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Abstract
Spatial abilities allow animals to retain and cognitively manipulate information about their

spatial environment and are dependent upon neural structures that mature during adoles-

cence. Exposure to stress in adolescence is thought to disrupt neural maturation, possibly

compromising cognitive processes later in life. We examined whether exposure to chronic

unpredictable stress in adolescence affects spatial ability in late adulthood. We evaluated

spatial learning, reference and working memory, as well as long-term retention of visuo-

spatial cues using a radial arm water maze. We found that stress in adolescence

decreased the rate of improvement in spatial learning in adulthood. However, we found no

overall performance impairments in adult reference memory, working memory, or reten-

tion caused by adolescent-stress. Together, these findings suggest that adolescent-stress

may alter the strategy used to solve spatial challenges, resulting in performance that is

more consistent but is not refined by incorporating available spatial information. Interest-

ingly, we also found that adolescent-stressed rats showed a shorter latency to begin the

water maze task when re-exposed to the maze after an overnight delay compared with

control rats. This suggests that adolescent exposure to reoccurring stressors may prepare

animals for subsequent reoccurring challenges. Overall, our results show that stress in

adolescence does not affect all cognitive processes, but may affect cognition in a context-

dependent manner.
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Introduction
Spatial cognition can increase foraging efficiency, enhance the ability to locate mates, improve
parental care, help animals minimize their exposure to danger, and, in humans, predict life out-
comes [1], [2], [3], [4]. Spatial ability is the set of cognitive processes that allow an individual to
recall and manipulate information about spatial objects in their environment, and includes
many distinct cognitive processes including learning, memory, and problem solving using spa-
tial information [5], [1]. In humans, spatial ability can predict educational-vocational track [6];
adolescents with poor spatial ability show reduced learning [7] and are less likely to obtain a
career in science, engineering, technology, or math [4]. The cues or types of spatial abilities ani-
mals rely on can be shaped by their environment [8], [9] and harsh environments or seasonal
changes can modulate spatial abilities and their underlying neural physiology [10], [11]. Over
time, exposure to a stressful environment can impair spatial learning and memory [12], [13]
and affect place-object memory and object recognition [14]. Stress exposure can alter spatial
ability both at the time of exposure and long after the stressful stimulus has been removed,
however, the characteristics of these effects can vary across an individual’s lifespan [15], [16].
Understanding the nature of these processes could inform us about the functionality of such
changes within an ecological context, as well as shedding light on life outcomes in human
populations.

The effects of exposure to stress on spatial ability appear to be dependent upon age at expo-
sure [17], [18]; spatial abilities can be impaired by exposure to stress during prenatal develop-
ment [19], [20] or in the first few weeks of postnatal life [16]. It has been suggested that
exposure to stress in early life may decrease reliance on spatial learning and enhance emotional
learning to prepare developing individuals for an uncertain or high-stress environment later in
life [16]. Adolescence may also be a period of vulnerability to stress-induced changes in spatial
abilities sensu [21], [22]. McCormick et al. [23] showed that adult Long-Evans rats exposed to
chronic social stress during adolescence spend less time investigating a familiar object if it is
moved to a new location compared with unstressed rats, indicating reduced hippocampal-
dependent object memory. Similarly, compared with unstressed conspecifics, mice exposed to
social instability stress in adolescence spend less time exploring a novel arm of a familiar maze
when tested 12 months after chronic stress exposure has ceased, suggesting possible decreases
in hippocampal-dependent spatial memory [24]. Sterlemann et al. [24] also showed that
chronic adolescent-stress can cause an impairment in spatial learning that is apparent only
after a delay; mice exposed to social instability stress in adolescence took longer to find an
escape platform in a Morris water maze in the last 5 of 12 trials, but showed no difference in
earlier trials or in a hippocampus-independent learning task.

Highlights

- Rats were reared with or without chronic unpredictable stress in adolescence.

- In adulthood, spatial cognitive abilities were tested in a radial arm water maze.

- Prior-stressed rats began searching faster in the maze after an overnight delay.

- Prior stress may facilitate faster action in challenging situations.

