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Abstract

Neuron-derived orphan receptor-1 (NOR-1) plays a major role in vascular biology by con-
trolling fibroproliferative and inflammatory responses. Because microRNAs (miRNAs) have
recently emerged as key players in the regulation of gene expression in the vasculature,
here we have investigated the regulation of NOR-1 by miRNAs in endothelial cells. Compu-
tational algorithms suggest that NOR-1 could be targeted by members of the miR-17 family.
Accordingly, ectopic over-expression of miR-17 or miR-20a in endothelial cells using syn-
thetic premiRNAs attenuated the up-regulation of NOR-1 expression induced by VEGF (as
evidenced by real time PCR, Western blot and immunocitochemistry). Conversely, the
antagonism of these miRNAs by specific antagomirs prevented the down-regulation of
NOR-1 promoted by miR-17 or miR-20a in VEGF-stimulated cells. Disruption of the miRNA-
NOR-1 mRNA interaction using a custom designed target protector evidenced the selectiv-
ity of these responses. Further, luciferase reporter assays and seed-sequence mutagenesis
confirmed that miR-17 and -20a bind to NOR-1 3’-UTR. Finally, miR-17 and -20a amelio-
rated the up-regulation of VCAM-1 mediated by NOR-1 in VEGF-stimulated cells. There-
fore, miR-17 and -20a target NOR-1 thereby regulating NOR-1-dependent gene
expression.

Introduction

The vascular remodeling underlying coronary heart disease (CHD) and other vascular diseases
involves complex regulatory networks whose activity should be tightly regulated. We and oth-
ers have recently involved NR4A receptors in vascular remodeling [1-5]. The NR4A subfamily
of nuclear receptors consists of three closely related members: Nur77, Nurrl and NOR-1 (Neu-
ron-derived Orphan Receptor-1; NR4A3) [6]. These nuclear receptors regulate diverse biologi-
cal processes and have been implicated in a variety of high-incidence human pathologies
including obesity, diabetes, cardiovascular disease and cancer [6-10]. NR4A receptors seem to
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be constitutively active, ligand-independent transcription factors [11], which act as early-
response genes up-regulated by a variety of stimuli [6].

All 3 NR4A receptors are over-expressed in atherosclerotic plaques from human coronary
arteries [1-3,12,13], and in arteries from animal models subjected to vascular injury [1,4,5];
however, only NOR-1 has positively been involved in vascular injury-induced neointimal
hyperplasia [4,5]. In vascular cells, NOR-1 expression is induced by growth factors, cytokines
and molecules with mitogen-like activity such as lipoproteins or thrombin [1,13-17]. NOR-1
regulates the spreading, migration and proliferation of vascular cells [1,13-18], participates in
the survival response of endothelial cells to hypoxia [19], and modulates vascular inflammation
[20,21]. This transcription factor controls gene expression acting through a response element
(NBRE) present in the promoter of its target genes [6,22]. NOR-1 activity is mainly dependent
on its expression levels, and substantial progress has been made in the knowledge of the extra-
cellular cues that up-regulate NOR-1; however, its post-transcriptional regulation deserves fur-
ther investigation. In this regard, recently, a DNA-dependent protein kinase (DNA-PK)
posttranscriptional mechanism that phosphorylates and stabilizes NOR-1 has been reported
[23].

MicroRNAs (miRNAs) are small (~22-nucleotide) non-coding RNAs that regulate gene
expression at a post-transcriptional level by binding to the target mRNAs, leading either to
degradation or to translational repression [24]. Due to their imperfect base-pairing with tar-
gets, miRNAs have the capacity to regulate many target mRNAs, therefore acting as global reg-
ulators of gene expression. In the last years a myriad of studies have evidenced the crucial role
of miRNAs in the cardiovascular system and cardiovascular diseases [25-27]. Recently, NR4A
receptors, particularly Nurrl, have been identified to be miRNA targets in different cells and
tissues [28-30]. However, despite the growing relevance of NR4A receptors in vascular biology
and cardiovascular diseases, to our knowledge, only a previous study has reported the regula-
tion of one of these receptors by miRNAs in vascular smooth muscle cells [31]. Herein, we
demonstrate that two members of the miR-17-92 cluster (miR-17 and miR-20a) bind to the
human NOR-1 mRNA thereby modulating the endothelial expression of genes dependent on
this transcription factor.

