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Abstract
North American bison (Bison bison) are becoming increasingly important to both grassland

management and commercial ranching. However, a lack of quantitative data on their diet

constrains conservation efforts and the ability to predict bison effects on grasslands. In par-

ticular, we know little about the seasonality of the bison diet, the degree to which bison sup-

plement their diet with eudicots, and how changes in diet influence gut microbial

communities, all of which play important roles in ungulate performance. To address these

knowledge gaps, we quantified seasonal patterns in bison diet and gut microbial community

composition for a bison herd in Kansas using DNA sequencing-based analyses of both

chloroplast and microbial DNA contained in fecal matter. Across the 11 sampling dates that

spanned 166 days, we found that diet shifted continuously over the growing season, allow-

ing bison to take advantage of the seasonal availability of high-protein plant species. Bison

consumed more woody shrubs in spring and fall than in summer, when forb and grass

intake predominated. In examining gut microbiota, the bacterial phylum Tenericutes shifted
significantly in relative abundance over the growing season. This work suggests that North

American bison can continuously adjust their diet with a high reliance on non-grasses

throughout the year. In addition, we find evidence for seasonal patterns in gut community

composition that are likely driven by the observed dietary changes.

Introduction
North American bison (Bison bison) are a keystone species in the grasslands of the Great
Plains, where their feeding, migration, and wallowing activities promote plant diversity [1].
Bison are considered primarily grazers, meaning they consume mostly graminoids (grasses and
sedges) [2–5]. The bison diet varies across different geographic regions, depending on the type
and abundance of potential forage available. For example, in northern habitats, bison diets are
dominated by cool-season graminoids [3]. Yet bison may also browse, feeding on shrubs such
as Salix as their primary forage when graminoids are scarce [6,7].
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In general, herbivores have been shown to prefer fresh shoots, because they are often lower
in plant secondary compounds and richer in protein, making such plants more palatable, easier
to digest, and more nourishing [8–10]. Phenologically driven pursuit of new growth was first
observed in geese [11–14], and then in deer [8,15–17]. Bison prefer newly produced shoots as
well, including those on mowed areas [18], burned areas [19–22], and prairie dog towns [23–
25]. Despite their historic keystone role in North American grasslands, little is known about
how the bison diet changes seasonally. Bison have been observed exhibiting seasonal variation
in diet, continuing to feed on graminoids [3,26], but also incorporating forbs, woody plants,
and even lichen into their diet [27]. These temporal shifts in the bison diet are likely due to the
changing nutritional quality of plants, and likely important to understanding the health of
bison, as well as the impacts of bison on grassland ecosystems.

Along with our poor understanding of the seasonal patterns of bison diet, we do not know if
bison gut microbial communities shift in response to changes in diet. Like all ruminants, bison
rely on symbiotic microbes to help them digest vegetation [28]. Digestion begins in the reticu-
lorumen, and continues in other parts of the digestive tract, concluding in the colon [5].
Domestic cattle (Bos taurus) on pasture or forage retain a diverse, benign gut microbiota asso-
ciated with a healthy digestive tract. The few studies on the seasonal patterns of gut microbiota
in wild herbivores have found changes in gut community composition that are associated with
changes in diet [29,30]. If changes in gut microbial communities are associated with dietary
shifts in bison, this would suggest that microbes respond to changes in nutritional quality, anti-
nutritional secondary metabolites, or plant species composition of the diet [31–33].

Understanding seasonal variation in plant consumption will increase our understanding of
bison’s dietary needs. Documenting concurrent shifts in gut microbiota will help us establish
baseline rates of change in gut community composition throughout the year, and assess
whether microbial shifts are associated with dietary changes. In order to better understand sea-
sonal patterns of diet and gut microbial community composition, bison fecal material was col-
lected from adult and subadult bison in a Kansas prairie approximately every 14 d during the
growing season. An herbivore’s diet is affected by both plant availability and forager preference
for different plant species [34–36], so both plant availability and the preferences of bison will
affect the amounts of different plants ultimately consumed by bison. However, computing pref-
erence indices requires assessing plant abundance and dispersion in the environment [37,38].
Diet and gut microbial community changes over time were reconstructed using DNA sequenc-
ing-based analyses of both plant chloroplast DNA and the 16S rRNA gene of bacteria and
archaea. These data were used to address two main questions: to what degree does the bison
diet change throughout the growing season, and do temporal changes in diet drive correspond-
ing shifts in gut microbial community composition?

Materials and Methods

Study design
The Konza Prairie Biological Station is a private 3,487-ha native tallgrass prairie preserve in the
Flint Hills of northeastern Kansas (39.08 N, 96.57 W). American bison (Bison bison) were rein-
troduced to the preserve in 1987, and now about 300 of them live in a fenced range of about
970 ha. To study their diet and gut microbiota, fecal samples were collected every other week
from adult and subadult bison (three male and three female) during the period of April 17–
September 30, 2011. Samples were collected from the first individuals observed to defecate dur-
ing each collection trip, which may or may not have been the same individuals from one trip to
the next. Fecal samples were sampled 48 times and divided into two demographic groups: 24
adult or subadult males, and 24 adult or subadult females. Collectors waited at a distance for
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the bison to defecate, and once they moved away, fresh fecal material was sampled with an
inverted plastic bag, taking care to avoid contamination from soil underneath. Fecal samples
were transported on ice, and stored at -20°C. Because only bison fecal material and vegetation
were collected for the present study, no Institutional Animal Care and Use Committee
(IACUC) approval was required. John Briggs, Director of Konza Prairie Biological Station, was
the authority who reviewed our procedures and granted us permission to collect samples.

Diet analyses
We used analyses of plant chloroplast DNA in feces to infer which plant species the bison had
consumed, and to track changes in these plants’ relative abundance in the diet over time. This
method, known as the trnL approach [39], uses the P6 loop of the trnL (UAA) intron to assay
diet in herbivores [40]. We used the trnL g-h primer pair, whose targeted gene region is only
10–146 bp long, making it likely that the gene region can be amplified and sequenced from
feces after passage of the plant material through the bison gut. The amplified region is also
highly variable, so it can be used to differentiate many plant species [41]. An identical approach
has been used previously for non-invasive analysis of herbivore diet [42–44].

To match the trnL sequences to plant species, we created a trnL reference library for the site
by acquiring representative samples of 73 plant species to which the bison had access. Single
specimens of plants were collected in the field and placed in sealable plastic bags. They were
identified and stored in the freezer at -20°C. To extract DNA from plants, vegetation samples
were finely chopped with a sterile razor prior to DNA extraction. To extract DNA from bison
feces, sterile swabs were dipped in thawed fecal samples before also being placed in reaction
wells. For both sample types, DNA was extracted using the MO BIO PowerSoil1-htp 96 Well
Soil DNA Isolation Kit [45].

To amplify the trnL fragment from the plants and fecal samples for barcoded pyrosequen-
cing, we followed [46], except with the primer pair g-forward/h-reverse, which targets the trnL
fragment [41]. The forward primers included the Roche 454-B pyrosequencing adapter, while
the reverse primers included the Roche 454-A sequencing adapter and a 12-bp barcode that
was unique to each sample. Amplicons from the triplicate reactions were combined, cleaned,
quantified, and pooled in equimolar concentrations. The pooled sample was sent to the Uni-
versity of South Carolina for sequencing on a Roche 454 automated sequencer.