- Prior stress did not affect learning, reference or working memory, or retention.
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Despite the clear ramifications of experiencing stress during adolescence [25], its long-term
effects on spatial ability are underexplored and the specific cognitive processes that are affected
remain unclear. Differences in spatial ability could be driven by changes in spatial-reference
memory, spatial-working memory, or long-term retention of spatial cues. Investigating which
processes are affected could inform how deficits in spatial ability may affect other behavioral
domains (e.g. foraging, mate location, etc.) and which aspects of cognition may be most vulner-
able to lasting changes caused by exposure to stress. For example, deficits caused by adoles-
cent-stress in learning and object memory have only been detected after a time delay [23], [24],
[25] and so may be commonly mediated by impaired retention (reference memory).

Here we tested the hypothesis that rats exposed to chronic adolescent-stress would exhibit
deficits in spatial abilities that would be mediated by a subset of cognitive processes, including
differences in retention. Specifically, we evaluated several aspects of spatial ability: spatial learn-
ing, reference and working memory, and long-term retention of visuospatial cues in a radial
arm water maze (RAWM; [26], [27]), in rats that experienced chronic stress during adoles-
cence and rats reared in unstressed conditions.

Methods

Animals and housing
Male Sprague-Dawley rats (n = 24) were obtained at 21 days of age from Harlan Laboratory in
Frederick, Maryland. Following transport, rats were given 7 days to acclimate before handling
and experimental procedures began (see Fig 1 for timeline). Animals were randomly assigned
to pair-housing in plastic cages (20cm x 26cm x 45cm) with wood chip bedding, two pine
wood chews, and two 7.6cm diameter PVC tubes. Cages were changed weekly; wood chews
and PVC tubes were replaced when visibly soiled. Standard rat chow (LabDiet1 5001, 23%
protein) and tap water were available ad libitum unless otherwise noted. Rats were kept at 20–
21°C and 40–45% relative humidity on a 12:12 reversed light/dark cycle; the dark phase was
0900h-2100h. To control for circadian rhythms, all testing began a minimum of 2 hours after
the beginning of the dark phase and was completed within 8 hours. Testing order was pseudo-
randomized; the order in which individual rats were tested varied each day with treatment
groups balanced across the first and last hours of the testing session. Body mass was monitored
weekly as an indicator of health throughout adolescence and testing in adulthood. Experiments
were approved by the Pennsylvania State University Institutional Animal Care and Use Com-
mittee (IACUC), protocol #44459.

Chronic unpredictable stress
Pair-housed rats were randomly assigned to either the adolescent-stress treatment (n = 12) or
to the unstressed control group (n = 12). Rats in the adolescent-stress treatment were exposed
to physical, social, and predation stressors from 30–70 days of age [28], [29]. Though some
suggest that adolescence concludes at approximately 55 days of age in male rodents, many
studies have included a postpubertal “sub-adult” period to cover the entire ontogenetic window
of adolescence, 28–80 days of age [23], [30], [31]. Adolescent exposure to the chronic

Fig 1. Timeline of manipulations.

doi:10.1371/journal.pone.0141908.g001
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unpredictable stress paradigm used here has previously been shown to induce behavioral and
cognitive changes in adulthood that correspond to the current age at testing [28], [29].

• Physical stressors: (1) Housed in a cage 25% smaller than the home cage for 4 hours, (2)
housed with damp bedding for 6 hours, (3) home cage tilted 30° for 6 hours.

• Social stressors: (1) Housed individually for 1 hour, (2) crowding with 2 rat pairs in a stan-
dard cage for 4 hours, (3) exposed to bedding from older conspecifics for 12 hours.

• Predation stressors: Exposed for 30 minutes to (1) a continuously moving taxidermied bob-
cat [32], (2) Felis catus fur, (3) large cat vocalizations.

Each of the three types of stress were represented twice per week, leaving one rest day.
Stressors were presented unpredictably during both phases of the light/dark cycle, but balanced
such that within each week rats encountered approximately three stressors between 0–1200h
and three stressors between 1200h-2400h. To account for the additional handling and cage
changes required to enact the stressors, rats in the control group experienced biweekly han-
dling sessions and cage changes that coincided with stressors requiring new cages. During
stress treatments rats were continuously pair-housed unless specified.