Material and Methods
Cell culture

Human umbilical vein endothelial cells (HUVEC; Lonza) were cultured in medium M199
(Gibco) supplemented with 20 mM HEPES pH 7.4 (Gibco), 30 pg/ml endothelial growth factor
supplement (Sigma-Aldrich), 2 mM glutamine (Gibco), 1 mM pyruvate (Gibco), 100 pug/ml
heparin (Sigma), 20% fetal calf serum (FCS, Biological Industries), and antibiotics (0.1 mg/ml
streptomycin, 100 U/ml penicillin G; Gibco). The cells were used between passages 2 and 5.
HUVEC were seeded in multiwell plates and were maintained under standard culture condi-
tions (21% O,, 5% CO,, 95% humidity) until subconfluence. Then, cells were arrested over-
night by incubation with medium containing 10% FCS. Finally, cells were stimulated with
VEGF-A (100 ng/ml 2 h; R&D Systems). All the procedures were approved by the Reviewer
Institutional Committee on Human Research of the Hospital of Santa Creu i Sant Pau (Comité
Etico de Investigacién Clinica del Hospital de la Santa Creu i Sant Pau) that conforms to the
Declaration of Helsinki and written informed consent from donors was obtained.

miRNA target Prediction

The bioinformatic analysis of miRNA predicted targets was determined by using three different
algorithms [32]: TargetScan (http://www.targetscan.org/), that predicts biological targets of
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miRNA by searching for the presence of conserved 8mer and 7mer sites that match the seed
region (nucleotides 2-7 at the 5’ end segment of the miRNA) of each miRNA; PicTar (http://
pictar.mdc-berlin.de/) that predicts miRNA targets by searching for pair-wise alignments that
are conserved across species, and miRanda (http://www.microrna.org/) that calculates free
energy from miRNA-mRNA heteroduplex formation.

Transient transfection of premirs, antagomirs and target protector

HUVEC were transfected with 100 nM precursor molecules mimicking miR-17 and miR-20a
(pre-miR-17 and pre-miR-20a, Ambion by Life Technologies Corporation), 200 nM antago-
mirs (anti-miR-17 and anti-miR-20a, Applied Biosystems) and/or 500 nM miScript NOR-1
target protector (Qiagen) as indicated. A scramble sequence (Scr, Ambion by Life Technologies
Corporation) was used as a control. Cells were transiently transfected using Lipofectamine
RNAiMAX reagent (Life Technologies Corporation) according to the manufacturer’s protocol.

Real time PCR

Total RNA was isolated using the RN Aeasy kit (Qiagen) according to the manufacturer’s rec-
ommendations. RNA integrity was determined by electrophoresis in agarose gels and was
quantified by a NanoDrop 1000 Spectrophotometer (Thermo Scientific). Total RNA (1 ug) was
reverse-transcribed using the High Capacity cDNA Archive kit (Applied Biosystems, AB) and
random hexamers. mRNA levels were assessed by real-time PCR on an ABI PRISM 7900
sequence detector (AB). TagMan™ gene expression assays-on-demand (AB) were used for
human NOR-1 (Hs00175077_m1) and vascular cell adhesion molecule-1 (VCAM-1)
(Hs00365486_m1). The results were normalized by TATA binding protein (Hs99999910_m1).
To analyze miR-17 and miR-20a total RNA was isolated with the mirVana™ miRNA kit (Life
Technologies) and gene-specific TagMan probes were employed for miR-17 (AB, 002309) and
miR-20a (AB, 000580). The expression levels of miR-17 and miR-20a were calculated using the
AACT method with RNU6B (AB, 001093) as the endogenous control.

