bar as more likely than those above [11, 36].

Other abstract, static representations encode a distribution’s probability density function as
either marks or “retinal variables” (e.g., color, shape, texture) [7]. For example, violin plots,
which we include in our study, encode the probability density as mark width [4, 32, 39]. This
enables visual inference about the cumulative density function based on the sizes of shaded
regions. The gradient plot instead encodes density using mark opacity. Several studies that
include variants of both find no evidence of a performance difference between the two [11, 28].
We test only the violin plot, as this visualization encodes the probabilities using area, which is
considered to be easier to decode than the opacity used in the gradient plot [33].

2.2 Depiction of Multiple Individual Outcomes (Draws)

Several previous uncertainty visualizations present multiple individual draws, or possible out-
comes from an observed probability distribution rather than abstract representations of distri-
butions. For example, several early presentations used bootstrapping to generate and visualize
draws based on observed data for rainfall levels [16, 20]. In more recent geospatial applications,
multiple visualizations of spatial models are stochastically generated and presented using ran-
dom and serial animation and interactive mechanisms such as toggling by the viewer [1, 5, 17,
19, 21]. Researchers have proposed that animation is particularly helpful for helping viewers
recognize spatial autocorrelation [17]. Evans [19] conducted a comparison between land cover
maps that used color saturation to display value certainty levels, maps that displayed only
highly certain data, and a “flickering” map that alternated between showing all data and only
highly certain data. The flickering maps were found to be helpful overall, though “annoying” to
some users. Recently, the New York Times has used simulation-generated samples to illustrate
uncertainty in employment projections and potential outcomes of political elections to general
audiences [9, 30].
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While not animated, hypothesis test “line-ups” and similar approaches to graphical statisti-
cal inference also rely on visual comparisons between multiple hypothetical outcomes ([42];
see also [10, 22, 26, 34]). In the classic line-up technique, users compare a series of plots. One is
based on the real data. The others are drawn from a null hypothesis distribution. If the user can
pick out the real data from the “line-up” of plots, then the plausibility of the null hypothesis is
diminished. For example, suppose the dataset is a table with two columns, A and B, each cell
containing a numeric value. The plot of the real data would be a scatterplot. Suppose the null
hypothesis is that there is no correlation between A and B. Each hypothetical outcome can be
generated through permutation bootstrapping. That is, randomly shuftle the values in column
B, and make a new scatterplot.

HOPs can be applied more generally to any distribution, including any sampling distribu-
tion, not just the null hypothesis distribution. This enables applying HOPs to facilitate statisti-
cal inferences beyond Null Hypothesis Significance Testing (NHST). For example, compute
the correlation between A and B in the real data and use it to create a model of the joint distri-
bution of A and B. Then, draw samples of the same size from the modeled joint distribution
and make scatterplots of them. This would provide the user with a sense of the range of correla-
tions that would be likely to be observed in samples of that size, assuming that the true correla-
tion is the correlation observed in the sample.

Within statistics education, simulation has been used to convey fundamental concepts like
sampling distributions and confidence intervals [35]. The motivation is that simulating indi-
vidual outcomes provides a more concrete way to think about the abstract notion of distribu-
tions. Our exploration of HOPs shares the same motivation. However, rather than being a
stepping stone for teaching people how to interpret abstract static representations, we suggest
that in many situations animated HOPs may be a good substitute for those abstract static
representations.

In attempting to reform statistics away from NHST, Cumming suggests the value of the cog-
nitive evidence that is provided by the “dance of the means” and other sample-based simula-
tions for supporting more intuitive understanding of variance, sampling, and related concepts
[14]. Dance of the means is animated HOPs with hypothetical outcomes drawn from the sam-
pling distribution of the mean.

No previous work that we are aware of has directly tested the efficacy of dynamic depiction
of individual outcomes as alternatives to standard representations, what we are calling ani-
mated HOPs. Our primary contribution is to provide empirical evidence that untrained users
can interpret and benefit from animated HOPs.

3 Study: Methods

We conducted a user study on Amazon Mechanical Turk to assess people’s ability to interpret
HOPs, error bars and violin plots. Each subject was assigned to one of the three representation
conditions and was presented with a sequence of nine tasks.

We asked subjects to report numerical properties of the distribution of possible outcomes
that HOPs, error bars and violin plots all convey. For example, for a plot representing a single
random variable with a continuous outcome, we asked people to report the mean of the distri-
bution, the probability of an outcome above some threshold k;, and the probability of an out-
come between two other thresholds, k, and k3. The outcome of interest is the absolute error,
the absolute value of the difference between the subjecta??s report and the correct answer. We
conclude that one technique is better than another if subjects tend to have smaller absolute
errors in the answers they give.
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Some attempts to measure the effectiveness of uncertainty representations have asked peo-
ple to view a representation, report some property, and then express how confident they are
about the report. We find this approach problematic because there is no correct amount of
confidence to report. In such experiments, there is no way to assess the correctness of responses
about individual plots. It is only possible to infer that people are reading multiple plots incon-
sistently: for example, if subjects express more confidence about an outcome in plot 1 than plot
2, but the outcome distribution in plot 1 is actually more dispersed than the one in plot 2, then
there must be something wrong with the representation of uncertainty in the two plots. For
this reason, we chose to use the approach in the canonical work of Ibrekk and Morgan [28],
who presented various representations of uncertainty for weather forecasts and asked subjects
to report probabilities (e.g., snowfall > 2 inches, or between 2 and 12 inches).

3.1 Apparatus

Values are drawn from normal (Gaussian) distributions. In the simplest plots, there is just one
variable, A. We also present plots of two variables, A and B, and of three variables, A, B, and C.

The most common use of error bars is to present confidence intervals depicting information
about a sampling distribution. For example, suppose we have a set of 32 vials of seawater and
have measurements of the number of parts-per-million of a chemical solute in each vial. We
imagine drawing many other sets of 32 vials from the same underlying distribution. The distri-
bution of the means of those samples is the sampling distribution.