Sequence data were processed using the QIIME pipeline [47]. Sequences were assigned to
specific plant samples based on their unique barcodes, and sequences were clustered at 100%
similarity for each plant species. A reference library of trnL sequences was constructed using
consensus sequences from identified plant specimens. For plants with at least 10 representative
sequences, the consensus sequence was the one that made up at least 40% of sequences in a
given sample, and was at least 30% more abundant than the second-most common sequence.
As some of the plant species shared identical trnL sequences, our collection of 73 plant species
was represented by 44 trnL sequences, with 32 species (44%) having unique representative
sequences (S1 Table). For the remaining 41 plants (56%), two or more species shared
sequences, meaning they could not be distinguished if detected [39]. The trnL sequences from
fecal samples were matched against this trnL reference database using the BLAST algorithm
at� 98% similarity over the entire length of the reference sequence [48].

Because different fecal samples have different trnL sequence counts, we rarefied down to 50
sequences, to compare all samples at an equivalent sequencing depth. Chloroplast trnL
sequences in feces might be affected not only by the abundance of plants from which they
came, but also by chloroplast and gene copy number in living plants, and by the digestibility of
plants in the herbivore digestive tract. Thus, the sequence of trnL genes in feces depends not
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only on the plant species consumed, but also on the density of chloroplasts in the plant bio-
mass, and the degree to which chloroplasts of different species are digested. One feeding trial
demonstrated no consistent bias between the percentage intake of biomass and percentage of
sequences in fecal matter of sheep [49]. Given that trnL is a chloroplast gene with no known
variation in copy number in the chloroplast genome, we assume for the purposes of the present
study that the percent of sequences recovered from fecal matter is proportional to the relative
intake of chloroplasts from the different plant taxa. Thus, although the proportions of different
plants in the diet may not correspond perfectly to proportions of different trnL sequences in
feces, the trnL approach allows us to document relative changes in the composition of specific
plant taxa over time [49].

Microbial analyses
We also used the collected fecal samples to track shifts in gut microbiota across the sampling
period, and to assess if the changes in gut microbial communities are associated with temporal
shifts in diet. We sequenced a portion of the 16S rRNA gene from bison fecal DNA to study
bacterial and archaeal community composition in the colon. Fecal DNA was extracted as
described above. Amplification and sequencing followed the approach used previously [46].
Briefly, we used the 515F/806R primer pair containing Illumina adapters, with a 12-bp error-
correcting barcode unique to each sample on the reverse primer. The V4–V5 region of the 16S
rRNA gene amplified by this primer set is well-suited to accurate phylogenetic placement of
bacterial and archaeal sequences [50]. Together, these primers are expected to amplify nearly
all bacterial and archaeal taxa with few biases [51].

After quantification and pooling, the amplicons were sequenced on an Illumina MiSeq
instrument at the University of Colorado Genomics Core Facility with the 2 × 100 bp paired-
end protocol [52]. We used the QIIME pipeline for data analysis on the forward reads only
[53]. Quality filtering and processing of reads was performed following [52]. Bacterial 16S
rRNA sequences were clustered at 97% similarity, and a representative sequence from each
OTU was classified against the RDPII database [54]. Due to unequal numbers of 16S rRNA
sequences in each fecal sample, we rarefied down to a depth of 15,000 sequences to compare all
samples at an equivalent sequencing depth.

Statistical analysis
To test the effect of time on diet, plants were grouped into three functional groups, correspond-
ing to the following growth habits: graminoids (grasses and sedges), forbs (non-graminoid her-
baceous plants), and woody vegetation (shrubs and trees). A small number of trnL sequences
(� 2%) could not be distinguished between forbs and graminoids, and were not included in
downstream analysis. OTU tables for both trnL data and the 16S rRNA data were square root-
transformed, and the Bray-Curtis method was used to generate distance matrices for multivari-
ate statistical analysis, namely principal coordinates analysis (PCoA) and PERMANOVA in
the PRIMER 6.1.12 & PERMANOVA + 1.0.2 software package [55]. PERMANOVA indicated
that diet and gut community composition were not significantly different between the sexes or
between adults and subadults (P = 0.53), so we combined all these non-calf bison prior to fur-
ther analysis. We used repeated measures ANOVA with Bonferroni correction to test for the
effect of time on the relative abundance of the three plant functional groups, the ten most
abundant plant species, and the three most abundant microbial phyla using the Tukey’s Honest
Significant Difference (HSD) post-hoc test [56,57]. We used linear regression to test the rela-
tionship between the proportions of plant functional groups and microbial phyla. Finally, we
fit quadratic curves to the mean proportions of each plant growth habit over the growing
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season in the bison diet. Repeated measures ANOVA, Tukey’s HSD, linear regression, and qua-
dratic fitting were all conducted in the R statistical package [58].

Results

Diet
Across 11 sampling dates spanning 166 days, analysis of bison feces revealed 44 unique trnL
sequences, representing up to 73 different plant species in the bison diet. Dietary composition
varied seasonally (P< 0.001, S2 Table and S1 Fig). The four most abundant clusters (groups of
species with a single trnL sequence) were the Achillea forb cluster (Achillea millefolium, Chloris
verticillata), the Ageratina forb cluster (Ageratina altissima, Ambrosia artemisiifolia, Ambrosia
psilostachya, Ambrosia trifida, Antennaria neglecta, Echinacea angustifolia,Helianthus maxi-
miliani,Helianthus tuberosus, Ratibida pinnata, Silphium laciniatum, Taraxacum officinale,
and Euphorbia corollata), the Andropogon graminoid cluster (Andropogon gerardii, Bothrio-
chloa bladhii, Bothriochloa laguroides, and Schizachyrium scoparium), and the Oligoneuron
forb cluster (Oligoneuron rigidum, Solidago canadensis, Solidago missouriensis, Solidago spe-
ciosa, Symphyotrichum ericoides, and Symphyotrichum laeve). Plotting the relative abundance
of plants by growth habit over time (Fig 1), bison consumption of woody vegetation was greater

Fig 1. Changes in plant diet as indicated by shifts in the relative abundance of trnL chloroplast gene sequences. Plant species were grouped by
growth habit (forb, graminoid, and woody). The effect of time in each dataset was tested using repeated measures ANOVA with Bonferroni correction. All
three functional groups exhibited significant temporal change in proportion of the diet (P < 0.05).

doi:10.1371/journal.pone.0142409.g001
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early and late in the growing season than in mid-season (P< 0.001, quadratic fit: y = 0.55–
0.0025�DOY + 7.31�10−5�(DOY-178.2)2; DOY = Day of Year). Ceanothus herbaceus, an acti-
norhizal N2-fixing shrub, was the primary woody species consumed. This species exhibited a
significant change in proportion over the growing season (P< 0.001), contributing on average
as many as 56% of the sequences in the spring and 60% in the fall.