Western blot analysis

HUVEC were washed with PBS and lysed with a lysis buffer containing 0.5% SDS in 10 mM
Tris—-HCI (pH 7.4) and 1 mM ortovanadate. Protein concentration was measured by the BCA
protein assay™ and proteins were resolved by SDS-PAGE and electrotransferred onto Immobi-
lon polyvinylidene diflouride membranes (Millipore). Western blot analysis was performed
using antibodies against NOR-1 (clone 1E11, Abnova) or VCAM-1 (sc-1504-R, Santa Cruz
Biotechnology). Detection was performed using the appropriate horseradish peroxidase-conju-
gated antibody (Dako) and a chemiluminescent detection system (Supersignal West Dura™,
Pierce). The size of detected proteins was estimated using protein molecular-mass standards
(Fermentas). B-actin (ab8226, Abcam) was used as a loading control.

Confocal analysis

HUVEC, cultured in glass-bottom dishes (Willco Wells B.V.), were transfected with pre-miR-
17 or pre-miR-20a in the presence or in the absence of their respective inhibitors. Then cells
were arrested overnight and stimulated with VEGF as described above. Cell monolayers were
fixed with a 4% paraformaldehyde solution and were processed for immunocytochemistry.
After permeabilization and blocking, cells were incubated with the primary antibody for 1 hour
at room temperature. After washing, Alexa Fluor 663 conjugated immunoglobulin (Molecular
Probes) was used as secondary antibody. Controls incubated with non-immune y-globulin and
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without the primary antibody were included in all procedures. Finally, cells were mounted with
ProLong™ mounting medium (Molecular Probes) and analyzed by confocal microscopy (Leica
TCS SP2-AOBS).

Reporter vector design

For luciferase reporter experiments a 508 bp fragment containing part of NOR-1 3-UTR was
amplified by PCR from human cDNA using primers: forward 5/ ~CTAGTCTAGATGGGCCTC
CAGCGCATCTTC-3' (Xbal restriction site is underlined) and reverse 5 —ACGCGTCGACCC
TGGCGAACAACCCTTGGC-3" (Sall restriction site is underlined). This fragment was inserted
into the pGL3 control vector with a TK promoter (kindly provided by Dr. Giulio Piluso, Dept.
of General Pathology and Oncology, S.U.N.) immediately downstream from the luciferase stop
codon by Xbal/Sall digestion (Fermentas) generating the pGL3/NOR1-3"UTR reporter plas-
mid. The NOR-1 3’-UTR seed sequence was mutated using the QuickChange II Site-directed
mutagenesis kit (Stratagene) and the pGL3/NOR1-3"UTR vector as a template according to the
manufacturer's instructions. Mutations were introduced with the following pairs of primers:
5'-CTGCTGGGATAGCATTGTCCAAARACGCTTTGTTAGCAATTTCTTAGRAAA-3" " and 5" -
TTTCTAAGAAATTGCTAACAAAGCGTITTTGGACAATGCTATCCCAGCAG-3" (changes
introduced are indicated in italic and bold). Changes introduced by mutagenesis were con-
firmed by DNA sequencing.

Dual luciferase reporter assay

HUVEC were transfected with the pGL3/NORI1-3"UTR reporter plasmid or the empty con-
struct, used as a control, using Lipofectamine LTX reagent (Invitrogen) according to the manu-
facturer’s protocol. Briefly, transient transfections were performed in subconfluent cells seeded
in six-well plates using 1 pg/well of the luciferase reporter plasmid, 0.03 pg/well of pRL-CMV
(Promega) as an internal control, and 3 pl of Lipofectamine LTX. The activities of firefly and
Renilla luciferases were determined in cell lysates using the Dual-Luciferase™ Reporter Assay
System (Promega) and a luminometer (Orion I, Berthold Detection Systems) according to the
manufacturer. Results were expressed as the ratio of firefly to renilla activity. The experiments
were performed in triplicate.

Statistical analysis

Data are expressed as mean + SD (unless otherwise stated). Significant differences were estab-
lished by Student's t-test or one-way ANOV A, according to the number of groups compared,
using the GraphPad Instat program (GraphPad Software V2.03) (GraphPad Software Inc.). In
the latter case, when significant variations were found, the Tukey-Kramer multiple comparison
test was applied. Differences were considered significant at p < 0.05.