By contrast, for our tasks we framed the inferences to be made as reading off properties of
an underlying distribution rather than a sampling distribution. This kept the task descriptions
simple. It also reduced opportunities for misconceptions about statistical inference from affect-
ing people’s answers to the questions. The instructions explain:

Scientists have measured the concentration of some chemical solutes (measured in parts-
per-million) in many samples of sea water. We will show you plots based on their measure-
ments and ask you questions about them.

Thus, the error bars that we present are not confidence intervals. They do not show a prop-
erty of the sampling distribution of means of many vials. Instead, they show a range of values
that cover 95% of the underlying distribution.

The text explaining the error bars reads:

The blue line shows the average amount of solute in all the seawater vials. The dashed lines
show an error bar, a range above and below the average. 95% of the collected vials fall in the
range defined by the dashed lines.

Similarly, the violin plots also show the probability density function for the underlying dis-
tribution, not a sampling distribution. The text explaining the violin plots reads:

The width of the colored area at each level shows how many vials of sea water were found to
have that particular amount of the chemical solute.

The text explaining the animated HOPs explains that each frame shows one draw and also
provides instructions for manually controlling the animation. It reads:
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Each plot shows the quantity of solute in one vial of seawater. Use the buttons at the top of
the plot to pause, play, or step forward and back through the plots if you want to see them at
your own pace.

To encourage subjects to read these descriptions, for the first trial each subject must click
a button at the top of the plot to reveal the questions (and start the animation for HOPs).
After the subject submits answers to the questions for the first distribution, the second plot is
shown. The questions display immediately and in the HOPs condition the animation starts
immediately.

In the HOPs condition, the animation advances every 400ms. Subjects could pause the ani-
mation and move forward and back one frame at a time. We note that 400ms provides enough
time for eye motion and silent-counting [41]. The animation looped after the 5000 frames had
completed, which was clearly conveyed to the user by restarting the frame numbering at 0.

All visualization stimuli were created using D3 [8]. The visualization software and study
interface are available as supplementary material (54 File).

3.2 One-Variable Tasks and Distributions

Each subject completes four trials, each with one univariate distribution. For each trial, the sub-
ject reports three properties of the distribution, the mean and two properties of the Cumulative
Distribution Function (CDF). Because previous research has shown that people are better able
to reason about probabilities when they are expressed as frequencies [23, 27], we ask subjects to
report frequencies as x times out 100.

1. What is the average measurement of solute in parts-per-million (ppm)?
2. How often are the measurements above the value of the red dot?
3. How often will the measurements lie between k, and k; ppm?

Each trial is defined by the parameters: mean (y), standard-deviation (o), distance of the red
dot from the mean (k;) and whether the red dot was above or below the mean. We always set
k, to be the closest multiple of 10 below y and k5 to be closest multiple of 10 that is at least 20
above y. We deliberately varied these parameters between trials and subjects to reduce the pos-
sibility of results that are limited to particular parameter sets.

In particular, o was either low (3) or high (17), and the distance between y and the red dot
either small (£5) or large (+20). We randomize whether the red dot is k; units above or below
p. Table 1 summarizes the four distribution types. The last column shows the probability that
the value will be higher than the red dot when the red dot is above y. When the red dot is below
U, the correct probability is the inverse of that shown (e.g., 88% instead of 12% for distribution
type 4).

To ensure that there is nothing special about the particular y values, and to ensure that sub-
jects don’t think of additional tasks as related to previous ones, for each distribution type we

Table 1. One-Variable Distribution Types.

Distr. o D = |u - k4| Pr(X > u + D)
1 3 5 5%
2 3 20 0%
3 17 5 39%
4 17 20 12%

doi:10.1371/journal.pone.0142444.1001
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construct four distributions with different values of y: 131, 344, 523, and 672. We always set k,
to be the closest multiple of 10 below below y and k5 to be closest multiple of 10 that is at least
20 above .

Each subject completes one trial for each of the four distribution types in Table 1. To
counter-balance for any possible order effects, we construct all 24 possible orderings of the four
distribution types. Each of those is crossed with four orderings of the y values, generated from
a4 x 4 Latin Square to assure that each y value appears equally often as the first, second, third,
or fourth trial. That yields 24 x 4 = 96 possible sequences of four trials. For each sequence, we
randomly (Pr = 0.5) determine whether the red dot is above or below g for each of the four dis-
tributions. The 96 possible sequences are fixed. For each of the visualization conditions (HOPs,
violin plots, and error bars), one subject is assigned to each sequence of four trials.

For each distribution in each sequence, we simulate 5000 draws from a normal distribution.
This same set of 5000 draws is used to generate all three visualizations for that distribution.
Some drawn values are below 0. Since negative values do not make sense as amounts of a
chemical solute, all such values are rounded up to 0 regardless of visualization condition (we
repeat this step for two and three variable distributions below). All violin plots are generated in
D3 [8] using the histogram function with fine-grained bins. Fig 3 shows violin plots for all the
distributions.

3.3 Two-Variable Task and Distributions

After completing all four one-variable trials, each subject completes four trials involving bivari-
ate distributions. For each trial, each subject reports a single property of the joint distribution:
how often is the value of the random variable B larger than that of A. The exact wording was:

How often is the measurement of solute B larger than the measurement of solute A? Answer
in terms of the number of times out of 100.

A common inference that people are expected to make from a pair of error bars is the statis-
tical significance of a difference in population means. In that case, the error bars display confi-
dence intervals around sample means, an interval that covers 95% of sampling distribution of
the mean. For example, how plausible is the null hypothesis that the average heights of women
and men are the same given the mean heights and variability found in samples of # women
and n men? This involves some visual inference: assessing whether Pr(B > A) is above some
threshold, where A and B are sampling distributions of the means. It also involves some statisti-
cal inference: if, Pr(B > A) is above some threshold, then the difference in means is statistically
significant.

