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Abstract
Surfers often wear wetsuits while paddling in the ocean. This neoprene covering may be

beneficial to upper extremity movement by helping to improve proprioceptive acuity, or it

may be detrimental by providing increased resistance. The purpose of this study was to

evaluate the effects of wearing a wetsuit on muscle activation, upper extremity motion,

heart rate, and oxygen consumption during simulated surfboard paddling in the laboratory.

Twelve male, recreational surfers performed two paddling trials at a constant workload on a

swim bench ergometer both with and without a wetsuit. Kinematic data and EMG were

acquired from the right arm via motion capture, and oxygen consumption and heart rate

were recorded with a metabolic cart and heart rate monitor. Wearing a wetsuit had no signif-

icant effect on oxygen consumption or heart rate. A significant increase in EMG activation

was observed for the middle deltoid but not for any of the other shoulder muscle evaluated.

Finally, approximate entropy and estimates of the maximum Lyapunov exponent increased

significantly for vertical trajectory of the right wrist (i.e. stroke height) when a wetsuit was

worn. These results suggest that a 2mm wetsuit has little effect on the energy cost of pad-

dling at lower workloads but does affect arm motion. These changes may be the result of

enhanced proprioceptive acuity due to mechanical compression from the wetsuit.

Introduction
Wetsuits have become an important piece of surfing equipment. They are primarily utilized
to aid in thermoregulation for athletes performing in cooler water temperatures [1–3], but
research indicates that wetsuits have additional effects on human performance. For example,
wearing a wetsuit has been shown to improve swimming speed and energy efficiency in triath-
letes by increasing buoyancy and decreasing drag [4] [5]. In addition, the compressive effect of
a wetsuit has been shown to lead to changes in cardiovascular behavior [6] and decreases in
water retention and blood volume [7]. While it is unclear how these effects might benefit a surf-
ing athlete, the anecdotal observation that many surfers prefer to wear wetsuits even when
their thermoregulatory assistance is unnecessary (i.e. water temperatures exceeding 75°F) sug-
gests that there may be additional benefits to performance.
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One such wetsuit-related benefit might be associated with the biomechanics and control of
arm motion during repetitive paddling. From one perspective, neoprene may provide resis-
tance to arm motion, which may lead to increases in muscle activation and metabolic cost.
Wearing restrictive clothing has been shown to have a similar effect during other forms of
physical activity [8,9]. However, wearing a wetsuit might also affect arm motion through alter-
ations in proprioceptive feedback. Neoprene sleeves covering individual joints are often used
by athletes to improve performance, and many investigators have demonstrated that wearing
neoprene sleeves can improve joint position sense in both the knee [10–12] and shoulder [13].
While supporting data is relatively sparse, it is generally thought that neoprene sleeves can
enhance proprioception by stimulating mechanoreceptors, thereby leading to improved con-
trol and stability of a joint.

To date, evaluation of neoprene sleeves has focused primarily on changes in passive joint
position sensing [10–13]. While these data provide evidence that a neoprene sleeve may con-
tribute to enhanced proprioceptive acuity, they were recorded during isolated, single-joint
movements, often in situations where subjects were not required to move under their own
effort. Functional movements like surfboard paddling are inherently more complex because
they require coordinated interaction of multiple segments, careful activation of bi-articular
muscles, and voluntary planning and execution of the movement, as opposed to movement
caused by external manipulation. Since the paddling stroke is complex, and a wetsuit could the-
oretically influence proprioceptive acuity across multiple joints in the upper extremity, it is
unclear how a neoprene sleeve covering the entire arm might contribute to paddling perfor-
mance. Further, active, volitional motion has been shown to generate feedback that is inher-
ently more noisy and prone to error than the passive motion paradigms commonly used to
measure joint position sense [14]. Additional research is needed to determine whether neo-
prene sleeves can alter the volitional control of larger, more complex movements, and whether
such an effect might be achieved by wearing a wetsuit.

The study of surfboard paddling may provide insight to these questions. Neuromuscular
control of repetitive movements like the paddling stroke can be evaluated by examining pat-
terns of motion that occur over time using nonlinear analysis techniques [15–18]. These
approaches assume that successive movement cycles are interdependent and that variability
between cycles is a rich source of information about the nature of movement coordination.
This type of analysis yields information regarding the underlying structure or organization of
movement variability, rather than the average magnitude of variability, as is provided by stan-
dard deviation or coefficient of variance. Therefore, evaluating the relationships among stroke-
to-stroke deviations in motion can be useful for understanding control throughout the entire
paddling behavior. Some approaches to nonlinear analysis of time varying systems are based
upon complex network theory [19–25]. Examples of these include directed weighted complex
network analysis (DWCN) [20] and recurrence quantification analysis [25]. These techniques
are sometimes preferred because they are more robust to noise in the system. Other techniques
are based upon nonlinear dynamic system theory [15–18,26,27]. These approaches have been
utilized most often in previous studies of human movement. Examples of these include esti-
mates of maximal Lyapunov exponents (LyE) [17,18], Approximate Entropy (ApEn) [16], and
detrended fluctuation analysis (DFA) [15,28].