Results

Bioinformatic analysis of miRNA binding sites in the 3’-UTR of NOR-1
mRNA

To investigate the potential regulatory properties of miRNAs on NOR-1 expression, miRNA
binding sites in the human NOR-1 3’-UTR were examined by an in silico analysis using three
of the most widely utilized algorithms (TargetScan, PicTar, and miRanda), which are based on
different prediction criteria. Only miRNA binding sites independently predicted by the three
applied algorithms would be considered. With this premise, we identified one binding site with
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a perfect complementarity to the seed region of the miR-17 and -20a (Fig 1). The miR-17/20
target site is a 7mer which is conserved within the NOR-1 3’-UTR across species (Fig 1).

miR-17 and -20 regulate NOR-1 expression

To assess whether NOR-1 could be a genuine miRNA-17/20 target, miR-17 and -20a were indi-
vidually over-expressed in endothelial cells. Because the low expression of NOR-1 in resting
vascular cells could hamper further analysis, we performed our studies in VEGF-stimulated
cells in which NOR-1 expression is strongly induced [16,33]. HUVEC were transfected with
precursors of either miR-17 or miR-20a followed by VEGF stimulation (100 ng/ml, 2 h). As
shown in Fig 2A, both pre-miR-17 and -20a drastically inhibited the increase on NOR-1
mRNA levels triggered by VEGF with a similar efficiency. Likewise, western-blot analysis evi-
denced that the over-expression of these miRNAs blocked the VEGF-mediated up-regulation
of NOR-1 protein levels (Fig 2B). Conversely, inhibition of endogenous miR-17 and -20a with
specific antagomirs significantly counteracted the inhibitory effect of pre-miR-17 and -20a on
the VEGF-induced NOR-1 up-regulation (both mRNA and protein levels) (Fig 2A and 2B).
Similar results were obtained in confocal microscopy analysis (Fig 2C). As expected, VEGF
stimulation of HUVEC results in an increased NOR-1 nuclear staining that was prevented by
transfection of pre-miR-17 or pre-miR-20a, while cotransfection with their specific antagomis
restore a similar phenotype to that observed in VEGF-treated cells. In agreement with previous
results [34], VEGF was able to up-regulate the endogenous expression of miR-17 (Control cells
vs. VEGF treated cells: 1.00 + 0.23 vs. 2.27 + 0.45) and pre-miR-20a (Control cells vs. VEGF
treated cells: 1.00 + 0.24 vs. 7.92 + 0.34). Therefore, taken together these data suggest that the
early-gene NOR-1 could be a bona fide target gene of the miR-17 family after stimuli that tran-
siently increase its expression.

Human NOR-1

730 2610 5635
54 | CDS I 3-UTR 3
Human UUCUAAGAAAUUGCUAACAAAGCACUUUUGGACAAUGCUAUCCCAGCAGG
Chimpanzze UUCUAAGAAAUUGCUAACAAAGCACUUUUGGACAAUGCUAUCCCAGCAGG
Bushbaby UUCU- - - -AAUUGCUAACAAAGCACUUUUGGACAAUGCUAUCCCAGCAGG
Guinea pig UUCUAAGAAAUUGCUAACAAAGCACUUUUGGACAAUGGUAUCCCAGCA- -
Rabbit UUCUAAGAAAUUGCUAACAAAGCACUUUUGGACGAUGCUAUCCCAGCAGG
Dog UUCUAAGAAAUUGCUAACAAAGCACUUTUGGACAAUGCUAUCCGAGCAGG
Opossum UUCUAAGAUAUUGCUAAUAAAGCACUUUUGGACGAUGCUAUCCCAGCAGG
Chicken UUUUA - - -AACGGCUAAUAUGGCACUUUUGGACAAUGCUAUCCCAGCAGC
Lizard UUUUA - - -AUUGCUAAAUAUGGCACUUUUGAAUGAUAUUAUCCCAGCUAG
Shrew UUCUAAGAAAUGGCUAAUGAAGCACUUUUGGAUG--------~- CAGGAGG

Ll
3'GAUGGACGUGACAUUCGUGAAACS miR-17
3'GAUGGACGUGAUAUUCGUGAAAUS5’ miR-20a

Fig 1. NOR-1 transcript contains a miR-17/-20 putative binding site in the 3’-UTR. Schematic representation of the human NOR-1 3'-UTR transcript
(NM_006981) showing the highly conserved miR-17/-20 binding site among species (positions 2894—2900 in NM_006981 sequence). The seed sequence of
miR-17/-20 (nt 2—10) is indicated in bold.