Our experiment does not ask subjects to judge the statistical significance of a difference in
means, for two reasons. First, judgments of significance require both visual and statistical

1-bar plots 2-bar plots 3-bar plots

e, A L adil LA

g
luyyl=S5: 0, = 0, =15;
1=095

Parts Per Million (ppm)

3 olow, ahig igh,
Ikl low [k-k| high [u-K low Iu-k] high [cbgl=5:0,=0,=15  |uohy|=10;0,=0,=10 [uWy/=5;0,=0,=2

Fig 3. Violin plots showing the four one-quantity tasks, four two-quantity tasks, and single three-
quantity task summarized in Tables 1—3. An animated version of this figure is available in the animated
manuscript (S1 File).

doi:10.1371/journal.pone.0142444.9003
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inference. Prior work has shown that people often get confused by the statistical inference asso-
ciated with sampling distributions [6]. We therefore chose to isolate the visual inference task:
the ability to decode the visualization to make probability estimates. Thus, we do not present
sampling distributions at all and our error bars convey coverage rather than confidence inter-
vals. We ask subjects to estimate the percentage of vials where B is larger than A. We do not
refer to samples of many vials.

Second, we wanted to get a finer-grained measure of peoplea??s ability to assess the reliabil-
ity of A>B. Thus, rather than asking a binary question of reliability (is Pr(B > A) above some
threshold such as 95%), we asked directly for Pr(B > A). If there is special interest in knowing
whether people make qualitative errors, such as thinking Pr(B > A)>.95 when it is not we can
set various qualitative thresholds such as.95 during the analysis phase and count the frequency
of errors rather than their average magnitude.

We deliberately vary the means and standard deviations between A and B to generate tasks
where Pr(B > A) varied. The parameters for each of three data sets are shown in Table 2, along
with the correct value of Pr(B > A) that subjects were supposed to report. In distributions 5-7
in Table 2 A and B are independent. Distribution 8 is identical to distribution 5 except that the
means are shifted up and the correlation between A and B is very high. The correlation causes
Pr(B > A) to be high despite the relatively small difference in means.

To counter-balance for any possible order effects, we construct all 24 possible orderings of
the four distributions. In each of three conditions (HOPs, error bars and violin plots) we assign
four subjects to each of the possible orderings. For each task, we simulate 5000 draws from the
joint distribution defined by the appropriate row in Table 2. This same set of 5000 draws is
used to generate all three visualizations for that data set.

3.4 Three-Variable Task and Distribution

After completing four two-variable trials, each subject answers one question about a trivariate
distribution. Subjects are asked to judge how often value B is the largest of the three. The exact
wording was:

How often is the measurement of solute B larger than both the measurement of solute A
and the measurement of solute C? Answer in terms of the number of times out of 100.

The three random variables are independent, defined by the parameters in Table 3. We again
simulate 5000 draws. The same set of 5000 draws is used to generate all three visualizations for

Table 2. Two-Variable Distribution Types.

Distr. Ma (A Mp op corr(A, B) Pr(B > A)
5 40 15 45 15 0 59%
6 50 10 60 10 0 76%
7 80 2 85 2 0 96%
8 55 15 60 15 0.95 85%

doi:10.1371/journal.pone.0142444.t002

Table 3. Three-Variable Distribution Types.

Type Ha A Mo O He oc Pr(B>Aand B >C)
9 40 10 55 10 40 20 66%

doi:10.1371/journal.pone.0142444.t003
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that task. Note that for value C in the trivariate violin plots in Fig 3, there is a bulge at zero
reflecting the negative numbers rounded up to 0 in that distribution.

3.5 Subjects

The number of subjects is based on a prospective power analysis. The experiment was powered
based on the bivariate distribution questions, where subjects have to estimate the probability
that B > A. We use pilot data from a previous experiment using slightly different versions of
error bars and HOPs and a different framing of the task. From the previous experiment, we get
standard deviations in the mean absolute error of subjects’ estimates of 11 for HOPs and 18 for
error bars.

We power the study to detect a true difference in mean absolute error of ten percentage
points between two visualization conditions. Through simulations, we find that with 90 sub-
jects per treatment, the null hypothesis will be rejected 82% of the time when the true difference
in error rates is 10%. Some of the counter-balancing of potential order effects was easier with a
multiple of 24 subjects, so we actually run 96 subjects per condition, for a total of 288.

Subjects were recruited on Amazon Mechanical Turk (AMT). AMT has been shown to be
an effective platform for conducting graphical perception studies [24], and has been used in
the information visualization community for testing how non-statisticians interpret visualiza-
tions of uncertainty [11]. The population of workers is largely gender balanced, and consists
primarily of individuals in their 30’s and 40’s with median household incomes similar to that
of the U.S. median [29]. We used a standard selection criteria that restricted the task to U.S.
workers with an approval rating of 95% or above. Subjects received a base reward of $0.90 and
a bonus of $0.15 times the total number of distributions, or trials (out of nine total) for which
they correctly answered the question (one of their three responses for each univariate distribu-
tion trial was randomly drawn and scored for the bonus). Hence, the maximum payment a sub-
ject could receive was $0.90 + $1.35. The HIT duration was limited to 30 minutes. No other
time restrictions were applied. As a quality control measure in analysis, on each of the univari-
ate distribution trials subjects were asked the value corresponding to the red dot. The range of
the y-axis was always 160. Subjects who were off by more than 30 on the value corresponding
to the red dot for any of the four trials were deemed deficient in either effort or ability to make
inferences from an x-y plot. One subject in the HOPs condition, 4 in the violin plot condition,
and 7 in the error bars condition were deficient in this way. Their data was discarded and each
was replaced by a new subject completing the same task sequence. We recorded the total num-
ber of subjects who started the experiment but did not complete all the tasks. The dropout rate
was 13.1% for HOPs, 14.4% for error bars, and for 9.4% for violin plots. Subjects who dropped
out were also replaced with new subjects. All of the analysis is reported based on the final 288
subjects who completed all nine trials and passed the quality control check. All data is available
in supplementary material (S5 File). Additionally, detailed results plots are available in the ani-
mated appendix (S2 File) and static appendix (S3 File).