Consumption of herbaceous species peaked in the middle of the season (Fig 1, y = 0.44
+ 0.0024�DOY–7.3�10−5�(DOY-178.2)2; P< 0.05). At their greatest relative abundance, 84%
of the sequences on average could come from forbs. Lespedeza violacea, a legume, was the most
abundant forb during the summer. Its proportion in the diet also changed significantly over
time (P< 0.05), with as many as 77% of the dietary sequences on average coming from this
species. The Oligoneuron cluster was another predominant group of forbs to exhibit significant
temporal change (P< 0.05). The percentage of sequences derived from grasses was never
higher than 12% on average, and grasses were consumed more in summer than in spring or fall
(P< 0.001, Fig 2). The Andropogon cluster was the most abundant of the graminoid trnL clus-
ters, but individually it did not show significant change over time (P> 0.1).

Fig 2. Plant relative abundance as indicated by sequencing of trnL chloroplast genes. Plants were identified to species by matching database
sequences at the 100% level. See Results for the identity of species in clusters. The effect of time in each dataset was tested using repeated measures
ANOVA with Bonferroni correction. Three taxa (Lespedeza violacea, Ceanothus herbaceus, and theOligoneuron forb cluster) exhibited significant temporal
change in proportion of the diet (P < 0.01).

doi:10.1371/journal.pone.0142409.g002
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Gut microbiota
Using 16S rRNA gene sequence data, we identified 46,061 bacterial species, 355 archaeal spe-
cies, and 7 unclassified microbial species in the sampled bison during the growing season. Gut
microbial community composition varied over time (P< 0.001, S2 Table and S1 Fig). The
three most abundant microbial phyla were Firmicutes (53% of sequences on average), Bacteroi-
detes (33%) and Tenericutes (4%). The Firmicutes phylum was dominated by taxa within the
Clostridiales order, while taxa within the Bacteroidetes order were the dominant Bacteroidales.
Finally, Tenericutes consisted entirely of taxa within theMollicutes class, which was comprised
entirely of the putative order RF39 (S3 Table). Although there was no significant relationship
between the proportion of sequences from graminoid, forb, or woody plants and the relative
abundance of Firmicutes, Bacteroidetes, or Tenericutes (P> 0.05), the phylum Tenericutes
exhibited significant temporal change in relative abundance over the growing season, increas-
ing more than twofold from about 2% of the gut microbial community in April to about 5% in
May (P< 0.001, S3 Table and Fig 3).

Fig 3. Relative abundance of microbial phyla as indicated by sequencing of 16S ribosomal RNA genes. The effect of time on each microbial phylum
was tested using repeated measures ANOVA with Bonferroni correction. The phylum Tenericutes exhibited a significant shift in relative abundance over the
growing season (P < 0.001).

doi:10.1371/journal.pone.0142409.g003
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Discussion

Diet
Bison are considered to be primarily grazers [2–4], but in this study the proportion of grass
chloroplast sequences recovered from fecal samples was relatively low during the summer.
This could imply that the proportion of chloroplasts ingested from grass biomass was relatively
low. The present study did not quantify forage availability or compute preference indices, but
previous research has shown good correspondence between the relative amounts of biomass
and sequence abundances in feeding trials [49]. However, the relatively low percentage of grass
trnL sequences could be due to preferential degradation of grass DNA during passage through
the gastrointestinal tract. Alternatively, differences in protein concentration among plants are
likely to be associated with differences in chloroplast density, so high-protein plants could be
over-represented in the trnL libraries relative to biomass intake. Further research is needed to
determine if the proportion of trnL sequences in fecal material accurately reflects the consump-
tion of the respective plants. Because some plant species could not be distinguished using the
current method, future work could improve taxonomic resolution by using a different trnL
primer pair than g-h, such as c-h or c-d, which produce longer sequences [41], or by incorpo-
rating additional loci, such as rbcL, into the identification system [59,60]. Nevertheless, we can
use the data presented here to assess changes in the relative intake of plant taxa over time.

Our results from trnL sequencing indicate that plains bison at Konza shift their diet among
high-protein plant species seasonally. In the spring and fall, intake of Ceanothus herbaceus, an
N2-fixing shrub, is relatively high. During the summer, bison consumption of N2-fixing
legumes like Lespedeza violacea andMimosa nuttallii peaks (Fig 2). This pattern may be driven
by plant phenology, as changes in the inferred diet of the bison roughly corresponded to plant
phenology at this site [61]. Herbivores generally prefer to feed on new growth, because fresh
shoots of a given type of plant are higher in moisture and nutrient content (including protein),
and lower in fiber and secondary metabolites, making them both more palatable and more
nutritious, even for grazers [62]. The bison’s diet was likely influenced by both the availability
of and preference for nutritious vegetation [26,63], with the bison appearing to favor high-pro-
tein plant species and life stages [24,27,49].

Many ruminants in both the Afrotropic and Holarctic ecozones exhibit seasonal variation
in plant consumption [64–67], and ruminant species that do not change diet with the seasons
change location instead [17,68–70]. Domestic cattle [71], European wisent (Bison bonasus)
[72], and North American bison [21,73] are all among the temperate ruminants that take
advantage of preferred vegetation during the summer, and tolerate suboptimal vegetation dur-
ing the winter. Our results appear to corroborate this pattern in bison. Fresh shoots of forbs
and graminoids in summer are likely relatively high in protein and relatively low in secondary
metabolites [62,74,75]. Woody shrubs selected in spring and fall, such as Ceanothus, are poten-
tially high in secondary metabolites [74–76], but also high in protein [77–79]. Thus, like other
ruminants [80–82], bison appear to exploit more nutritious forage during the growing season,
but still accept less nutritious forage outside the growing season [27,63].

The relative abundance of eudicots in the bison diet raises questions about the degree to
which bison should be considered obligate grazers [4,83,84]. Their broad mouth, massive
shoulders, and low-slung head allow them to crop vegetation close to the ground [85–87], and
their large reticulorumen facilitates digesting large amounts of low-nutrient graminoids [88].
However, our work shows that North American bison, like wisent and cattle, supplement their
diet with more nutritious forbs and woody species throughout the growing season. Bison and
Bos species, like their common ancestor Leptobos, have adaptations for grazing [89]. However,
today’s plains bison subspecies (B. bison bison) is thought to have a more grass-dominated diet
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than fossil Bison populations [90,91], the contemporary wood bison subspecies (B. bison atha-
bascae) [92], and European wisent (the closest living relative of the American bison species).
Yet this does not mean that plains bison do not browse or utilize non-graminoids [40]. The
molecular evidence presented here suggests that the dependence of Bison species on grasses
might be more labile than previously thought.

Microbiota
As in other mammals, Firmicutes and Bacteroidetes were the most abundant bacterial phyla in
the bison digestive tract [93–95]. As in other studies showing that gut microbial community
composition can be structured by diet [96–99], we found correspondence between major
microbial phyla and dietary composition. In the change from spring to summer, Tenericutes
became significantly more abundant (P< 0.05, S3 Table and Fig 3). This increase may be
driven by members of this phylum that preferentially metabolize simple sugars [100], which
could have been associated with higher caloric and protein yields in the bison diet during sum-
mer and fall [101]. Together, these results highlight that there are subtle but significant shifts in
gut bacterial community composition that correspond to seasonal changes in the bison diet.
The changes we observed are unlikely to be due to the influx of bacteria adhering to ingested
plant matter, for although some microbes (and their DNA) can survive passage through the
digestive tract [102], the vast majority of dominant bacterial taxa in fecal samples are rarely
found in the phyllosphere (see [97] and [103]). Factors contributing to this difference include
the harsh environment of the stomach [104], differences between the enteric and ambient envi-
ronments [105], and strong competition from established members of the gut microbial com-
munity in mature animals [106–108]. Thus, the shift in microbial communities observed here
are most likely to reflect shifts in enteric communities more than phyllosphere communities.