doi:10.1371/journal.pone.0141932.g001
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Fig 2. miR-17 and -20a regulate the expression of NOR-1. HUVEC were transfected with precursors of either miR-17 or miR-20a (P17 or P20) or a
scramble sequence (Scr) in the presence or in the absence of their corresponding specific antagomirs (A17 or A20). Cells were stimulated with VEGF (100
ng/ml, 2 h). NOR-1 expression was assessed by real-time PCR (A), Western-blot (B) and immunocytochemistry (C). Results are expressed as mean + SD
from at least n = 4. (p<0.05: *, vs. untransfected cells [Control, CT] or cells transfected with Scr).

doi:10.1371/journal.pone.0141932.9002

Interference of the NOR-1 3’-UTR seed region blocks the miR-17/
20-dependent regulation of NOR-1 expression

To assure that the observed responses are mediated by the selective binding of members of the
miR-17 family to the NOR-1 3’-UTR region and not by indirect or unspecific mechanisms, a
custom designed target protector was used. A target protector binds to the miRNA-binding site
in a particular target gene blocking the access of a specific miRNA to this site, while leaving the
regulation of other targets of the same miRNA unaffected. As observed in Fig 3, pre-miR-17
and -20a blocked the VEGF-mediated induction of NOR-1 mRNA and protein levels and
interestingly, this effect was prevented by a target protector of the NOR-1 3’-UTR site.

miR-17 and -20 bind to the NOR-1 3’-UTR putative seed sequence

To further confirm the direct regulation of NOR-1 by the miR-17 and -20a we performed lucif-
erase reporter assays in which the NOR-1 3’-UTR was cloned immediately downstream of the
firefly luciferase open reading frame in the pGL3TK vector as previously reported [35]. A con-
struct with an altered (mutated) seed sequence was also analyzed. Constructs containing the
wild-type or the mutant NOR-1 3'-UTR (Fig 4A) were co-transfected with pre-miR-17 or pre-
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Fig 3. A protector sequence against the NOR-1 3’-UTR seed region prevents the regulation by miR-17
and -20. HUVEC were transfected with precursors of either miR-17 or miR-20a (P17 or P20) or a scramble
sequence (Scr) in the presence or in the absence of a miScript target protector that blocks the NOR-1 3-UTR
seed sequence recognized by the miR-17 and -20 (NOR1-Prot). Then cells were stimulated with VEGF (100
ng/ml, 2 h). NOR-1 expression was assessed by real-time PCR (A) and Western-blot (B). Results are
expressed as mean + SD from at least n = 4. (p<0.05: *, vs. untransfected cells [Control, CT] or cells
transfected with Scr).

doi:10.1371/journal.pone.0141932.g003

miR-20a into HUVEC, and luciferase activity was measured. Over-expression of both miR-17
and -20a reduced luciferase activity driven by the wild-type construct, while the mutant con-
struct was unresponsive to these miRNAs (Fig 4B). These findings confirm that members of
the miR-17 family bind the NOR-1 3’-UTR region.
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NOR-1 3’-UTR WT AGAAAUUGCUAACAAAGCACUUUU

LTL1
Pre-miR-17/20 - -+ - -« - -+ - .- AUUCGUGAAAC

[l 111
NOR-1 3"-UTR MUT AGAAAUUGCUAACAAAGCGUUUUU

Ser —*_’_

I -
P17 -
* B WT
P20 - [ MUT
0 25 50 75 100 125 150

Luciferase activity
(fold change)