3.5.1 Ethics. The study was approved by the University of Michigan Health Sciences and
Behavioral Sciences Institutional Review Board (Study Number HUM00065618). Subjects were
presented with study information and terms of consent on the introductory task screen and
expressed their consent by clicking ‘Continue’ to start the task.

4 Hypotheses

We expect that subjects will be able to estimate the mean of the distribution very easily in the
error bar condition as the mean is shown explicitly and the description below the plot states
which line represents the mean. We also expect that subjects will be able to estimate the mean
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of the distribution easily with a violin plot: since our distributions are normal and contain
enough samples, the mean is also the median and the point of highest density (the widest part
of the violin plot). For these plots, any errors should come only from misunderstanding the
nature of the plots or from imprecision in visually tracking from a point on the graph to a
point on the y-axis and interpolating an exact value between labeled tick-marks on the y-axis.

Estimating the mean from animated HOPs is not quite so easy. The subject has to view mul-
tiple frames and integrate information across them to estimate an average vertical position.
There is an additional source of imprecision introduced by looking at only a finite set of frames:
even if the subject perfectly interprets # frames, the standard error when estimating the mean
will be 6/+/n. When ¢ is small, then, subjects should estimate the mean quite well, even when
viewing only a few frames. Indeed, with just one frame, the precision will be 0. When o is large,
however, it is harder to integrate the information across frames (the lines jumps around a lot
between frames) and more frames are needed to get a precise estimate. Thus, we have:

Hypothesis 1 When estimating the mean of a single variable, subjects will have lower error
rates using error bars and violin plots than HOPs where o is high (distributions 3 and 4), but not
on distributions where o is low (distributions 1 and 2).

In principle, violin plots are an excellent representation for allowing inferences about the
cumulative density above certain thresholds or between two thresholds. A subject just needs
to estimate what portion of the total shaded area falls in the desired range. Error bars are less
suited to this task. A subject who is very familiar with the normal distribution may be able to
mentally visualize the cumulative density function from the mean and the 95% interval, or
may know some analytic properties of the distribution (e.g., about 32% of values are more
than o away from the mean), and then make further inferences to yield an estimate. There is
not, however, a simple visual procedure that will yield accurate estimates. With animated
HOPs, subjects have to integrate visually over many frames or count occurrences above the
threshold. In addition, there will be imprecision from examining a finite number of frames.
Thus we have:

Hypothesis 2 When estimating the probability of a random variable above a threshold or
between two thresholds, subjects will have lower error rates using violin plots than error bars or
HOPs.

It is more difficult to assess the reliability of a comparison between the joint distribution of
two random variables using error bars or violin plots. For distributions 5-7, where the two ran-
dom variables are independent and normally distributed, both error bars and violin plots in
principle provide complete information about the joint distribution. However, there is no sim-
ple visual operation that yields the correct answer. In addition, for distribution 8, neither error
bars nor violin plots convey information about the correlation between A and B while HOPs
do. HOPs, on the other hand, are still straightforward to interpret. Indeed, it may be easier
visually to assess whether B > A in one frame than to assess whether a draw from a univariate
distribution falls in some range.

Thus, we have:

Hypothesis 3 When estimating Pr(B > A) in a bivariate distribution plot, subjects will have
lower error rates using HOPs than violin plots or error bars.

For the task of estimating how often B will be the largest of three random variables, error
bars and violin plots again provide complete information about the joint distribution, but in a
format that does not afford easy visual inference. By contrast, we expect that subjects using
HOPs will do almost as well on the three-variable trial as the two-variable trials. Thus, we have:

Hypothesis 4 When estimating Pr(B > A and B > C) in a trivariate distribution plot, sub-
jects will have lower error rates using HOPs than violin plots or error bars.
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5 Study Results
5.1 Preliminary Steps

Analyzing the total time to completion of the 288 subjects showed that HOPs viewers spent an
average of 523s (median: 544s) to complete the entire study, slightly longer than error bar and
violin plot viewers (means: 479s, 481s, medians: 451s, 451s, respectively) but the difference was
not statistically significant (F(2,285) = 2.02, p > 0.1).

Many HOPs subjects (35%) used the interactive features (pause and stepping forward or
backward through frames) on the first question screen. However, on average, just 10% of sub-
jects used these features on each of the subsequent screens, varying only slightly between the
one-, two-, and three-variable tasks (9.7%, 9.8%, and 13.5% respectively). The median number
of frames displayed, over all screens (data sets), was 89 (mean: 101, SD: 79). We observed no
significant effects on error rates in subjects’ responses from the number of frames, number of
interactions, or time spent on page prior to answering each question.

Results for the one-, two-, and three-variable trials reported below include all 288 subjects.
We ran all models reported below with and without an indicator variable for the order in
which the subject completed the trial and a variable that captured the time the subject spent on
the page. We saw no main effect of either variable in any analysis, and improvements in R* of
1% or less from including order and time on page. All models below therefore omit order and
time on page.

5.2 One Variable Results

5.2.1 Estimating y. For the question that asked subjects to estimate the mean, we hypothe-
sized that high variance data would make the inference more difficult for HOPs viewers, while
low variance data would yield no differences in the accuracy of mean estimates between treat-
ments (H1). With respect to H1, we observe a significant difference between mean absolute
error between treatments for the high variance dataset (F(2,573) = 32, p < 0.001, Table 4 row
2) and no difference in MAE between treatments for the low variance data (F(2,573) = 0.9,

p = 0.4, row 1). Specifically, for the high variance data set we find that the HOPs viewers show
significantly higher levels of error compared to both error bars and violin plots (both p,4; <
0.001). While no significant difference exists for the low variance data set, the mean absolute
error for the error bars is noticeably higher than that of the other two conditions. Deeper exam-
ination of the data revealed an outlier with very high error for estimating y for one low variance
dataset. If we remove the outlier, we see a slightly lower mean absolute error for error bar users
(1.9) which is significantly lower than both other conditions (F(2,571) = 10.7, p < 0.001, both
Paaj < 0.001). Results are depicted in Fig 4.