Although we do not know the impact of this microbial community shift on bison health, the
results of the present study indicate that gut microbial communities are not static, and that
even presumably healthy animals can experience significant temporal variability in gut micro-
bial community composition.

Supporting Information
S1 Fig. Changes in the composition of (A) diet and (B) gut microbiota over time, as indi-
cated by trnL chloroplast genes and 16S ribosomal RNA genes, respectively. Plot depicts pri-
mary axis of principal coordinate analysis (PCoA) for relative abundance data. In PCoA, the
first axis accounts for the greatest amount of variation in the dataset. The effect of time in each
dataset was tested using PERMANOVA (P< 0.001 in both cases).
(TIF)

S1 Table. Summary of 44 operational taxonomic units based on plants sharing the same
trnL sequences, representing 73 separate plant species.
(XLSX)

S2 Table. Table showing results from the principal coordinate analysis (PCoA).
(XLSX)

S3 Table. Heat map showing relative abundance of microbial phyla over time, based on
sequences recovered from the feces of free-ranging bison. Numbers indicate mean relative
abundance. Colors indicate z-score, with red representing positive z-scores, blue representing
negative z-scores, and brightness of color representing absolute value of z-scores.
(TIF)

American Bison Diet and Gut Microbiota

PLOS ONE | DOI:10.1371/journal.pone.0142409 November 12, 2015 9 / 14

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0142409.s001
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0142409.s002
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0142409.s003
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0142409.s004


Acknowledgments
We thank Donna Berg-Lyons, Jessica Henley, Chris Lauber, and Jonathan Leff, for their assis-
tance with molecular analysis. Gene Towne collected the bison fecal material for this study.

Author Contributions
Conceived and designed the experiments: GTB JMC. Performed the experiments: GTB. Ana-
lyzed the data: GTB JMCMSR NF. Contributed reagents/materials/analysis tools: GTB JMC
MSR NF. Wrote the paper: GTB JMCMSR NF.

References
1. Knapp AK, Blair JM, Briggs JM, Collins SL, Hartnett DC, Johnson LC, et al. (1999) The keystone role

of bison in North American tallgrass prairie. Bioscience 49: 39–50.

2. Peden DG, Van Dyne GM, Rice RW, Hansen RM (1974) The trophic ecology of Bison bison L. on
shortgrass plains. J Appl Ecol 11: 489–497.

3. Reynolds H, Hansen R, Peden D (1978) Diets of the Slave River lowland bison herd, Northwest Terri-
tories, Canada. J Wildl Manage 42: 581–590.

4. Coppedge BR, Leslie DM, Shaw JH (1998) Botanical composition of bison diets on tallgrass prairie in
Oklahoma. J Range Manag 51: 379–382.

5. Van Soest PJ (1994) Nutritional Ecology of the Ruminant. 2nd ed. Ithaca, New York: Cornell Univer-
sity Press. 488 p.

6. Waggoner V, Hinkes M (1986) Summer and fall browse utilization by an Alaskan bison herd. J Wildl
Manage 50: 322–324.

7. Painter LE, Ripple WJ (2012) Effects of bison on willow and cottonwood in northern Yellowstone
National Park. For Ecol Manage 264: 150–158. doi: 10.1016/j.foreco.2011.10.010

8. Albon SD, Langvatn R (1992) Plant phenology and the benefits of migration in a temperate ungulate.
Oikos 65: 502–513.

9. Villalba JJ, Provenza FD, Bryant JP (2002) Consequences of the interaction between nutrients and
plant secondary metabolites on herbivore selectivity: benefits or detriments for plants? Oikos 97:
282–292.

10. Villalba JJ, Provenza FD, Han G, Provenza D (2004) Experience influences diet mixing by herbivores:
implications for plant biochemical diversity. Oikos 107: 100–109.

11. Drent R, Ebbinge B, Weijand B (1978) Balancing the energy budgets of arctic-breeding geese
throughout the annual cycle: a progress report. Verhandlungen der Ornithol Gesellschaft Bayern 23:
239–263.

12. Drent R, Eichhorn G, Flagstad A, Graaf A, Litvin K, Stahl J (2007) Migratory connectivity in Arctic
geese: spring stopovers are the weak links in meeting targets for breeding. J Ornithol 148: 501–514.
doi: 10.1007/s10336-007-0223-4

13. Graaf SAJ Van Der, Stahl J, Klimkowska A, Bakker JP, Drent RH (2006) Surfing on a green wave–
how plant growth drives spring migration in the Barnacle Goose Branta leucopsis. Ardea 94: 567–
578.

14. vanWijk RE, Kölzsch A, Kruckenberg H, Ebbinge BS, Müskens GJDM, Nolet BA (2012) Individually
tracked geese follow peaks of temperature acceleration during spring migration. Oikos 121: 655–
664. doi: 10.1111/j.1600-0706.2011.20083.x

15. Smallidge ST, Baker TT, VanLeeuwen D, Gould WR, Thompson BC (2010) Elk distributions relative
to spring normalized difference vegetation index values. Int J Ecol 2010: 1–10. doi: 10.1155/2010/
579808

16. Sawyer H, Kauffman MJ (2011) Stopover ecology of a migratory ungulate. J Anim Ecol 80: 1078–
1087. doi: 10.1111/j.1365-2656.2011.01845.x PMID: 21545586

17. Bischof R, Loe LE, Meisingset EL, Zimmermann B, Van Moorter B, Mysterud A (2012) A migratory
northern ungulate in the pursuit of spring: jumping or surfing the green wave? Am Nat 180: 407–424.
doi: 10.1086/667590 PMID: 22976006

18. Larson L, Murdock G (1989) Small bison herd utilization of tallgrass prairie. North Am Prairie Conf
Proc 50: 243–245.

19. Coppock DL, Detling JK (1986) Alteration of bison and black-tailed prairie dog grazing interaction by
prescribed burning. J Wildl Manage 50: 452–455.

American Bison Diet and Gut Microbiota

PLOS ONE | DOI:10.1371/journal.pone.0142409 November 12, 2015 10 / 14

http://dx.doi.org/10.1016/j.foreco.2011.10.010
http://dx.doi.org/10.1007/s10336-007-0223-4
http://dx.doi.org/10.1111/j.1600-0706.2011.20083.x
http://dx.doi.org/10.1155/2010/579808
http://dx.doi.org/10.1155/2010/579808
http://dx.doi.org/10.1111/j.1365-2656.2011.01845.x
http://www.ncbi.nlm.nih.gov/pubmed/21545586
http://dx.doi.org/10.1086/667590
http://www.ncbi.nlm.nih.gov/pubmed/22976006


20. Coppedge BR, Shaw JH (1998) Bison grazing patterns on seasonally burned tallgrass prairie. J
Range Manag 51: 258–264.