Lyapunov exponents provide a measure of the rate of divergence over time of nearby trajec-
tories in state space. In essence, Lyapunov exponents provide a measure of the sensitivity of a
system to small perturbations, such as variations in stroke to stroke motion that occur naturally
with repetitive motion such as surfboard paddling. This behavior is often referred to as the
local dynamic stability of a time series [26,29]. In some situations, estimates of maximum Lya-
punov exponents are used to infer the amount of divergence from a behavioral attractor [30].
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However, while Lyapunov exponents can provide insight into certain aspects of the control of
movement, the relationship between this statistic and skilled human motion is somewhat
unclear. In some cases higher LyEs appear to be indicative of a novice learner or impaired neu-
romuscular control [27,31]. In other cases, lower values have been associated with peripheral
neuropathy [26] or musculoskeletal injury [32]. This complex relationship has lead researchers
to propose the idea that there exists an optimal, chaotic structure to movement variability [33].
Low values of LyE are associated with a more predictable, rigid, and inflexible system that is
limited in its ability to adapt to changing conditions and whose lack of appropriate variability
in repetitive movements may place an individual at greater risk for overuse injury [26,32]. Con-
versely, greater values of LyE are associated with a noisy, random, and unpredictable system
that is often associated with older adults and developing infants [27,31]. Both of these extremes
have been related with either a lack of movement skill or reduced health, and the ideal behavior
lies somewhere in between.

Approximate Entropy (ApEn) provides a measure of complexity or irregularity in a system
by estimating the probability that non-repeating patterns of data that begin in close proximity
will remain close when they are incremented forward by one step in the time series. Values of
ApEn that are close to 0 suggest that a system is highly regular, while values close to 2 suggest
that a system is highly irregular or complex. As an example, a periodic sine wave will exhibit a
value of ApEn close to 0.17, while the Lorenz attractor, a chaotic system, typically exhibits a
value of ApEn close to 0.5 [34]. When studying human movement, a lower level of complexity
is often associated with increased age [35], disease [36], and injury [37]. Higher levels of com-
plexity have been associated with greater skill or proficiency in human movement [38,39].

Detrended fluctuation analysis (DFA) provides an approach for quantifying statistical per-
sistence, or how closely the characteristics of a particular stroke are related to those of previous
and subsequent strokes [40,41]. While understanding the statistical persistence of the paddling
stroke would be useful, the reliability of DFA has been shown to be sensitive to the length of
the time series data [42]. Paddling trials of sufficient length (approximately 600 continuous
strokes) would be overly taxing for surfers and therefore DFA was not performed in the current
study.

The purpose of this study was to investigate the effect of wearing a wetsuit on paddling
motion in surfers. Two questions were addressed: 1) For a constant paddling velocity, does
wearing a wetsuit have an effect on muscle activation and energy use, and 2) does wearing a
wetsuit have an effect on the control of repetitive arm motion? Because previous literature has
reported that certain types of restrictive clothing can lead to increases in EMG and energy use
[8,9], it was hypothesized that wearing a wetsuit would have a similar effect. Further, because
previous literature has reported that proprioception can be enhanced while wearing neoprene
sleeves [10–13], it was also hypothesized that wearing a wetsuit would result in changes in the
control of arm motion, manifest as differences in arm kinematics, ApEn and LyE. Portions of
these data have been published in conference paper format [43].

Methods

Subjects
Twelve male, recreational surfers were recruited from the local surfing population (Table 1).
Each participant indicated that they engaged in surfing at least 8 hours per week on average
and that surfing was their primary form of exercise. All subjects completed a health history
questionnaire (AHA/ACSM Health/Fitness Facility Participation Screening Questionnaire)
and shoulder range of motion screen, which included assessment of motion in the sagittal and
frontal planes using standard goniometric techniques [44] and Apley’s scratch test [45].
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Subjects that did not meet normative levels of shoulder mobility and symmetry [44,45], or
those that reported pain during the shoulder screen did not participate. All subjects were free
of any cardiovascular, musculoskeletal, or neurological condition that might have affected per-
formance. All procedures were approved by the Institutional Review Board at California State
University, San Marcos (IRB# 2014–096), and all participants gave their written informed con-
sent prior to participation.