Radial arm water maze
Starting 10.5 months after completion of the stress paradigm, rats were tested in a six-arm
radial water maze surrounded by an opaque white plastic curtain (Fig 2). Visual cues were
attached to the curtain in each cardinal compass direction. The experimenter remained in the
same position throughout testing to maintain consistency in visual cues [33]. The water was

Fig 2. Radial arm water maze and visual cue schematic (not to scale).Goal arm was counterbalanced
across treatment condition. For each rat, the goal arm remained the same throughout all trials, but the starting
arm was randomized so that rats had to learn a spatial location, and could not rely on a motor rule.

doi:10.1371/journal.pone.0141908.g002
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constantly monitored and maintained between 24–25°C at a depth of 43cm [27]. The water
was made opaque using non-toxic Tempera paint [34].

After every exposure to the water maze, rats were briefly towel-dried and transferred to a
holding cage that contained a heating pad under dry towels. A heating lamp warmed one side
of the holding cage, allowing the rat an option to escape the heat. Rats remained in the holding
cage until dry and behaving normally (at least 10–15 minutes). Rats were observed daily follow-
ing exposure to the water maze; no signs of dehydration, abnormal vocalizations, decreased
weight or appetite, postural abnormalities, or labored respiration were detected. Between each
trial, any fecal matter was removed from the water with a dip net. During each day of trials,
partial water changes were used to maintain cleanliness of the maze. At the end of each day of
trials, the maze was drained, wiped clean, and dried thoroughly.

Spatial abilities. We tested each rat’s ability to associate a maze arm with a platform that
allowed them to exit the water (procedures are modeled on [27]). Each rat was tested on two
sequential days, with 15 trials per day, between 387 to 400 days of age. To avoid fatigue from
consecutive trials, the training schedule was spaced by grouping rats into two waves that were
tested on alternating days (balanced by treatment), by allowing rats to fully recover between tri-
als, and by limiting an individual rat’s testing time to 3 hours per day [27]. The arm containing
the platform (the goal arm) remained the same for each rat and was counterbalanced across
stress condition. For the initial phase of the water maze, the trials alternated such that the plat-
form was either “invisible” just below the surface of the opaque water or “visible” 2cm above the
surface; the first trial of each day was always “visible” in order to facilitate learning of the plat-
form location [27]. After the second training day, the platform was “invisible” in all subsequent
exposures to the maze. To begin each trial, a rat was placed at the end of an arm that did not con-
tain the platform. The starting arm was randomized so that rats had to learn the spatial location
of the platform and could not rely on a motor rule, e.g. first turn to the left. During the first expo-
sure to the maze, if the rat had not located the platform 1 minute after entering the water, or
after 2 minutes on all subsequent learning trials, a hand was placed behind the rat to guide it
through the water in the direction of the platform. After the rat was guided to or located the plat-
form, it was removed from the maze after all four feet of the rat were on the platform for 15 sec-
onds. For the reference and working memory trials, if a rat had not located the platform within 2
minutes it would be removed, however, no rat failed to locate the platform within 2 minutes.

To assess spatial ability, we measured the latency to find the platform (contact the platform
with a paw or nose), search time (latency to find the platform–latency to first arm entry), and
the number of arm entries. An arm entry was defined as having all four paws within a maze
arm. We quantified reference memory errors (entering an arm other than the goal arm) and
working memory errors (any subsequent re-entries into an arm other than the goal arm; [27],
[35]). Spatial learning, and reference and working memory, were assessed by comparing
improvement in these measures across the 30 trials.

Retention. Retention of the location of the platform was tested 3 days after the spatial
learning trials [27], [36]. To test retention, rats underwent a single trial identical to the spatial
learning trials with the platform “invisible” just below the surface of the water such that rats
had to recall the location from memory. For the retention trials, if a rat had not located the
platform within 2 minutes it would be removed, however, no rat failed to locate the platform
within 2 minutes.