21. Schuler KL, Leslie DM, Shaw JH, Maichak EJ (2006) Temporal-spatial distribution of American bison
(Bison bison) in tallgrass prairie fire mosaic. J Mammal 87: 539–544.

22. Biondini ME, Steuter AA, Hamilton RG (2013) Bison use of fire-managed remnant prairies. J Range
Manag 52: 454–461.

23. Coppock DL, Detling JK, Ellis JE, Dyer MI (1983) Plant-herbivore interactions in a North American
mixed-grass prairie. I. Effects of black-tailed prairie dogs on intraseasonal aboveground plant biomass
and nutrient dynamics and plant species diversity. Oecologia 56: 1–9.

24. Coppock D, Ellis J, Detling J, Dyer M (1983) Plant-herbivore interactions in a North American mixed-
grass prairie. II. Responses of bison to modification of vegetation by prairie dogs. Oecologia 56: 10–
15.

25. Krueger K (1986) Feeding relationships among bison, pronghorn, and prairie dogs: an experimental
analysis. Ecology 67: 760–770.

26. Fortin D, Fryxell JM, Pilote R (2002) The temporal scale of foraging decisions in bison. Ecology 83:
970–982. doi: 10.2307/3071906

27. Larter N, Gates C (1991) Diet and habitat selection of wood bison in relation to seasonal changes in
forage quantity and quality. Can J Zool 69: 2677–2685.

28. Varel VH, Dehority BA (1989) Ruminal cellulolytic bacteria and protozoa from bison, cattle-bison
hybrids, and cattle fed three alfalfa-corn diets. Appl Environ Microbiol 55: 148–153. PMID: 2705767

29. Schwab C, Cristescu B, Northrup JM, Stenhouse GB, Gänzle M (2011) Diet and environment shape
fecal bacterial microbiota composition and enteric pathogen load of grizzly bears. PLoS One 6:
e27905. doi: 10.1371/journal.pone.0027905 PMID: 22194798

30. Dittmer J, Lesobre J, Raimond R, Zimmer M, Bouchon D (2012) Influence of changing plant food
sources on the gut microbiota of saltmarsh detritivores. Microb Ecol 64: 814–825. doi: 10.1007/
s00248-012-0056-4 PMID: 22614939

31. de Menezes AB, Lewis E, O’DonovanM, O’Neill BF, Clipson N, Doyle EM (2011) Microbiome analysis
of dairy cows fed pasture or total mixed ration diets. FEMSMicrobiol Ecol 78: 256–265. doi: 10.1111/
j.1574-6941.2011.01151.x PMID: 21671962

32. Kohl KD, Dearing MD (2012) Experience matters: prior exposure to plant toxins enhances diversity of
gut microbes in herbivores. Ecol Lett 15: 1008–1015. doi: 10.1111/j.1461-0248.2012.01822.x PMID:
22715970

33. McCann JC, Wickersham TA, Loor JJ (2014) High-throughput methods redefine the rumen micro-
biome and its relationship with nutrition and metabolism. Bioinform Biol Insights 8: 109–125. doi: 10.
4137/BBI.S15389Received. PMID: 24940050

34. White RG, Trudell J (1980) Habitat preference and forage consumption by reindeer and caribou near
Atkasook, Alaska. Arct Alp Res 12: 511–529. doi: 10.1657/1523-0430(07–021)

35. Odo BI, Omeje FU, Okwor JN (2001) Forage species availability, food preference and grazing behav-
iour of goats in southeastern Nigeria. Small Rumin Res 42: 161–166. doi: 10.1016/S0921-4488(01)
00228-0

36. Udeh I, Isikwenu JO, Obika GC (2013) Forage species availability, preference, and grazing behavior
of mutur and zebu cattle in Asaba, Delta State, Nigeria. Online J Anim Feed Res 3: 197–201.

37. Krueger WC (1972) Evaluating animal forage preference. J RangeManag 25: 471–475.

38. Vreede G Van, Bradley LC, Bryant FC, Deliberto TJ (1989) Evaluation of forage preference indices for
white-tailed deer. J Wildl Manage 53: 210–213.

39. Valentini A, Miquel C, Nawaz MA, Bellemain E, Coissac E, Pompanon F, et al. (2009) New perspec-
tives in diet analysis based on DNA barcoding and parallel pyrosequencing: the trnL approach. Mol
Ecol Resour 9: 51–60. doi: 10.1111/j.1755-0998.2008.02352.x PMID: 21564566

40. Kowalczyk R, Taberlet P, Coissac E, Valentini A, Miquel C, Kamiński T, et al. (2011) Influence of man-
agement practices on large herbivore diet—Case of European bison in Białowieża Primeval Forest
(Poland). For Ecol Manage 261: 821–828. doi: 10.1016/j.foreco.2010.11.026

41. Taberlet P, Coissac E, Pompanon F, Gielly L, Miquel C, Valentini A, et al. (2007) Power and limitations
of the chloroplast trnL (UAA) intron for plant DNA barcoding. Nucleic Acids Res 35: e14. doi: 10.1093/
nar/gkl938 PMID: 17169982

42. Frey JC, Pell AN, Berthiaume R, Lapierre H, Lee S, Ha JK, et al. (2010) Comparative studies of micro-
bial populations in the rumen, duodenum, ileum and faeces of lactating dairy cows. J Appl Microbiol
108: 1982–1993. doi: 10.1111/j.1365-2672.2009.04602.x PMID: 19863686

American Bison Diet and Gut Microbiota

PLOS ONE | DOI:10.1371/journal.pone.0142409 November 12, 2015 11 / 14

http://dx.doi.org/10.2307/3071906
http://www.ncbi.nlm.nih.gov/pubmed/2705767
http://dx.doi.org/10.1371/journal.pone.0027905
http://www.ncbi.nlm.nih.gov/pubmed/22194798
http://dx.doi.org/10.1007/s00248-012-0056-4
http://dx.doi.org/10.1007/s00248-012-0056-4
http://www.ncbi.nlm.nih.gov/pubmed/22614939
http://dx.doi.org/10.1111/j.1574-6941.2011.01151.x
http://dx.doi.org/10.1111/j.1574-6941.2011.01151.x
http://www.ncbi.nlm.nih.gov/pubmed/21671962
http://dx.doi.org/10.1111/j.1461-0248.2012.01822.x
http://www.ncbi.nlm.nih.gov/pubmed/22715970
http://dx.doi.org/10.4137/BBI.S15389
http://dx.doi.org/10.4137/BBI.S15389
http://www.ncbi.nlm.nih.gov/pubmed/24940050
http://dx.doi.org/10.1657/1523-0430(07021)
http://dx.doi.org/10.1016/S0921-4488(01)00228-0
http://dx.doi.org/10.1016/S0921-4488(01)00228-0
http://dx.doi.org/10.1111/j.1755-0998.2008.02352.x
http://www.ncbi.nlm.nih.gov/pubmed/21564566
http://dx.doi.org/10.1016/j.foreco.2010.11.026
http://dx.doi.org/10.1093/nar/gkl938
http://dx.doi.org/10.1093/nar/gkl938
http://www.ncbi.nlm.nih.gov/pubmed/17169982
http://dx.doi.org/10.1111/j.1365-2672.2009.04602.x
http://www.ncbi.nlm.nih.gov/pubmed/19863686