General Procedures
Each participant paddled at a submaximal level for 5 minutes while wearing a wetsuit and 5
minutes without a wetsuit, with a 15 minute rest in between. For each trial, participants were
given time to reach a physiological steady state during the first 3 minutes of paddling and data
were collected during the final 2 minutes. The same model of front-zip, neoprene jacket (2 mm
thickness) was utilized for all wetsuit trials. In order to avoid damage to the wireless EMG sen-
sors, the jackets remained dry. The order in which each trial was performed was randomized
across subjects.

Paddling was simulated in the laboratory using a commercially available swim bench
ergometer (VASA Inc., Essex Junction, VT) that was modified by rigidly attaching a short surf-
board to the top aspect of the bench (Fig 1). Participants’ hands were strapped to small paddles
that were attached to a cable and pulley mechanism that provided resistance by spinning a
small wind turbine that simulated water loads. Power generated by the subject was output in
real time to a small digital screen. In order to ensure a consistent effort subjects were asked to
maintain a power output as close to 20 Watts as possible for the duration of the trial. Subjects
were also asked to match their paddling cadence to an audible metronome at 25 bpm. This rate
and intensity of paddling was selected to approximate behavior when surfers paddle out from
shore, where a sustained paddle at lower intensity is often utilized. Power output and strokes
per minute were video recorded and analyzed offline to ensure subject adherence to these
parameters. Stroke rate was also determined from motion capture data (details provided
below). Trials with fluctuations greater than 2 standard deviations from the criterion values for
stroke rate or power output were considered outliers and were not included in the final analy-
sis. Arm movement was relatively unrestricted, though subjects were instructed to paddle in a
manner that was similar to their normal motion while in water. This included lifting their hand
above the level of the surfboard with each stroke to simulate bringing the hand out of the
water. To ensure consistent placement of the subject on the apparatus between trials, a small
grid was created on the top of the stationary surfboard.

Skin temperature was recorded each minute using a small, wireless iButton thermal sensor
(type DS1921G; Maxim/Dallas Semiconductor Corp., USA) that was taped to the lateral aspect
of the back at approximately T12. Oxygen consumption was measured at 15 second intervals
with a Metabolic Measurement System (type TrueOne 2400; ParvoMedics Inc., USA). A heart
rate monitor (type RCX5 receiver & T31 recorder, Polar, Finland) was strapped below the pec-
toralis major muscles of the subjects and heart rates were recorded at 5 second intervals.

Table 1. Subject Characteristics (n = 12).

Age [years] Height [m] Mass [kg] Surfing Experience [years]

Mean 33.1±8.6 1.82±0.07 79.9±9.4 21.8±12.4

Range 19–43 1.73–1.96 64.8–91.5 2–38

Values are reported as mean±SD

doi:10.1371/journal.pone.0142325.t001
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An 8 camera Vicon motion capture system was used to track reflective markers placed over
right arm of each subject at 120 Hz. Markers were placed over the head of the second metacar-
pal, the radial and ulnar styloid processes, the olecranon, the middle/lateral aspect of the upper
arm, the acromion process, and on the lower back. While wearing a wetsuit, the neoprene over
the surface of the shoulder can move significantly with respect to the skin and anatomical land-
marks. Therefore, the acromion process marker was placed on a short post (approximately 1.5
cm) that was attached directly to the skin for both trials. During the wetsuit trials, this marker
and post protruded through a small hole in the wetsuit. Surface EMG was utilized to record
muscle activity from the medial head of the triceps brachii, latissimus dorsi, infraspinatus, pec-
toralis major, the upper and middle trapezius, middle deltoid and the lumbar region of erector
spinae on the right hand side of the subject only. EMG data were captured at 960 Hz using a
Delsys Trigno wireless system that was synchronized with the motion capture system.

Data Analysis
Metabolic consumption, temperature, and heart rate data were analyzed off-line by finding the
mean for each subject across each 2 minute trial. All other calculations were performed using
custom routines written in MATLAB (R2014b, Natick, MA), the TISEAN software package
(version 3.0.1) [46], or software created by Perc [47] (mutual information and false nearest
neighbor calculations). The trajectory of the right wrist in the sagittal plane was utilized to
define the beginning and ending of each stroke as the point of greatest anterior (or cranial) dis-
placement of the hand. Stroke lengths, heights, widths, and durations, as well as shoulder range
of motion in the sagittal and frontal planes were then calculated across all defined and complete
strokes. These data were then analyzed for regularity and/or complexity using the Approximate
Entropy approach (ApEn, described below) and for local dynamic stability by calculating maxi-
mal Lyapunov exponents (LyE). Detrended fluctuation analysis (DFA) was not utilized here as
data files were considered too small to yield reliable results (approximately 50 strokes per trial)
[42]. Offline, EMG data were first rectified and low-pass filtered (4th order Butterworth, 40 Hz
cutoff). Muscle activation was then parsed into each individual stroke as defined by wrist
marker trajectory, and the average muscle activation profile was calculated for each muscle