Fig 4. miRNA-17 and -20a bind to NOR-1 3’-UTR. (A) Schematic representation of the pGL3 luciferase
reporter construct containing a 508 bp fragment of the NOR-1 3’-UTR region cloned downstream of the firefly
luciferase gene (pGL3/NOR1-3'UTR). The sequences corresponding to the wild type miR-17/-20 binding site
in this region (3'-UTR WT) and its mutated form (3’-UTR MUT) are shown below. (B) Luciferase activity in cell
lysates from HUVEC transfected with the WT or the mutated luciferase reporter construct and cotransfected
with precursors of either miR-17 or miR-20a (P17 or P20) or a scramble sequence (Scr). Firefly and Renilla
luciferase activities were determined under each experimental condition. Results, normalized by Renilla
activity. Results are expressed as mean = SD from at least n = 4. (p<0.05: *, vs. cells transfected with Scr or
with the MUT construct).

doi:10.1371/journal.pone.0141932.9g004

miR-17 and -20 target NOR-1 affecting NOR-1-dependent gene
regulation

Next we explored whether miR-17 and -20a could modulate the ability of NOR-1 to control
gene expression. We analyzed the effect of miR-17 or miR-20a on the expression levels of
VCAM-1, a NOR-1 target gene recently identified in human endothelial cells [20]. HUVEC
were transfected with precursors of either miR-17 or miR-20a, as indicated above, and were
stimulated with VEGF (100 ng/ml, 2 h). VEGF increased VCAM-1 expression (nRNA and
protein levels), and both pre-miRs significantly reduced VCAM-1 expression, while the NOR-
1 target protector prevented such down-regulation (Fig 5).

Discussion

MicroRNAs are major regulators of global gene expression. Further, these small molecules are
released by cells and can be detected in the blood. Most of the circulating microRNAs regulated
in CHD patients are expressed by endothelial cells [36]. Indeed, endothelial microRNAs are
both critical gene-regulatory factors controlling vascular function and inflammation and
emerging biomarkers and therapeutic tools for cardiovascular diseases [37]. Moreover, the
nuclear receptor NOR-1 has been recognized as a key transcription factor regulating the
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Fig 5. The NOR-1 protector prevents the down-regulation of VCAM-1 promoted by miR-17 and -20.
HUVEC were transfected with precursors of either miR-17 or miR-20a (P17 or P20) or a scramble sequence
(Scr) in the presence or in the absence of a miScript target protector that blocks the NOR-1 3'-UTR seed
sequence recognized by the miR-17 and -20a (NOR1-Prot). Then cells were stimulated with VEGF (100 ng/
ml, 2 h). VCAM-1 expression was assessed by real-time PCR (A) and Western-blot (B). Results are
expressed as mean = SD from at least n = 4. (p<0.05: *, vs. untransfected cells [Control, CT] or cells
transfected with Scr; #, vs. cells transfected with Scr and stimulated with VEGF; 1, vs. cells exposed to the
same condition but without NOR1-Prot).

doi:10.1371/journal.pone.0141932.g005

migration, proliferation and survival of endothelial cells [16,17,19], as well as vascular inflam-
mation [20,21]. While multiple studies have described the up-regulation of NOR-1 expression
by extracellular stimuli in vascular cells, mechanisms involved in the post-transcriptional regu-
lation of this early-response gene are poorly understood. Here, we show that miR-17 and
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miR-20a target this transcription factor thereby modulating NOR-1-dependent up-regulation
of VCAM-1.

The combined analysis with three different miRNA target site prediction databases consis-
tently identified a miR-17/20 target site in the NOR-1 3’-UTR conserved among several species.
Cross-species conservation of a potential binding site often underscores a genuine target gene,
thus, in silico analysis strongly suggest NOR-1 as a novel target for miR-17 family. Accordingly,
this bioinformatic prediction was experimentally tested. We have demonstrated that the over-
expression of individual members of the miR-17 family (miR-17 and miR-20a) in endothelial
cells significantly down-regulates NOR-1 mRNA and protein levels in VEGF-stimulated cells,
while specific antagomirs significantly prevented this effect, suggesting that miR-17 and -20a
destabilize NOR-1 transcripts and prevent its translation. Furthermore, our data from 3’-UTR
luciferase reporter assays and those from experiments using a target protector to interfere the
NOR-1 3’-UTR site indicate that this miRNA family regulates NOR-1 specifically, via the pre-
dicted seed sequence of NOR-1 3’-UTR region, and independently of the regulation that miR-
17/20 could exert on other target genes. Finally, we also identified one binding site for miR-17
and -20a in the 3’UTR of other member of the NR4A family (Nurrl, NR4A2), and preliminary
experimental data suggest the potential regulation of Nurrl by these miRNAs in VEGF-
induced HUVEC (data not shown). Therefore, our results demonstrate that NOR-1 is targeted
by miR-17/20 and suggest that further studies could increase the repertoire of immediate early
genes targeted by the miR17-92 cluster in vascular cells.