43. Romero-Pérez G a, Ominski KH, McAllister T a, Krause DO (2011) Effect of environmental factors
and influence of rumen and hindgut biogeography on bacterial communities in steers. Appl Environ
Microbiol 77: 258–268. doi: 10.1128/AEM.01289-09 PMID: 21075877

44. de Oliveira MNV, Jewell KA, Freitas FS, Benjamin LA, Tótola MR, Borges AC, et al. (2013) Character-
izing the microbiota across the gastrointestinal tract of a Brazilian Nelore steer. Vet Microbiol 164:
307–314. doi: 10.1016/j.vetmic.2013.02.013 PMID: 23490556

45. Lauber CL, Strickland MS, Bradford MA, Fierer N (2008) The influence of soil properties on the struc-
ture of bacterial and fungal communities across land-use types. Soil Biol Biochem 40: 2407–2415.
doi: 10.1016/j.soilbio.2008.05.021

46. Lauber CL, Hamady M, Knight R, Fierer N (2009) Pyrosequencing-based assessment of soil pH as a
predictor of soil bacterial community structure at the continental scale. Appl Environ Microbiol 75:
5111–5120. doi: 10.1128/AEM.00335-09 PMID: 19502440

47. Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, et al. (2010) QIIME
allows analysis of high- throughput community sequencing data. Nat Publ Gr 7: 335–336. doi: 10.
1038/nmeth0510-335

48. Altschul SF, GishW, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol
Biol 215: 403–410. doi: 10.1016/S0022-2836(05)80360-2 PMID: 2231712

49. Willerslev E, Davison J, Moora M, Zobel M, Coissac E, Edwards ME, et al. (2014) Fifty thousand
years of Arctic vegetation and megafaunal diet. Nature 506: 47–51. doi: 10.1038/nature12921 PMID:
24499916

50. Liu Z, Lozupone C, Hamady M, Bushman FD, Knight R (2007) Short pyrosequencing reads suffice for
accurate microbial community analysis. Nucleic Acids Res 35: e120. doi: 10.1093/nar/gkm541 PMID:
17881377

51. Bergmann GT, Bates ST, Eilers KG, Lauber CL, Caporaso JG, WaltersWA, et al. (2011) The under-
recognized dominance of Verrucomicrobia in soil bacterial communities. Soil Biol Biochem 43: 1450–
1455. doi: 10.1016/j.soilbio.2011.03.012 PMID: 22267877

52. Caporaso JG, Lauber CL, Walters W a, Berg-Lyons D, Lozupone CA, Turnbaugh PJ, et al. (2011)
Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample. Proc Natl Acad
Sci U S A: 1–7. doi: 10.1073/pnas.1000080107

53. Werner JJ, Koren O, Hugenholtz P, DeSantis TZ, Walters WA, Caporaso JG, et al. (2012) Impact of
training sets on classification of high-throughput bacterial 16s rRNA gene surveys. ISME J 6: 94–103.
doi: 10.1038/ismej.2011.82 PMID: 21716311

54. Cole JR, Chai B, Farris RJ, Wang Q, Kulam-Syed-Mohideen AS, McGarrell DM, et al. (2007) The ribo-
somal database project (RDP-II): introducing myRDP space and quality controlled public data.
Nucleic Acids Res 35: D169–D172. doi: 10.1093/nar/gkl889 PMID: 17090583

55. Leff JW, Fierer N (2013) Bacterial communities associated with the surfaces of fresh fruits and vegeta-
bles. PLoS One 8: e59310. doi: 10.1371/journal.pone.0059310 PMID: 23544058

56. Green RH (1993) Application of repeated measures designs in environmental impact and monitoring
studies. Aust J Ecol 18: 81–98.

57. Zar JH (2009) Biostatistical Analysis (5th Edition). 5th ed. Upper Saddle River, New Jersey: Pear-
son. 960 p.

58. R Core Team (2014) R: A language and environment for statistical computing. Available: http://www.r-
project.org/.

59. Jurado-Rivera J a, Vogler a. P, Reid C a.., Petitpierre E, Gomez-Zurita J (2009) DNA barcoding
insect-host plant associations. Proc R Soc B Biol Sci 276: 639–648. doi: 10.1098/rspb.2008.1264

60. García-Robledo C, Erickson DL, Staines CL, Erwin TL, KressWJ (2013) Tropical Plant–Herbivore
Networks: Reconstructing Species Interactions Using DNA Barcodes. PLoS One 8: e52967. doi: 10.
1371/journal.pone.0052967 PMID: 23308128

61. Craine JM, Wolkovich EM, Gene Towne E, Kembel SW (2012) Flowering phenology as a functional
trait in a tallgrass prairie. New Phytol 193: 673–682. doi: 10.1111/j.1469-8137.2011.03953.x PMID:
22074383

62. Craine JM (2009) Resource Strategies of Wild Plants. Princeton, New Jersey: Princeton University
Press. 352 p.

63. Fortin D, Fryxell JM, O’Brodovich L, Frandsen D (2003) Foraging ecology of bison at the landscape
and plant community levels: the applicability of energy maximization principles. Oecologia 134: 219–
227. doi: 10.1007/s00442-002-1112-4 PMID: 12647163

64. Watson LH, Owen-smith N (2002) Phenological influences on the utilization of woody plants by eland
in semi-arid shrubland. Afr J Ecol 40: 65–75.

American Bison Diet and Gut Microbiota

PLOS ONE | DOI:10.1371/journal.pone.0142409 November 12, 2015 12 / 14

http://dx.doi.org/10.1128/AEM.01289-09
http://www.ncbi.nlm.nih.gov/pubmed/21075877
http://dx.doi.org/10.1016/j.vetmic.2013.02.013
http://www.ncbi.nlm.nih.gov/pubmed/23490556
http://dx.doi.org/10.1016/j.soilbio.2008.05.021
http://dx.doi.org/10.1128/AEM.00335-09
http://www.ncbi.nlm.nih.gov/pubmed/19502440
http://dx.doi.org/10.1038/nmeth0510-335
http://dx.doi.org/10.1038/nmeth0510-335
http://dx.doi.org/10.1016/S0022-2836(05)80360-2
http://www.ncbi.nlm.nih.gov/pubmed/2231712
http://dx.doi.org/10.1038/nature12921
http://www.ncbi.nlm.nih.gov/pubmed/24499916
http://dx.doi.org/10.1093/nar/gkm541
http://www.ncbi.nlm.nih.gov/pubmed/17881377
http://dx.doi.org/10.1016/j.soilbio.2011.03.012
http://www.ncbi.nlm.nih.gov/pubmed/22267877
http://dx.doi.org/10.1073/pnas.1000080107
http://dx.doi.org/10.1038/ismej.2011.82
http://www.ncbi.nlm.nih.gov/pubmed/21716311
http://dx.doi.org/10.1093/nar/gkl889
http://www.ncbi.nlm.nih.gov/pubmed/17090583
http://dx.doi.org/10.1371/journal.pone.0059310
http://www.ncbi.nlm.nih.gov/pubmed/23544058
http://www.r-project.org/
http://www.r-project.org/
http://dx.doi.org/10.1098/rspb.2008.1264
http://dx.doi.org/10.1371/journal.pone.0052967
http://dx.doi.org/10.1371/journal.pone.0052967
http://www.ncbi.nlm.nih.gov/pubmed/23308128
http://dx.doi.org/10.1111/j.1469-8137.2011.03953.x
http://www.ncbi.nlm.nih.gov/pubmed/22074383
http://dx.doi.org/10.1007/s00442-002-1112-4
http://www.ncbi.nlm.nih.gov/pubmed/12647163


65. Tshabalala T, Dube S, Lent PC (2009) Seasonal variation in forages utilized by the African buffalo
(Syncerus caffer) in the succulent thicket of South Africa. Afr J Ecol 48: 438–445.