Fig 1. Experimental setup.Modified swim bench ergometer, marker placement, and VO2 mask.

doi:10.1371/journal.pone.0142325.g001
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across all strokes. The peak level of activation, area under the EMG curve (linear envelope),
and burst duration were then calculated for each muscle under both paddling conditions.

Approximate entropy (ApEn) was calculated using an approach previously applied to the
analysis of gait and postural sway data [34,48]. This analysis began with a reduction of the
original time series data by calculating relevant features from each stroke such as length,
height, or duration. For example, the lengths of all strokes for the entire 2 minute wetsuit
trial for a particular subject were combined to form a data set X of length N. In this case,
Xm(i) = [x(i), x(i+1),. . .,x(i+m-1)] represents a vector segment of dimensionm taken from
the original data set X such that [Xm(1), Xm(2),. . .,Xm(N-m+1)] defines the complete set of
vector segments. In the equations below, a tolerance region r was also identified and used to
evaluate the distance between Xm(i) and Xm(j). For the current analysis, these values were
m = 2 and r = 0.25 x SD of X. These values were selected because previous analyses have
reported that good statistical validity can be achieved for time series with lengths between 50
and 5000 data points by setting these parameters in this range [48,49]. In addition, previous
analyses of human movement have also used similar values for m and r [50,51]. Consistent
use of these settings will facilitate comparison with previous work. ApEn(m,r,N) was then cal-
culated in three steps. First, Cm

i (r) can be defined as:

Cm
i ðrÞ ¼

1

N �m
SN�m

j¼1 Yðr� k XmðiÞ � XmðjÞ kÞ ð1Þ

where ||•|| denotes the distance between each Xm(i) and Xm(j) (calculated as the largest differ-
ence between respective scalar components) and Θ represents the Heaviside step function (Θ
(s) = 0 if s<0 and Θ(s) = 1 if s�1). Second, Fm(r) can be calculated as:

FmðrÞ ¼ 1

N �m
SN�m

j¼1 lnCm
j ð2Þ

and finally Approximate Entropy:

ApEnðm; r;NÞ ¼ FmðrÞ � Fmþ1ðrÞ ð3Þ

Calculation of Lyapunov exponents for wrist trajectory in each of the 3 dimensions was per-
formed using a combination of the TISEAN software package for estimation of divergence
curves [46], and MATLAB routines for calculating the slopes of those curves. Pre-processing of
data began with the reconstruction of the state space of each time series according to the
model:

XðtÞ ¼ ½xðtÞ; xðt þ tÞ; . . . ; xðt þ ðdE � 1Þt� ð4Þ

where X(t) represents the new state vector of dimension dE, which retains the properties of the
original time series, x(t), with time delay τ and embedding dimension dE. There are multiple
methods for estimating appropriate values for dE and τ for time series data [52–56]. These
methods do not always yield similar results [52,53]. Some of these techniques are based upon
the assumption that dE and τ are independent [29,55,56], while others assume that these two
parameters are closely related [53,54,57]. Further, most techniques require the assignment of
parameters such as tolerance regions which may also affect the outcome of the analysis. A
detailed explanation of each approach is beyond the scope of this work, but the reader is
directed to the references cited above. For the current data, the embedding delay (τ) was deter-
mined by finding the first minima of the average mutual information algorithm [29,55], and
the embedding dimension (dE) was selected using results from the false nearest neighbor algo-
rithm [56]. These approaches are used most frequently by researchers who study human
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movement (e.g. [26,27,30]), and consistency with previous work was sought here in order to
facilitate comparison. While an embedding dimension of 5 or 6 has been used previously for
repetitive motion of the ankle during gait [18,26,58], an embedding dimension of 4 (Fig 2) and
embedding delay of 20 were selected for the paddling data analyzed here.