5.2.2 Estimating Pr(A > k) and Pr(k2 < A < k3). We hypothesized that subjects would
be more accurate in estimating the probability that A is greater than k; or between the values k,
and k; with violin plots given that these plots directly depict information from the pdf as area
(H2). Our results provide little support for H2. On one task of estimating Pr(A > k) was MAE
lower for violin plots than either of the other two. In row 3, where o' is low and |y — k| is low,
we see significantly higher MAE among viewers of the violin plots. Results are depicted in Figs
5and 6.

In row 7, error bars performed significantly worse than violin plots and HOPs (F(2,573) =
15, p < 0.001, both p,4; < 0.001). In row 8, HOPs performed significantly worse than violin
plots and error bars (F(2,573) = 15, p < 0.01, pag; < 0.05 and p,4; < 0.01 respectively).
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Table 4. Mean Absolute Error by Treatment and Task Parameters. The * indicates a significant difference between the starred treatment and at least one
other (paq; < 0.001). Fig 3 illustrates the violin plot for each Type.

1-var Mean Absolute Error
Row Type (] b= k4| Question Correct Answer HOPs Violin Err. Bar
1 1,2 low N/A Ha 3.7 3.8 7.8
2 3,4 high 9.6* 4.2 21
3 1 low low Pr(A > kq) .05 0.14 0.35* 0.21
4 2 low high 0 0.06 0.06 0.09
5 3 high low .39 0.13 0.10 0.11
6 4 high high 12 0.14 0.11 0.14
7 1,2 low N/A Priko < A < ks) 0.20 0.19 0.29%
8 3.4 high 0.17* 0.14 0.13
2-var Ha = Up 0z = 0p
9 5 5 15 Pr(B > A) .59 0.11* 0.37 0.38
10 6 10 10 .76 0.13* 0.35 0.42
11 7 5 2 .96 0.09* 0.45 0.54
12 8 5 15 .85 0.10* 0.63 0.60
3-var
13 9 Pr(B>A and B > C) .66 0.14* 0.37 0.36

doi:10.1371/journal.pone.0142444 1004

5.3 Two Variable Results

We hypothesized that subjects who used HOPs for two-variable plots would make more accu-

rate inferences about how often B > A (H3). Our results provide strong support for H3. For all
three two variable plots, subjects who used HOPs had much lower MAE than those used violin
plots and error bars (F(2,573) = 73,57,84,220, all < = 0.001, all p,4; < 0.001, rows 9 through 11

respectively). Results are depicted in Fig 7.

Estimate u - Absolute Error

o low o high I
3 4

10- _I_

T —_— ——
—

HOPs EB Violin HOPs EB Violin
37 7.8 3.8 9.6* 2.1 4.2

Fig 4. Stimuli (left) and absolute error (right) of estimates of p. Error bars indicate a 95% confidence
interval. Error bars in the results plot show a 95% confidence interval. An animated version of this figure is
available in the animated manuscript (S1 File).

doi:10.1371/journal.pone.0142444.9004
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Pr(A>=k) Absolute Error

HOPs EB Violin
0.14 0.21 0.35

-+

1 o low, |u-k| low

-+
4

f

0.06 0.09 0.06
2 olow, [u-k| high

*

—I—+—|—

3 o high [u-k{ low 0.13 0.11 0.10

0.14 0.14 0.11
4  high, |u-k| high

Fig 5. Stimuli (left) and absolute error (right) of estimates of Pr(A > k). Both locations of the red dot
(above and below ,,u) are shown, though subjects saw only one of the dots in each trial. Error bars in the
results plot indicate a 95% confidence interval. An animated version of this figure is available in the animated
manuscript (S1 File).

doi:10.1371/journal.pone.0142444.9005
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Pr(k2<=A<=k3) - Absolute Error

o low o high
3 4

0.4+
03+ :
02 =—i—
—+ —
0.1+ -4
HOPs EB Violin HOPs EB Violin
0.20 0.29* 0.19 0.17* 0.13 0.29

Fig 6. Stimuli (top) and absolute error (bottom) of estimates of Pr(k, < = A< = k3). Error bars indicate a
95% confidence interval. An animated version of this figure is available in the animated manuscript (S1 File).

doi:10.1371/journal.pone.0142444.g006

5.4 Three Variable Results

We hypothesized that subjects who used HOPs would make more accurate inferences about
how often B was the largest of the three values (H4). Our results provide strong support for H4.
Subjects who used HOPs had lower MAE than those who used violin plots and error bars (F
(2,573) = 43, p < 0.001, both p,4; < 0.001, row 13). Results are depicted in Fig 8.

6 Discussion

The experiment tasks were about as favorable as possible for the abstract, static representations.
Normal distributions lead to symmetric violin plots where the widest point is the mean and
median. To the extent that people have developed intuitions about error bars, they will have
developed them for independent, normal distributions. Even under these most favorable condi-
tions, performance with animated HOPS was comparable on the one-variable trials and much
better on the two- and three-variable trials.

Animated HOPs performed worse on some types of one-variable trials. One was estimating
the mean when the variance was high. As we argued in the Section 4, this was expected for two
reasons. First, the large variance meant subjects had to visually integrate over large distances
when the line jumped around a lot. Second, the imprecision due to examining a finite number
of frames was higher when the variance was larger. HOPs users were also slightly worse at esti-
mating the cumulative density of values between two thresholds when the variance was high.