66. Van Der Merwe J, Marshal JP (2012) Hierarchical resource selection by impala in a savanna environ-
ment. Austral Ecol 37: 401–412. doi: 10.1111/j.1442-9993.2011.02297.x

67. Hjeljord O, Hövik N, Pedersen HB, Hovik N (1990) Choice of feeding sites by moose during summer,
the influence of forest structure and plant phenology. Holarct Ecol 13: 281–292.

68. Wilmshurst JF, Fryxell JM, Farm BP, Sinclair ARE, Henschel CP (1999) Spatial distribution of Seren-
geti wildebeest in relation to resources. Can J Zool 77: 1223–1232. doi: 10.1139/cjz-77-8-1223

69. Wilmshurst JF, Fryxell JM, Bergman CM (2000) The allometry of patch selection in ruminants. Proc R
Soc B Biol Sci 267: 345–349. doi: 10.1098/rspb.2000.1007

70. Pettorelli N, Weladji RB, Holand O, Mysterud A, Breie H, Stenseth NC, et al. (2005) The relative role
of winter and spring conditions: linking climate and landscape-scale plant phenology to alpine rein-
deer body mass. Biol Lett 1: 24–26. doi: 10.1098/rsbl.2004.0262 PMID: 17148119

71. Ganskopp D, Cruz R (1999) Selective differences between naive and experienced cattle foraging
among eight grasses. Appl Anim Behav Sci 62: 293–303. doi: 10.1016/S0168-1591(98)00233-0

72. Mysterud A, Bartoń KA, Jędrzejewska B, Krasiński ZA, Niedziałkowska M, Kamler JF, et al. (2007)
Population ecology and conservation of endangered megafauna: the case of European bison in Biało-
wieza Primeval Forest, Poland. Anim Conserv 10: 77–87. doi: 10.1111/j.1469-1795.2006.00075.x

73. Fortin D, Fortin M-E (2009) Group-size-dependent association between food profitability, predation
risk and distribution of free-ranging bison. Anim Behav 78: 887–892. doi: 10.1016/j.anbehav.2009.06.
026

74. Glasby J (1991) Dictionary Of Plants Containing Secondary Metabolites. Boca Raton, Florida: CRC
Press. 488 p.

75. Palo RT, Robbins CT (1991) Plant Defenses Against Mammalian Herbivory. Boca Raton, Florida:
CRC Press. 200 p.

76. Kie JG (1986) Nutritive quality of Ceanothus shrubs in California mixed conifer forest. J Range Manag
39: 521–526.

77. Sidahmed AE, Morris JG, Radosevich SR (1981) Chaparral diet of Spanish goats grazing. J Range
Manag 34: 33–35.

78. Sidahmed AE, Morris JG, Radosevich SR, Koong LJ (1983) Seasonal changes in composition and
intake of chaparral by Spanish goats. Anim Feed Sci Technol 8: 47–61.

79. Beck JL, Peek JM (2005) Great Basin summer range forage quality: do plant nutrients meet elk
requirements? West North Am Nat 65: 516–527.

80. Christianson D, Creel S (2013) A review of environmental factors affecting elk winter diets. J Wildl
Manage 71: 164–176.

81. Gad SD, Soorambail KS (2011) Diet composition and quality in Indian bison (Bos gaurus) based on
fecal analysis. Zoolog Sci 28: 264–267. doi: 10.2108/zsj.28.264 PMID: 21466343

82. Renecker LA, Hudson RJ (1986) Seasonal foraging rates of free-ranging moose. J Wildl Manage 50:
143–147.

83. Hofmann RR (1989) Evolutionary steps of ecophysiological adaptation and diversification of rumi-
nants: a comparative view of their digestive system. Oecologia 78: 443–457.

84. Coppedge BR, Engle DM, Toepfer CS, Shaw JH (1998) Effects of seasonal fire, bison grazing and cli-
matic variation on tallgrass prairie vegetation. Plant Ecol 139: 235–246.

85. Shrader AM, Owen-Smith N, Ogutu JO (2006) How a mega-grazer copes with the dry season: food
and nutrient intake rates by white rhinoceros in the wild. Funct Ecol 20: 376–384. doi: 10.1111/j.1365-
2435.2006.01107.x

86. WaldramMS, BondWJ, StockWD (2007) Ecological engineering by a mega-grazer: white rhino
impacts on a South African savanna. Ecosystems 11: 101–112. doi: 10.1007/s10021-007-9109-9

87. Steuer P, Clauss M, Südekum K-H, Hatt J-M, Silinski S, Klomburg S, et al. (2010) Comparative inves-
tigations on digestion in grazing (Ceratotherium simum) and browsing (Diceros bicornis) rhinocer-
oses. Comp Biochem Physiol A Mol Integr Physiol 156: 380–388. doi: 10.1016/j.cbpa.2010.03.006
PMID: 20227512

88. Hudson RJ, Frank S (1987) Foraging ecology of bison in aspen boreal habitats. J Range Manag 40:
71–75.

89. Palmqvist P, Gro DR, Arribas A, Farin R a (2003) Paleoecological reconstruction of a lower Pleisto-
cene large Zn) and ecomorphological approaches. 29: 205–229.

American Bison Diet and Gut Microbiota

PLOS ONE | DOI:10.1371/journal.pone.0142409 November 12, 2015 13 / 14

http://dx.doi.org/10.1111/j.1442-9993.2011.02297.x
http://dx.doi.org/10.1139/cjz-77-8-1223
http://dx.doi.org/10.1098/rspb.2000.1007
http://dx.doi.org/10.1098/rsbl.2004.0262
http://www.ncbi.nlm.nih.gov/pubmed/17148119
http://dx.doi.org/10.1016/S0168-1591(98)00233-0
http://dx.doi.org/10.1111/j.1469-1795.2006.00075.x
http://dx.doi.org/10.1016/j.anbehav.2009.06.026
http://dx.doi.org/10.1016/j.anbehav.2009.06.026
http://dx.doi.org/10.2108/zsj.28.264
http://www.ncbi.nlm.nih.gov/pubmed/21466343
http://dx.doi.org/10.1111/j.1365-2435.2006.01107.x
http://dx.doi.org/10.1111/j.1365-2435.2006.01107.x
http://dx.doi.org/10.1007/s10021-007-9109-9
http://dx.doi.org/10.1016/j.cbpa.2010.03.006
http://www.ncbi.nlm.nih.gov/pubmed/20227512