The true maximum Lyapunov exponent for a system is defined by:

dðtÞ ¼ Delt ð5Þ
where D refers to the initial Euclidean distance between neighboring points, and d(t) refers to
their average separation in state space at time t. Note that λ is only well defined as D!0 and
t!1. Since it is not possible to approach these limits with physiological time series data, an
approximation for the finite-time, maximum Lyapunov exponent can be found by using the
log-transform of eq 5. Divergence curves were created here using the method described by
Rosenstein et al. [59]:

ln½djðiÞ� � lnDj þ l�ði � DtÞ ð6Þ

where dj(i) refers to the Euclidean distance of the jth pair of nearest neighbors following i dis-
crete time steps, and Dj refers to their initial Euclidean distance. The estimate of finite-time
maximal Lyapunov exponents (λ�) over all pairs of nearest neighbors requires the calculation
of a mean divergence curve (y) as follows:

yðiÞ ¼ 1

Dt

� �
½ln djðiÞ� ð7Þ

where [. . .] represents the average over all pairs. Using average stroke duration, the time of
each divergence curve was then normalized to number of strokes, and the slope was then calcu-
lated over both 0–1 stroke (“short-term”, λ�short) and 4–10 strokes (“long-term”, λ�long) (Fig
2). This approach is similar to that used in the analysis of ankle trajectory during gait (i.e. 0–1
stride and 4–10 strides) [18,26].

Paired t-tests were used to compare differences between wetsuit/no-wetsuit conditions for
each variable (α = 0.05). Though multiple comparisons can increase the probability for type I
error, statistical correction may not be appropriate for some of the variables included here as
they may not be independent of one another. Therefore, all p-values below 0.05 are highlighted
below.

Results

Arm Kinematics
Sagittal plane wrist trajectory during the paddling motion was significantly altered when sub-
jects wore a wetsuit. In particular, the vertical range of motion of the wrist trajectory increased
for the wetsuit condition (467.7±91.5mm vs 424.3±77.9mm, p = 0.019, Table 2, Fig 3). This
change in vertical range of motion resulted primarily from subjects shifting the lowest point
in their stroke upward: the minimum hand position per stroke reached significantly lower for
the wetsuit condition when compared to the no wetsuit condition (401.5±57.5mm vs 432.1
±52.4mm, p = 0.003) while the peak (upper) hand position per stroke was not different
between conditions (869.2±65.1mm vs 856.3±44.0mm, p>0.05). No differences in average
stroke length (970.0±64.2mm vs 971.6±76.9mm, p>0.05), stroke width (169.9±66.8mm vs
171.8±59.4mm, p>0.05), stroke duration (2.31±.3sec vs 2.28±0.3sec, p>0.05) or shoulder
range of motion in the sagittal (136.8±30.8° vs 128.5±15.5°, p>0.05) and transverse planes
(89.9±7.5° vs 91.8±13.8°, p>0.05) were found between conditions.
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Approximate Entropy and Maximal Lyapunov Exponents
Wearing a wetsuit resulted in a significant increase in ApEn for vertical range of motion of the
wrist trajectory in the sagittal plane (0.45±0.05 vs 0.39±0.09, p = 0.019, Table 2). Changes in
entropy were not statistically significant for stroke length, stroke width, stroke duration, and
shoulder range of motion in the sagittal or frontal planes. Wearing a wetsuit also resulted in a
significant increase in short term maximal Lyapunov exponents for the vertical trajectory of
the wrist (1.49±0.26 vs 1.38±0.28, p = 0.036, Table 2, Fig 4). Though average values for both
short and long term LyE were consistently greater when subjects wore a wetsuit, no statistically
significant differences were found for any other direction of wrist trajectory.

Muscle Activity
Wearing a wetsuit resulted in a significant increase in peak EMG activity for the middle deltoid
(0.14±0.08 vs 0.11±0.05, p = 0.041, Table 3, Fig 5). No significant differences in patterns of
muscle activation were found for triceps brachii, infraspinatus, latissimus dorsi, upper/mid tra-
pezius, or erector spinae between the wetsuit and no wetsuit conditions. This comparison

Fig 2. Left: Percent false nearest neighbors for a range of embedding dimensions for wrist trajectory in the vertical direction. An embedding
dimension of 4 was utilized for calculation of maximal Lyapunov exponents.Right: sample divergence curve used to calculate maximal Lyapunov
exponents for a single subject. Short term values were calculated over 0–1 stroke and long term values were calculated over 4–10 strokes.

doi:10.1371/journal.pone.0142325.g002

Table 2. Kinematic Results.