Data analysis
Latency to enter an arm, latency to locate the platform, search time, number of arm entries, and
number of reference and working memory errors were natural log transformed to achieve
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normality. Three-trial means were calculated for all measures to reduce noise [37]. Learning
and memory data were tested using repeated measures analyses of variance (RMANOVA) with
stress treatment and time (three-trial means) as fixed effects. To determine whether adolescent-
stress affected change across the spatial ability test, we calculated difference scores by subtracting
the last three-trial mean from the first three-trial mean. Difference scores were compared using
two-tailed t-tests. Retention was tested using t-tests to compare adolescent-stressed and
unstressed rat performance. Two rats in the adolescent-stress treatment developed ulcerated
tumors; they were removed from testing and are not included in any analyses. Analyses were
run using IBM1 SPSS1 Statistics Version 21; values are reported as means ± standard error.

Results

Spatial abilities
Exposure to stress during adolescence had no main effect on spatial abilities, including learn-
ing, working memory, and reference memory (Table 1, Fig 3). However, we found that
unstressed rats reduced their number of arm entries more over time compared with adoles-
cent-stressed rats, suggesting that adolescent-stressed rats were not improving their perfor-
mance by incorporating spatial information with additional exposure to the task (Fig 3).
Similarly, when we compared behaviors during the first block of spatial learning trials with
behaviors during the last trial block, we found that adolescent-stressed animals showed a
smaller change, compared with unstressed rats, in the number arm entries (23% vs. unstressed:
53%) and reference memory errors (31% vs. unstressed: 55%). This indicates that compared
with unstressed rats, adolescent-stressed rats showed less improvement in their spatial learning
performance over time, and did not refine their performance when given the opportunity to
acquire additional information about their environment while unstressed rats did (Table 2).
Thus, despite our findings that adolescent environment does not affect outcomes in spatial
learning (or working and reference memory), it would appear that the rate of change in spatial
learning performance may be modulated by developmental experiences such that adolescent-
stress causes less flexibility in performance. Adolescent-stressed rats also exhibited a decreased
latency to begin searching for a platform in the water maze task when returned to the maze
after an overnight delay on the second day of trials compared with unstressed rats, suggesting
that exposure to chronic stress in adolescence allowed the animals to react to subsequent reoc-
curring challenges more quickly (Fig 4).

Retention
We found no differences in retention of spatial information in adolescent-stress exposed and
unstressed rats (Fig 5, Table 3).

Table 1. Spatial abilities in adolescent-stressed and unstressed male Sprague-Dawley rats.

Measure Effect of stress Effect of time (trial block) Stress x time interaction

Latency to enter an arm F1,20 = 2.598, P = 0.125 F1,20 = 12.223, P < 0.000* F1,20 = 2.890, P = 0.003*

Latency to find the platform F1,20 = 0.258, P = 0.618 F1,20 = 6.234, P < 0.000* F1,20 = 0.777, P = 0.638

Search time F1,20 = 0.331, P = 0.573 F1,20 = 38.460, P < 0.000* F1,20 = 2.035, P = 0.173

Number of arm entries F1,20 = 0.110, P = 0.744 F1,20 = 12.760, P < 0.000* F1,20 = 1.986, P = 0.044*

Number of working memory errors F1,20 = 0.401, P = 0.535 F1,20 = 8.422, P < 0.000* F1,20 = 0.647, P = 0.755

Number of reference memory errors F1,20 = 0.809, P = 0.381 F1,20 = 9.382, P < 0.00* F1,20 = 1.299, P = 0.241

*Indicates significant at p < 0.05.

doi:10.1371/journal.pone.0141908.t001
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Discussion
Spatial abilities are dependent upon neural structures that mature during adolescence [30],
[38]. Exposure to chronic stress in adolescence is thought to disrupt the maturation of these
structures, possibly compromising their function later in life [21], [30]. In the current study,
we tested the hypothesis that chronic stress in adolescence would impair adult spatial abilities
and we found little support for our hypothesis. We show that adolescent-stress exposure had
little effect on spatial learning, and found no evidence of impairments in spatial working mem-
ory, reference memory, or retention in adulthood. Conversely, we found that unstressed rats
show greater improvement in spatial learning performance; over time they decrease the num-
ber of arms entered before finding the escape platform compared with adolescent-stressed rats.
This suggests that adolescent-stressed rats do not improve their performance by incorporating
spatial information with additional exposure to the task. Similarly, compared with unstressed
rats, adolescent-stressed rats showed a smaller change in spatial learning measures; both in
arms entered (23% vs. unstressed: 53%) and reference memory errors (31% vs. unstressed:
55%), suggesting that unstressed rats improved their performance over time, likely by