HOPS also performed better on some one-variable trials, in particular estimating cumula-
tive densities when the variance was low. Violin plots had higher errors when estimating the
probability of a value above a threshold. Error bars had higher errors when estimate the proba-
bility of values between two thresholds. We speculate that the low variance meant the violin
plots and error bars were compressed vertically, and thus it was difficult to assess exactly where
in the distribution a particular level fell, and how much area was above or below it. It is not
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Pr(B>A) - Absolute Error
HOPs EB Violin

1 |u,-Mg|=5; 0,=0,=15 0.11* 0.38 0.37
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2 |u,1=10;0,=0,=10 0.13* 0.42 0.35
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Fig 7. Stimuli (left) and absolute error (right) of estimates of Pr(B > A). Error bars indicate a 95%
confidence interval. An animated version of this figure is available in the animated manuscript (S1 File).

doi:10.1371/journal.pone.0142444.9007
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Pr(B>A, B>C) - Absolute Error

o

A B C

0.6

0.4 _I_ _I_

0.2 -

HOPs EB Violin
0.14* 0.36 0.37

Fig 8. Stimuli (top) and absolute error (bottom) of estimates of Pr(B > A, B > C). Error bars in the results
plot indicate a 95% confidence interval. An animated version of this figure is available in the animated
manuscript (S1 File).

doi:10.1371/journal.pone.0142444.9008

clear, however, why violin plots were especially problematic for estimating Pr(A > k;) while
error bars were especially problematic for estimating Pr(k, < A < k3). Additional research is
needed to assess the robustness of this finding and develop an explanation for it.

In light of the common usage of error bars for presenting multiple independent distribu-
tions, it is noteworthy how poorly subjects using these representations performed on tasks ask-
ing them to assess how reliably a draw from one variable was larger than the other(s). On no
task was the mean absolute error less than 36 percentage points. That means, for example, that
on row 9 (task type 5), where the correct answer was 59%, subjects gave mean answers centered
around 95% and 23%(!) Many subjects reported values less than 50%, which are not plausible
given that the mean of B was larger than the mean of A. Performance was so poor with the
abstract, static representations that we suspected something must have gone wrong with our
instructions or recording of results. After careful checking, however, we did not find any obvi-
ous patterns to the errors. We speculate that many subjects simply had no idea how to make a
good guess. Some may have followed the heuristic of mentally substituting a simpler question,
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such as the mean difference between B and A. Subjects from the same pool who used HOPs, on
the other hand, showed markedly better performance.

A question that arises from our results is exactly what strategies people use in order to infer
properties of the distribution when interacting with HOPs. In informal pilots, different people
appeared to employ different heuristics in integrating over multiple frames. Some explicitly
performed silent-counting [41] whereas others generated estimates in some other way. One
possibility is that viewers are making use of ensemble representations which allow for a form of
“averaging” across multiple objects and which have been demonstrated to facilitate statistical
reasoning [3]. Recent work has demonstrated that these mechanisms can also be employed in
temporally-varying situations [2] similar to HOPs. It is also possible that different heuristics
are used in different situations or combined in some way. Our own experiences with using
HOPs lead us to speculate that people may be combining counting of outcomes that display a
pattern of interest and approximation. For example, a viewer might count the number of
frames in which B is the largest in our three-variable task for a short while, then estimate the
total number of frames they viewed while counting to infer the probability. Further work is
necessary to determine if one strategy is better than another in producing estimates.

We expect HOPs to be better for estimating very reliable outcomes regardless of the strategy
a viewer employs. If an outcome almost never occurs, it is easy to notice and count its occur-
rences, even with a fast frame rate. If an outcome almost always occurs, it is easy to notice or
count when it does not. For intermediate frequencies, however, it may be more difficult, and
performance is more likely to be impacted by frame rate. The results of our study do not pro-
vide clear evidence on this conjecture. In row 4, where Pr(A > k;) approaches 1, the MAE for
HOPs was lowest. On the other hand, the next best MAE for HOPs was row 11, where Pr(B >
A) was 76%, an intermediate level of reliability.

6.1 Limitations

We note several limitations of our study. First, we know relatively little about our Mechanical
Turk subject pool. We followed common practices for ensuring high-quality participation,
such as restricting participation to U.S. subjects, paying a relatively high wage, informing sub-
jects of incentive bonuses for correct answers, and discarding subjects who incorrectly
answered questions about the location of the red dot. The subjects were probably above-aver-
age in numeracy relative to the entire U.S. population, since they understood error bars and
violin plots well enough to have low error rates on some of the one-variable trials. We do not
know, however, whether specific sub-populations may perform better or worse with HOPs or
with the abstract, static representations. An important step for future work is to perform a sim-
ilar experiment with other subject pools, such as individuals who have recently completed a
course in probability and statistics and individuals who have taken such a course some time in
the past but not recently.

Second, the tasks we employed may have been special in some way. For example, while sub-
jects could do reasonably well at estimating the mean and cumulative densities of a single ran-
dom variable using HOPs, we did not ask them to perform those same inferences for one of the
variables presented in a two- or three-variable animation. It might be difficult to tune out the
bar for another variable and focus only on one variable at a time. It also might be difficult to
perform pairwise comparisons of variables that are visually separated, such as assessing Pr(A >
C) in a three-variable plot where B is shown between A and C.

Third, our study described the plots as showing values observed in actual samples. In prac-
tice, HOPs may be used to convey outcomes generated from a single input data set, such as the
mean of the data. The framing of the individual HOPs would then need to describe the idea of
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a hypothetical outcome as another draw from the sampling distribution. An important next
step is to replicate our results with summary statistics that describe the sampling distribution,
such as error bars that instead represent a 95% confidence interval. For a lay audience, of
course, this would need to be done without reference to sampling distributions. It is not clear
whether it is possible to do this effectively.

Fourth, we did not test all abstract, static representations. There are many other possibilities
besides error bars and violin plots. Some of them may have better performance.