90. Feranec R (2004) Geographic variation in the diet of hypsodont herbivores from the Rancholabrean of
Florida. Palaeogeogr Palaeoclimatol Palaeoecol 207: 359–369. doi: 10.1016/j.palaeo.2003.09.031

91. Widga C (2006) Niche variability in late Holocene bison: a perspective from Big Bone Lick, KY. J
Archaeol Sci 33: 1237–1255. doi: 10.1016/j.jas.2005.12.011

92. Rivals F, Solounias N, Mihlbachler MC (2007) Evidence for geographic variation in the diets of late
Pleistocene and early Holocene Bison in North America, and differences from the diets of recent
Bison. Quat Res 68: 338–346. doi: 10.1016/j.yqres.2007.07.012

93. De Filippo C, Cavalieri D, Di Paola M, Ramazzotti M, Poullet JB, Massart S, et al. (2010) Impact of diet
in shaping gut microbiota revealed by a comparative study in children from Europe and rural Africa.
Proc Natl Acad Sci 107: 14691–14696. doi: 10.1073/pnas.1005963107 PMID: 20679230

94. Abdallah Ismail N, Ragab SH, Abd Elbaky A, Shoeib ARSS, Alhosary Y, Fekry D, et al. (2011) Fre-
quency of Firmicutes and Bacteroidetes in gut microbiota in obese and normal weight Egyptian chil-
dren and adults. Arch Med Sci 7: 501–507. doi: 10.5114/aoms.2011.23418 PMID: 22295035

95. Tilg H, Kaser A (2011) Gut microbiome, obesity, and metabolic dysfunction. J Clin Invest 121: 2126–
2132. doi: 10.1172/JCI58109.2126 PMID: 21633181

96. Ley RE, Hamady M, Lozupone C, Turnbaugh PJ, Ramey RR, Bircher JS, et al. (2008) Evolution of
mammals and their gut microbes. Science 320: 1647–1651. doi: 10.1126/science.1155725 PMID:
18497261

97. Ley RE, Lozupone C a, Hamady M, Knight R, Gordon JI (2008) Worlds within worlds: evolution of the
vertebrate gut microbiota. Nat Rev Microbiol 6: 776–788. doi: 10.1038/nrmicro1978 PMID: 18794915

98. Muegge BD, Kuczynski J, Knights D, Clemente JC, González A, Fontana L, et al. (2011) Diet drives
convergence in gut microbiome functions across mammalian phylogeny and within humans. Science
332: 970–974. doi: 10.1126/science.1198719 PMID: 21596990

99. Yatsunenko T, Rey FE, Manary MJ, Trehan I, Dominguez-Bello MG, Contreras M, et al. (2012)
Human gut microbiome viewed across age and geography. Nature 486: 222–227. doi: 10.1038/
nature11053 PMID: 22699611

100. Manurung SI (2012) Fermented whey permeate for piglets as a strategy to reduce post-weaning diar-
rhoea. Technical University of Denmark.

101. Craine JM, Towne EG, Tolleson D, Nippert JB (2013) Precipitation timing and grazer performance in a
tallgrass prairie. Oikos 122: 191–198. doi: 10.1111/j.1600-0706.2012.20400.x

102. David LA, Maurice CF, Carmody RN, Gootenberg DB, Button JE, Wolfe BE, et al. (2014) Diet rapidly
and reproducibly alters the human gut microbiome. Nature 505: 559–563. doi: 10.1038/nature12820
PMID: 24336217

103. Redford AJ, Bowers RM, Knight R, Linhart Y, Fierer N (2010) The ecology of the phyllosphere: geo-
graphic and phylogenetic variability in the distribution of bacteria on tree leaves. Environ Microbiol 12:
2885–2893. doi: 10.1111/j.1462-2920.2010.02258.x PMID: 20545741

104. von Rosenvinge EC, Song Y, White JR, Maddox C, Blanchard T, FrickeWF, et al. (2013) Immune sta-
tus, antibiotic medication and pH are associated with changes in the stomach fluid microbiota. ISME J
7: 1354–1366. doi: 10.1038/ismej.2013.33 PMID: 23466701

105. Costello EK, Stagaman K, Dethlefsen L, Bohannan BJM, Relman D a (2012) The application of eco-
logical theory toward an understanding of the humanmicrobiome. Science (80-) 336: 1255–1262.
doi: 10.1126/science.1224203 PMID: 22674335

106. Dethlefsen L, McFall-Ngai M, Relman D a (2007) An ecological and evolutionary perspective on
human-microbe mutualism and disease. Nature 449: 811–818. doi: 10.1038/nature06245 PMID:
17943117

107. Stecher B, Hardt WD (2011) Mechanisms controlling pathogen colonization of the gut. Curr Opin
Microbiol 14: 82–91. doi: 10.1016/j.mib.2010.10.003 PMID: 21036098

108. Kamada N, Chen GY, Inohara N, Núñez G (2013) Control of pathogens and pathobionts by the gut
microbiota. Nat Immunol 14: 685–690. doi: 10.1038/ni.2608 PMID: 23778796

American Bison Diet and Gut Microbiota

PLOS ONE | DOI:10.1371/journal.pone.0142409 November 12, 2015 14 / 14

http://dx.doi.org/10.1016/j.palaeo.2003.09.031
http://dx.doi.org/10.1016/j.jas.2005.12.011
http://dx.doi.org/10.1016/j.yqres.2007.07.012
http://dx.doi.org/10.1073/pnas.1005963107
http://www.ncbi.nlm.nih.gov/pubmed/20679230
http://dx.doi.org/10.5114/aoms.2011.23418
http://www.ncbi.nlm.nih.gov/pubmed/22295035
http://dx.doi.org/10.1172/JCI58109.2126
http://www.ncbi.nlm.nih.gov/pubmed/21633181
http://dx.doi.org/10.1126/science.1155725
http://www.ncbi.nlm.nih.gov/pubmed/18497261
http://dx.doi.org/10.1038/nrmicro1978
http://www.ncbi.nlm.nih.gov/pubmed/18794915
http://dx.doi.org/10.1126/science.1198719
http://www.ncbi.nlm.nih.gov/pubmed/21596990
http://dx.doi.org/10.1038/nature11053
http://dx.doi.org/10.1038/nature11053
http://www.ncbi.nlm.nih.gov/pubmed/22699611
http://dx.doi.org/10.1111/j.1600-0706.2012.20400.x
http://dx.doi.org/10.1038/nature12820
http://www.ncbi.nlm.nih.gov/pubmed/24336217
http://dx.doi.org/10.1111/j.1462-2920.2010.02258.x
http://www.ncbi.nlm.nih.gov/pubmed/20545741
http://dx.doi.org/10.1038/ismej.2013.33
http://www.ncbi.nlm.nih.gov/pubmed/23466701
http://dx.doi.org/10.1126/science.1224203
http://www.ncbi.nlm.nih.gov/pubmed/22674335
http://dx.doi.org/10.1038/nature06245
http://www.ncbi.nlm.nih.gov/pubmed/17943117
http://dx.doi.org/10.1016/j.mib.2010.10.003
http://www.ncbi.nlm.nih.gov/pubmed/21036098
http://dx.doi.org/10.1038/ni.2608
http://www.ncbi.nlm.nih.gov/pubmed/23778796