Fig 3. Spatial abilities test in adolescent-stressed and unstressed Sprague-Dawley male rats. The
effects of adolescent-stress on latency to locate the platform (A), arm entries (B), reference memory (C), and
working memory (D), means ± SE. *Indicates a significant time effect across all trials. **Indicates significant
time and stress x time effects across all trials.

doi:10.1371/journal.pone.0141908.g003

Table 2. Change across spatial ability test in adolescent-stressed and unstressed rats.

Difference score (DS) Effect of stress

DS: Latency to enter an arm T20 = 0.245, P = 0.811

DS: Latency to find the platform T20 = 0.484, P = 0.635

DS: Search time T20 = -0.514, P = 0.614

DS: Number of arm entries T20 = -2.806, P = 0.015*

DS: Number of working memory errors T20 = -1.891, P = 0.088

DS: Number of reference memory errors T20 = -3.121, P = 0.008*

*Indicates significant at p < 0.05.

doi:10.1371/journal.pone.0141908.t002
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acquiring spatial information, while adolescent-stressed rats chose a strategy that was not
affected by additional information about their environment (Table 2). Interestingly, these dif-
ferences in the degree of change in spatial learning measures did not affect overall performance
between the treatments; possibly reflecting a change in strategy by adolescent stressed rats that
results in fairly consistent performance over time compared to unstressed rats. Adolescent-
stressed rats also exhibited a shorter latency to begin searching for a platform in the water
maze task following an overnight delay compared with unstressed rats, suggesting that expo-
sure to chronic stress in adolescence allowed animals to react to subsequent reoccurring chal-
lenges more quickly (Fig 4). Our results were unexpected because exposure to social instability,
a chronic stress treatment, during adolescence has previously been shown to impair spatial
learning [24] and spatial memory [23]. The contrast between earlier observations and those
reported here suggests that the effects of adolescent-stress may be context-specific, and high-
lights the difficulty of generalizing results across systems and environments [16], [39].

Fig 4. Latency to enter an arm across both days of radial armmaze training. Each point represents three
averaged trials, means ± SE. **Indicates significant time and stress x time effects across all trials.

doi:10.1371/journal.pone.0141908.g004

Fig 5. Retention of a spatial association in adolescent-stressed and unstressed Sprague-Dawley male
rats.Retention of a platform location in a water maze 3 days after spatial association training was assessed
using latency to locate the platform (A) and total number of arm entries before finding the platform (B),
means ± SE.

doi:10.1371/journal.pone.0141908.g005
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Differences between the RAWM and the open arena tests used in prior studies of adolescent-
stress could facilitate the use of different strategies and contribute to differences between the
current results and those reported in earlier studies (Morris water maze: [24], [40]; object mem-
ory tests: [23], [33]). One explanation for our findings may lie in the use of alternate strategies
in the RAWM by adolescent-stressed rats. The RAWM provides more visual and local cues
than open arena tests, which may allow rats to employ an ‘associative learning strategy’ and
decrease the need for hippocampally dependent cognitive maps of the environment, thereby
masking possible spatial deficits [41], [42], [43]. Further, search strategies may differ between
open arena tests and the more structured RAWM; in a RAWM, but not an open arena, it is pos-
sible to use a ‘working memory strategy’ by entering new arms until locating the platform, with-
out re-entering previous arms [44]. Such an approach would not require retention across trials,
just a ‘list-like’ working memory of which arms had been visited within a trial [44]. The current
finding that unstressed rats show a greater decrease in errors related to reference memory com-
pared with adolescent-stressed rats, but that stress condition does not affect changes in working
memory (Table 2), allows for the possibility that adolescent-stressed rats used working memory
to compensate for delays in reference memory, rather than a spatial learning strategy where a
mental representation of the spatial environment is constructed and refined over time [45]. A
‘working memory strategy’ would also not be affected by delays between trials, and could
explain why the adolescent-stressed animals in the current study appeared to show a smaller
change in performance between the last set of trials on the first day and the first set of trials on
the second day (separated by an overnight delay), compared with unstressed animals.