Antero-posterior [Stroke
Height]

Cranial-caudal [Stroke Length] Medio-lateral [Stroke Width]

Condition Wetsuit NW Wetsuit NW Wetsuit NW

Mean Excursion [mm] 467.7±91.5* 424.3±77.9 970.0±64.2 971.6±76.9 169.9±66.8 171.8±59.4

λshort (0–1 stroke) 1.49±0.26 1.38±0.28* 1.93±0.25 1.91±0.19 1.04±0.30 1.03±0.18

λlong (10 strokes) 0.035±0.036 0.027±0.029 0.047±0.044 0.041±0.030 0.022±0.024 0.021±0.023

Approximate Entropy 0.45±0.05* 0.39±0.09 0.46±0.13 0.43±0.11 0.50±0.11 0.48±0.09

Values are reported as mean±SD

* denotes p<0.05

doi:10.1371/journal.pone.0142325.t002
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included peak activation, burst duration, and area under the curve (linear envelope) for each
signal. High levels of motion artifact corrupted the signals from pectoralismajor for several
subjects due to periodic contact with the surfboard deck. Therefore these data were excluded
from further analysis.

Metabolic and Thermal Effects
No differences were noted in oxygen consumption between the wetsuit and no wetsuit condi-
tions (Table 4). Skin temperature was significantly higher during the wetsuit condition. All
readings of workload and cadence were consistent between the wetsuit and no wetsuit trials
and no subjects were excluded from the final analysis due to these variables.

Discussion
There were four primary results to this experiment. First, wearing a wetsuit resulted in a signifi-
cant increase in complexity (ApEn) and movement variability (LyE) for vertical wrist trajec-
tory. Second, wearing a wetsuit resulted in a significant increase in the peak activity of the
middle deltoid, but changes in activity were not noted in any of the other muscles studied here.
Third, while wearing a wetsuit did not result in any changes to shoulder range of motion, a sig-
nificant increase in the average vertical range of motion of the sagittal plane wrist trajectory
was noted. Finally, wearing a wetsuit did not result in any increase in oxygen consumption or
heart rate for simulated surfboard paddling at a constant velocity. Taken together, these results
suggest that when paddling at this particular rate (25 strokes/min) and intensity (20 Watts),
wearing a wetsuit does not result in any increase in metabolic cost but does contribute to
changes in muscle activity and paddling motion. These results support the hypothesis that a
wetsuit may provide enhanced proprioceptive acuity, but do not support the hypothesis that a
wetsuit provides increased resistance to the paddling motion.

Fig 3. Mean sagittal plane trajectory for the right wrist with and without a wetsuit.Horizontal line
represents and estimate for water level, though subjects paddled an ergometer in the absence of water. The
point of greatest anterior (caudal) position of the hand determined the beginning of the stroke, and the
propulsive and return phases occurred at approximately 20–70% (bottom of trajectory) and 70 to 20% (top of
trajectory) of the stroke cycle, respectively.

doi:10.1371/journal.pone.0142325.g003
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Muscle Activation
The EMG data demonstrate that muscle activation about the shoulder during the paddling
motion can be divided broadly into muscles that either contribute to 1) propulsion of the body
or 2) the return phase of the hand (i.e. scapular retraction and horizontal abduction and flexion
of the shoulder). Previous researchers investigating the swimming stroke have used the analo-
gous terms of “pull-through” and “recovery” [60]. In the current analysis, the greatest anterior
(caudal) position of the hand was defined as the beginning of the stroke (Fig 3). Therefore, the
propulsive phase corresponded roughly to the region bounded by 20 to 70% of the stroke dura-
tion, while the return phase was bounded roughly by 70 to 20% of the cycle, with a theoretical
“hand entry” likely occurring around 0–20% of the paddling stroke.

In the current EMG data, latissimus dorsi and triceps brachii experienced peak activation at
around 40 and 50% of the stroke cycle (i.e. mid-propulsive phase), respectively, suggesting that

Fig 4. Top: Three dimensional state space plots for a representative subject for wrist movement in the vertical direction. An embedding delay of 20
was used. Bottom: Rawwrist trajectory in the vertical direction.

doi:10.1371/journal.pone.0142325.g004
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these muscles contributed primarily to propulsion (Fig 4). In addition, erector spinae exhibited
peak activation during the mid-propulsive phase of the stroke, suggesting that its primary role
in the paddling motion is to provide stability for forceful shoulder and elbow extension on the
ipsilateral side. The remaining muscles, infraspinatus, mid and upper trapezius, and middle
deltoid, were most active at around 80–100% of the cycle, or during the middle of the return
phase. Upper trapezius and infraspinatus remained active longer than mid trapezius, suggest-
ing that its contribution may occur primarily during the middle of the return phase. Middle
deltoid was most active late in the return phase, but also exhibited a smaller peak at approxi-
mately 60% of the stroke, suggesting that it may also play a role in augmenting the propulsive
activity of latissimus dorsi and triceps brachii. In general, these results are comparable to those
obtained previously during free-style swimming, particularly the unique activation pattern of
the middle deltoid [60,61]. While this analysis provides an introductory layout of muscle acti-
vation surrounding the shoulder joint during surfboard paddling, additional study will be nec-
essary to discern activation patterns in greater detail, as well as the role of other muscles
including, supraspinatus, subscapularis, serratus anterior, and pectoralismajor.