Fifth, we did not test special purpose representations that were tuned to the particular com-
parative questions that we asked. For example, in the two-variable case we could have created
the composite variable B — A and shown error bars or violin plots for its distribution. For the
three-variable case we could have have created the composite variable B — max(A, C) and
shown a representation of its distribution. For any specific analytic question, of course, the
representation that makes it easiest to answer that question is simply to show the answer. Gen-
erally, the goal of a visual representation is to provide intuitions and a chance to explore for
patterns. In order to assess whether subjects had developed a good intuitive sense of the data
that was presented, we asked specific analytic questions. Tailoring the visual representation to
those specific questions would, in some sense, be cheating. Thus, we considered only generic
representations of distributions that can support estimation of answers to many analytic
questions.

Sixth, we did not test any static representations of finite (concrete) outcomes. One intrigu-
ing possibility are one-dimensional scatterplots of hypothetical outcomes, or variants such as
the beeswarm plot [18]. These would have the advantage of not requiring users to integrate
visually over time. Untrained users, however, may find it easier to understand each frame in an
animation as a representation of one concrete outcome than to understand each dot in a static
representation as a representation of one concrete outcome. Further research is needed.

Finally, we did not prompt subjects to explain their conclusions about the data or uncer-
tainty. Subjects’ explanations of how they thought about answering the questions might have
provided clues about whether they were explicitly counting with HOPS and what heuristics
they were using to answer the questions with the two- and three-variable error bar and violin
plots.

6.2 Precision of Inference from HOPs

How many hypothetical outcomes from a distribution does a viewer need to see in order to
assess properties of the distribution like the mean, the standard deviation, or the probability
that the value will be above a threshold k? This number will be impacted by the distribution

of the target property, as well as how effectively the viewer processes and integrates the infor-
mation. We can, however, establish an upper bound on the precision of inferences if we assume
that the viewer perfectly processes the information presented.

For example, suppose that the viewer’s task is to give an estimate i of the mean y of a con-
tinuous distribution X with standard deviation ¢. The viewer is presented # frames of an ani-
mated slideshow, where each frame presents one real number outcome drawn from the
distribution. This is the classic task that introductory statistics textbooks use to introduce the
idea of sampling distributions. The best estimate of the mean of the distribution is the mean of
the #n hypothetical outcomes (a sample of size #n). The precision of that estimate is inferred
from properties of the sampling distribution of the mean. That is, we imagine taking infinitely
many samples from the original distribution, each sample being of size #, and collecting the
means of all those samples. The collected means come from a distribution which is called the
sampling distribution of the mean. According to the Central Limit Theorem, as n gets large,
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the sampling distribution of the mean will be normally distributed, even if the original distribu-
tion was not normally distributed. The standard deviation of the sampling distribution of the
mean will be 6, = o/+/n. Thus, 6/+/n expresses the precision that will be possible when esti-
mating the mean of X based on »n samples. If o = 10 and #n = 25, then 95% of samples will have
estimates for i within 1.96 * 10/+/25 = 3.92 of the true y. Looking at more frames in the
HOPs animation will increase the potential precision, giving a smaller confidence interval, but
the value of extra frames diminishes. With four times as many frames, 100 rather than 25, the
size of the confidence interval is cut in half.

As another example, suppose that the viewer’s task is to give an estimate of p = Pr(X > k).
One possible procedure would be to notice, for each frame whether the displayed value is big-
ger than k or not, without noticing how much bigger or smaller. Then, the subject could count
the number of frames out of n where X > k and use that to estimate the true probability p.
Again, it is possible to derive analytically the properties of that sampling distribution. The stan-
dard deviation of the sampling distribution will be y/p(1 — p)/n. Thus, for example, if p = .66
and n = 25, the standard deviation will be 0.094, meaning that 95% of the time the estimated
probability p will be within £19 percentage points of the true mean p. Looking at 100 rather
than 25 HOP frames would cut this in half; 95% of the time the estimated probability will be
within +9 percentage points of the true mean.

Of course, viewers are not restricted to coding each frame in a binary way, as the presence
or absence of some property. For the task of assessing p = Pr(X > k), the viewer may intuit
something from how far particular values are above or below k. Thus, they may be able to
make more precise estimates than +9 points after viewing 100 frames. However, as the outcome
plots and tasks get more complicated, it may become harder to do more with the plot than just
noticing whether a binary property is true.

6.3 Frame Rates and Interactivity

The frame rate, how quickly the animation advances to the next frame, is another important
design consideration for animated HOPs. Faster frame rates are likely to make it easier to per-
ceive trends such as the variability of a value between frames. It is also likely that a viewer will
see more frames with a faster rate than a slower rate, increasing the precision of their estimates.
On the other hand, faster frame rates will also make it more difficult to infer properties of each
frame.

Deriving the optimal frame rate and understanding how it relates to different types of infer-
ences and properties of the data distributions is an important area for future exploration of
HOPs. We use a frame rate of 400ms for our comparative experiment between HOPs and static
alternatives. Viewers in pilot studies identified this rate as effective for the target inferences in
our study (estimating Pr(A > k), etc.) without being too fast (resulting in reports from viewers
of mental fatigue) or too slow (resulting in reports that integrating information across frames
was too difficult). We note that 400ms provides enough time for eye motion and silent-count-
ing [41]. As noted above, the accuracy of inferences for very reliable outcomes are less likely to
depend on the frame rate. Viewers may prefer faster frame rates than 400ms in these cases for
more efficient use of HOPs.