A shift in strategy [46], the flexibility of a strategy, or the ability to abandon an inefficient
strategy [47] can result from exposure to stress. In addition to our current results, we have pre-
viously shown that the adolescent-stress procedures used here can induce strategy shifts. In
Chaby et al. [29], we demonstrated that adolescent-stressed rats exhibit the same foraging per-
formance as unstressed rats under standard testing conditions, but adolescent-stress changes
foraging behaviors (including the number of patches visited and the latency to visit a patch).
This suggests that adolescent-stress induces a change in foraging strategy without altering per-
formance outcome. Additionally, although adolescent-stress does not affect the rate of appeti-
tive associative learning, adolescent-stressed rats show increased decision making speed during
associative learning training, again indicating a potential strategy change [12]. We suggest that
these stress-induced strategy shifts could be adaptive in unpredictable or high threat contexts.
If exposure to stress in adolescence signals that an animal should prepare for an environment
where spatial cues will likely be unstable, or dangerous conditions where threat limits the
amount of time an animal can spend acquiring spatial information, then it may be advanta-
geous for adolescent-stressed animals to use spatial navigation strategies that enable rapid
choices and do not rely on learning and environmental consistency [16]. Adjusting spatial
strategies in response to environmental conditions has previously been shown in a teleost fish;
stickleback that occupy unstable river environments are less likely to use visual landmarks
compared with fish from more stable pond environments [9].

Table 3. Retention in adolescent-stressed and unstressed rats.

Retention Effect of stress

Latency to enter an arm T20 = -0.433, P = 0.670

Latency to find the platform T20 = -0.371, P = 0.715

Search time T20 = -0.147, P = 0.886

Number of arm entries T20 = -0.225, P = 0.824

doi:10.1371/journal.pone.0141908.t003
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We also found that adolescent-stressed rats responded more quickly than unstressed rats
when re-exposed to the potentially stressful cold water in the RAWM by beginning to search
for the escape platform faster after an overnight delay between trials, which may be indicative
of preconditioning effects [48], [49]. This finding also suggests that compared with unstressed
rats, rats that experienced reoccurring challenges during the chronic adolescent-stress treat-
ment may have a greater expectation of re-exposure to aversive stimuli that allows them to
respond more quickly to reoccurring aversive conditions. An ability to engage in an aversive
task more quickly could be beneficial in a context where faster action or escape would be
advantageous. Given that chronic exposure to corticosteroids in adolescence can cause changes
in impulsivity in adulthood, including increased impulsive choice and decreased impulsive
action [50], it is also possible that changes in impulsivity may mediate changes in the latency to
engage in the water maze task.

Overall, though we found little support of the hypothesis that chronic stress in adolescence
impairs spatial ability in adulthood, the results indicate that adolescent-stress affects cognition
in adulthood in a highly context-specific way. We suggest that exposure to adolescent-stress
may cause a shift in strategy that affects behavior but results in equal performance, and
increases reliance on working memory while decreasing the use of cognitive spatial maps. In an
adverse environment where spatial cues are unstable or the presence of threat restricts the
amount of time an animal can spend acquiring spatial information, it may be advantageous to
reduce reliance on strategies that depend upon environmental consistency, like cognitive spa-
tial maps, and instead favor strategies that allow rapid decision making. Our results emphasize
the idea that stress in adolescence may have lasting effects on not only performance outcomes,
but also on the strategies used to achieve potentially complex goals like navigating a spatial
environment. Studies that further isolate different components of learning, such as place and
spatial associative learning, would further refine these observations. Finally, our results suggest
that experiencing reoccurring challenges during adolescence may allow animals to respond
more quickly to subsequent reoccurring challenges, which could be valuable in a context where
faster action would be advantageous.
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