Attractor Dynamics and Motor Learning
Many studies in motor learning are focused on the attractor dynamics that represent the output
of a motor system (e.g. [18,32,62,63]). This idea developed in part from Bernstein’s degree of
freedom problem [64] together with a more recent distinction between physiological degrees of
freedom and the dimension of the attractor dynamic (e.g. [65]). An attractor can be defined as
the solution or set of solutions to a particular movement problem toward which a system tends
to evolve. When perturbed slightly, a person’s performance remains in the neighborhood of
their behavioral attractor for that particular skill and typically does not deviate to a large
degree. The attractor dynamic is inherently complex because it integrates physiological degrees
of freedom, the coupling constraints between degrees of freedom, and the behavior of feedback
loops that operate on different time scales.

Approximate entropy (ApEn) provides a measure of the complexity of the output of a
motor system, which is often associated with the dimension of the attractor dynamic [65]. In
the current data, wearing a wetsuit resulted in an increase in the complexity of the vertical
range of motion, which has previously been associated with proficiency or learning a new
motor skill [38,39]. However, a decrease in complexity has also been associated with learning a

Table 3. Electromyography Results.

Peak [mV] Linear Envelope [mV*ms] Burst Duration [% of stroke]

Condition Wetsuit NW Wetsuit NW Wetsuit NW

Triceps Brachii 0.11±0.07 0.11±0.04 5.4±2.0 5.3±2.4 47.4±14.3 49.6±13.7

Upper Trapezius 0.06±0.03 0.06±0.03 5.6±2.5 4.9±2.5 79.0±11.1 74.8±11.4

Mid Trapezius 0.15±0.10 0.14±0.06 14.7±8.6 13.8±7.0 74.7±11.1 75.6±10.7

Medial Deltoid 0.14±0.08 0.11±0.05* 10.1±5.5 9.8±4.1 74.1±15.7 81.4±8.9

Infraspinatus 0.10±0.09 0.09±0.06 9.5±6.5 9.1±5.0 79.1±7.7 79.8±8.7

Latissimus Dorsi 0.12±0.09 0.13±0.08 8.2±4.2 8.6±5.8 58.6±17.3 58.0±16.1

Erector Spinae 0.06±0.03 0.06±0.02 5.9±2.2 5.7±2.3 73.2±17.2 79.5±14.1

Values are reported as mean±SD

* denotes p<0.05

doi:10.1371/journal.pone.0142325.t003
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Fig 5. Mean EMG activation of select shoulder and trunk muscles throughout the paddling stroke.
EMG data were rectified, filtered, and averaged across all complete strokes per subject, then across all
subjects. The horizontal access defines the percentage of the stroke cycle (0% represents the beginning,
100% represents the end of the cycle). Grey lines represent the no wetsuit condition, while the black lines
represent the wetsuit condition.

doi:10.1371/journal.pone.0142325.g005
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motor skill, suggesting that the direction of change in response to practice (increase vs
decrease) can vary and is unique to the task being learned [62,66].

The surfers utilized in the present study were all proficient paddlers. Therefore, the observed
change in complexity is likely not attributable to practice effects, but rather a change in control
strategy which could have been induced by the presence of additional sensory information. While
there is little direct evidence to support this theory, evidence does appear to exist for the converse;
individuals with impaired sensory input have been shown to demonstrate a decrease in move-
ment related complexity [35,36]. In addition, there is evidence to support the idea that a neoprene
sleeve can provide additional proprioceptive input [10–12]. Both of these ideas support the theory
that enhanced proprioceptive input contributed to the observed changes in ApEn observed here.

Estimates of maximal Lyapunov exponents can provide a measure of variability or attractor
divergence for a motor system [30]. Lower values of LyE represent a system that stays in the
neighborhood of the attractor when perturbed slightly and converges toward the attractor rela-
tively quickly as time is incremented forward. This concept is often referred to as local dynamic
stability, and is related to the overall variability of the output of a system [29]. Fig 4 depicts a
graphical representation of the attractor for wrist movement in the Y direction in which a notice-
able increase in variability of the state-space representation (i.e. higher LyE) is present for the wet-
suit condition. Previous research suggests that there is an optimal level of movement variability
that is not too low (i.e. inflexible) or too great (noisy) [33]. Without knowledge of a “normal” or
baseline level of variability it is difficult to determine if this increase is beneficial to the paddling
athlete. However, in light of the observations that 1) the subjects included here were proficient
paddlers and not impaired or prone to injury, and 2) the addition of a neoprene sleeve is more
likely to enhance proprioceptive feedback rather than diminish it [13], the more likely interpreta-
tion is that the observed increase in variability represents a benefit to paddling performance.