The miR-17-92 cluster is a polycistronic miRNA that yields six individual mature miRNAs,
including miR-17, 18a, 19a, 20a, 19b, and 92a. Based on the sequence homology and seed con-
servation, the mir-17-92 cluster is subdivided into four miRNA families, one of them is the
miR-17 family composed by miR-17 and miR-20a [38]. These miRNAs are well conserved in
vertebrates [39], and play a role in regulating the physiological functions of many cell types
[38]. Although miR-17-92 is considered an “oncomir” cluster, the biological effects of miR-17-
92 individual components seem to be highly dependent on the cell type. miR-17/20 are deregu-
lated in cardiovascular diseases. In fact, reduced plasma levels of miR17 have been described in
patients with CHD and therefore this miRNA has been proposed as a potential biomarker for
this pathology [36]. Interestingly, since this family is expressed in both endothelial cells and
VSMC [40] it could play a relevant role regulating target genes in the vasculature. Several stud-
ies support an inhibitory effect of miR-17 on cell migration, but also inhibiting cell prolifera-
tion and the secretion of a subset of proinflammatory cytokines, at least in part, through the
repression of the AIB1 gene [41-43]. Concerning endothelial cells, miR-17/20 have shown to
inhibit cell sprouting, cell migration and exhibit a cell-intrinsic antiangiogenic activity [44-46].
Interestingly, this contrast with the well-documented role of NOR-1 as a transcription factor
positively involved in cell sprouting, cell migration and cell proliferation [1,13-17]. Thus, the
regulation of NOR-1 by the miR-17 family is consistent with the functions described for this
transcription factor and this miRNA family in endothelial cells. In endothelial cells NOR-1 is
induced by VEGF [16,33], a cytokine that up-regulates the expression of the adhesion molecule
VCAM-1 [47] a target gene of NOR-1 [20]. miR-17 and -20a ameliorated the up-regulation of
VCAM-1 in VEGF-stimulated cells. The additional involvement of other transcription factors
in the induction of VCAM-1 promoted by VEGF (such as NF«B) [47], would explain the par-
tial effect exerted by the premiRNAs. NOR-1 target protector prevented the effect of the pre-
miRNAs indicating the involvement of NOR-1 in the regulation of VCAM-1. Interestingly,
although VEGF primarily up-regulates NOR-1 through a transcriptional mechanism [16,33] it
is also able to induce the expression of miR-17 and -20a [34] which ultimately negatively mod-
ulate NOR-1 mRNA stability/translation. In this regard, increasing results indicate that
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operating in concert, transcriptional and post-transcriptional mechanisms mediated by miR-
NAs contribute to the quick and transient up-regulation of immediate early genes [48].

In summary, the tight control of inflammatory and vascular remodeling processes would
require the coordinated modulation of multiple structural genes through regulatory mecha-
nisms affecting both gene expression and translation. Increasing evidence suggest that individ-
ual members of the miR-17-92 cluster modulate biological processes in a cell-specific manner
[44]. We show that two miRNAs of this cluster target NOR-1 thereby down-regulating down-
stream endothelial gene expression dependent on this transcription factor. Therefore, the activ-
ity of NOR-1 as a transcription factor would be positively regulated primarily at transcriptional
level (as an early-response gene quickly and strongly induced by different extracellular stimuli),
but also by post-transcriptional mechanisms involving specific cellular miRNAs that negatively
affect NOR-1 mRNA stability and translation. This could be regarded as an example of how
cells integrate different regulatory mechanisms on key master genes/proteins to coordinate
gene expression in complex biological processes. Such integration of different although poten-
tially synergic mechanisms, involving the miR 17-92 cluster, further underscore the central
role of NOR-1 in vascular remodeling.
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