Because individuals may respond differently to frame rates, we also provide subjects of our
experiment with interactive controls that pause the animation and step forward or back one
frame at a time. We display the frame number in a corner of the animation to further support
integration for viewers who wish to count frames that have a given property (e.g., B > A) and
then estimate the probability.
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6.4 Animation vs. Other Encodings of Frequencies

Consider the rate at which the line appears at a specific vertical point in a HOPs animation.
Call it the blink rate, or the expected number of appearances of the horizontal line in a time
period. There is a direct analogy between the blink rate and the encodings used in abstract rep-
resentations of univariate distributions. Specifically, the width of a violin plot or the color
intensity (e.g., saturation or a-blending) of a gradient plot (see Fig 9 and [31]) encode the prob-
ability densities of the distribution. HOPs encode these probability densities in the blink rate of
the lines at each y-value.

There is a more direct correspondence between HOPs and gradient plots (Fig 9) in the lim-
iting case. As the frame rate of HOPs reaches the flicker fusion threshold [38], the viewer will
begin to perceive the animated HOPs as a single, static abstract representation of the distribu-
tion. The displayed animation will “converge” to a gradient plot. A similar effect can be
achieved at slower frame rates by adjusting the HOP process slightly so that each frame leaves
a trace of the line, which fades slowly. Then, at any point in time, the displayed frame would
show multiple blue lines with different intensities. The benefit of the gradient plot is that read-
ing the probability at a specific horizontal coordinate is likely to be perceptually easier than
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Fig 9. A gradient plot, where probability density of each possible outcome is encoded using mark
opacity.

doi:10.1371/journal.pone.0142444.g009
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reading the probability from the blink rate. Similarly, violin plots encode the probability den-
sity for a given horizontal coordinate as line width [25], which is generally considered even eas-
ier to decode [33].

Thus, if the primary task is to find the probability density at a specific point or to find the
mean of the distribution, the elevated frame rate may be desirable. The trade-off, however, is
that other benefits of HOPs are likely to be eliminated in this “limiting case”. Specifically, it will
be harder to do direct inference by estimation and counting across frames. We hypothesize
that both task types could be supported by allowing the viewer to interactively manipulate the
frame rate (speed up and slow down).

6.5 Extensions and Variations of HOPs

Frame Rates & Interactivity—Of course, the speed at which HOPs are presented, and the
degree of interactivity allowed will impact the effectiveness of the method, perhaps in different
ways for different viewers. While we identified 400ms as a reasonable speed for inferences
across distributions with varying reliability levels via informal experiments, an important task
for future study is to systematically study the impacts on viewers’ accuracy of varying speed of
animations and interactive controls.

We suspect that viewers of HOPs could make even more accurate probability inferences if
provided with interactive graphical annotations. For example, a viewer might draw a line at the
top and bottom of an interval of values that define an outcome of interest to more easily infer
the probability of this outcome.

Small Multiples Rather than showing many hypothetical outcome plots as frames in an ani-
mation, they could all be displayed simultaneously, as small multiples. In that case, viewers
would have to integrate visual information across space rather than across time. Some infer-
ences would be easier. For example, eye gaze could rest longer on frames where values were
closer together. On the other hand, comparisons between frames might be harder across spa-
tially distributed multiples than between frames that appear sequentially in the same location
sequentially. One important drawback of small multiples is that there is rarely enough space
for very many of them. Our HOPs subjects viewed about 90 frames on average for each task
(36 seconds if run continuously). It would be visually daunting to see a screen full of 90 very
small plots. With many fewer plots, the imprecision due to sampling would be greater, as
explored in Section 6.2.

Generating Draws ¢ Stability—Several decisions are particularly critical for HOPs to sup-
port accurate inferences. The first important decision involves the integrity of the process used
to generate draws from the distribution. The process for generating the hypothetical outcomes
should be analogous to the sampling process that resulted in the observed input data set [15].
We refer the analyst interested in apply HOPs to the considerable literature on resampling
methods for guidelines on selecting a valid process. The second important decision is how
visual stability will be maintained between plots to ensure that they are easily comparable. For
more complex plot types, beyond what can be shown in a bar chart, more sophisticated manip-
ulation of the data-to-visual mapping functions may be necessary. Another area to explore is
how HOPs frames should be ordered. Presently these are ordered randomly, but other options
include minimizing the between frame changes [17], or devising a way of counter-balancing
frames.

Combined Representations—It may be useful to combine HOPs with more abstract, static
depictions, such that the static display is more fully understood. For example, animated HOPs
may be useful in helping people understand the meaning of the interval conveyed by an error
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bar or area of a violin or gradient plot. HOPs could easily be overlaid on other forms, or
enhanced with additional information (e.g., a static median bar).

7 Conclusion

We present and study Hypothetical Outcome Plots as an alternative to static depictions of
probability distributions. To create HOPs, we generate draws from a probability distribution
and visualize each draw as an outcome plot. When the analyst maintains a consistent mapping
function (visual stability) across plots, a viewer can integrate the information from the set of
outcomes to make inferences. HOPs facilitate thinking about properties of distributions via
counting in addition to probabilities, which is likely to ease data interpretation for many view-
ers [23, 27]. HOPs are more expressive of joint distributions than alternative representations
like error bars and violin plots.

Avenues for future study of HOPs are numerous. For example, we have only begun to
understand the cognitive processes by which viewers integrate information across frames.
Additionally, systematic studies of frame rates and interactive capabilities would allow us to
better deploy HOPs across diverse datasets and tasks. Finally, maintaining visual stability will
be more challenging for more complex types.

Our study results provide strong evidence that HOPs lead to more accurate estimates of
properties even of very simple multivariate distributions consisting of just two and three vari-
ables, both when the variables are independent or correlated. We also find that HOPs perform
substantially worse on univariate judgments only when the variance is high and the task is to
estimate the mean. However, we believe that extensions such as the ability to vary the frame
rate may support these estimates as well. Other adaptations of HOPs and increased viewer
practice may also lead to further improvements in their ability to interpret HOPs. In the long
run, the widespread availability of interactive devices will allow visual presentation of uncer-
tainty to shift from its current emphasis on static, abstract representation of probability distri-
butions to dynamic, concrete presentation of hypothetical outcomes from those distributions.
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