Energy Expenditure
The metabolic data demonstrate that wearing a wetsuit while paddling at this rate and intensity
had little effect on oxygen consumption and heart rate. Similarly, changes in muscle activation
were only noted for one muscle (middle deltoid) when a wetsuit was worn. These data suggest
that the changes in paddling motion observed here are likely not related to changes in energy
cost or effort associated with wearing a wetsuit. Further, because the order of wetsuit condition
was randomized across subjects and trial length was kept relatively short (5 minutes) in experi-
enced surfers, it is unlikely that muscular fatigue contributed to the observed differences in
paddling motion. Finally, while these data suggest that a wetsuit has little effect on paddling
energy cost and effort at this particular velocity, it is possible that a metabolic effect might be
found at different paddling rates and intensities.

Limitations
These results were generated while paddling an ergometer in the laboratory and wearing a dry
wetsuit. There are a number of differences between paddling in water and on the ergometer, as

Table 4. Physiological Measurements.

Cadence [spm] Workload [watts] O2 Consumption [ml/kg/min] Mean HR [bpm] Mean Skin Temp [°C]

Wetsuit 25.2±2.7 20.2±1.9 14.2±1.2 113.8±11.7 34.4±0.9

No Wetsuit 26.1±3.4 20.6±1.6 14.2±1.8 114.2±18.4 33.1±1.3*

Values are reported as mean±SD

doi:10.1371/journal.pone.0142325.t004
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well as differences in the behavior of the wetsuit itself when water is present. First, the surface
of the water provides a spatial reference point in the vertical direction that an athlete might use
during the paddling motion. No such reference point was present in the current study, though
subjects were asked to raise their hands above an imagined surface of the water with each
stroke. Second, physical interaction with water itself may provide additional sensory feedback,
including proprioceptive information, and this may also contribute to alterations in the pad-
dling motion. The paddling ergometer was therefore appropriate for an initial analysis because
it allowed for isolation of the proprioceptive effects of wearing a wetsuit from interaction with
water. Third, the drag force experienced during the propulsive phase of the paddling stroke in
water is different from the resistance generated by the ergometer. Finally, retention of water in
the neoprene itself can change the material properties of the wetsuit, which may also lead to
changes in paddling behavior. In particular, the increased mass of added water may increase
resistance to movement, and water retention may alter the elastic properties of the neoprene.
Further research is necessary to determine how the current results can be extended to paddling
in water.

The nonlinear analyses techniques utilized here do not represent the only approaches avail-
able for examining the complex, nonlinear behavior of human movement. It is possible that
other approaches may yield differing results or offer additional insight for the paddling motion.
For example, estimation of the embedding dimension (dE) and embedding delay (τ) of wrist
trajectory for phase-space reconstruction might have been accomplished using an approach
that assumes that these two parameters are related [52,53,57]. If one of these analyses yielded
values for dE and τ that differed from those used in the current study, it is likely that the analy-
sis of maximum Lyapunov exponents would have also generated a different result. Further, cal-
culating Lyapunov exponents to examine local dynamic stability of upper extremity motion
yielded interesting results, but analysis techniques from complex network theory are likely
more robust to noise and may provide additional information. This approach would involve
mapping time series data onto a functional network that represents the structural interrelation-
ships among data in the original series [22,24]. Mapping the data in this manner allows for
more detailed evaluation of the connectivity and topological properties of this complex system.
This approach has been shown to be useful in the analysis of systems with a large number of
components that interact in a complicated manner [19–23,25,67,68]. Specific examples of this
approach include directed weighted complex network (DWCN) analysis [20], and recurrence
quantification analysis [25].

Conclusions
Overall, these data suggest that wearing a wetsuit may enhance an athlete’s paddling technique.
In particular, the trajectory of the wrist became more complex and increased in variability
when a wetsuit was worn. Previous literature suggests that these changes may be the result of
the compressive effect of a wetsuit and its effect on proprioceptive acuity [10–13]. These results
should be considered in the design of wetsuits or garments for surfers that can be worn in
warmer conditions that provide proprioceptive stimulus without thermoregulatory influence.
In addition, these findings may have implications for other aspects of movement in the upper
extremity, including those performed by overhead athletes and individuals recovering from
neurological injury.
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