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Abstract
Obesity is an important medical problem affecting humans and animals in the developed

world, but the evolutionary origins of the behaviours that cause obesity are poorly under-

stood. The potential role of occasional gluts of food in determining fat-storage strategies for

avoiding mortality have been overlooked, even though animals experienced such condi-

tions in the recent evolutionary past and may follow the same strategies in the modern envi-

ronment. Humans, domestic, and captive animals in the developed world are exposed to a

surplus of calorie-rich food, conditions characterised as ‘constant-glut’. Here, we use a

mathematical model to demonstrate that obesity-related mortality from poor health in a con-

stant-glut environment should equal the average mortality rate in the ‘pre-modern’ environ-

ment when predation risk was more closely linked with foraging. It should therefore not be

surprising that animals exposed to abundant food often over-eat to the point of ill-health.

Our work suggests that individuals tend to defend a given excessive level of reserves

because this level was adaptive when gluts were short-lived. The model predicts that mor-

tality rate in constant-glut conditions can increase as the assumed health cost of being over-

weight decreases, meaning that any adaptation that reduced such health costs would have

counter-intuitively led to an increase in mortality in the modern environment. Taken

together, these results imply that efforts to reduce the incidence of obesity that are focussed

on altering individual behaviour are likely to be ineffective because modern, constant-glut

conditions trigger previously adaptive behavioural responses.

Introduction
Obesity is a major and growing medical and social problem in humans, domestic and captive
animals [1,2] because excessive fat storage results in ill health and mortality through several
physiological impacts on the functioning of the body [3–7]. Interventions to help people to lose
weight have limited success in that body weight tends to be resistant to change [8–10], for rea-
sons that are not well understood [11]. Progress in understanding fat storage has frequently
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followed from research on the adaptive use of energy reserves by animals [12–17]. Whilst the
various health risks suggest obesity is not adaptive, maladaptive behaviours can emerge from
behavioural strategies that are adaptive in natural environments [18,19]. Thus, it is likely to be
beneficial to understand how selection in natural environments has resulted in feeding strate-
gies that now promote persistent obesity [17,20–22]. That is, we need to identify the environ-
mental challenges that have led to a phenotype that maintains an unhealthy level of energy
reserves.

Typically, researchers have assumed that the important environmental challenge has been
the occasional instances of food shortage [23]. The thrifty genotype hypothesis for obesity sup-
poses that the storage of fat prepares an individual for a famine that, in the modern environ-
ment, never arrives [20,24,25]. The risk of starvation [25], catabolism of important proteins
[26] and reduced immune function [17] when underweight are proposed to have selected for
weight gain when food is available. Following this strategy in the modern Western environ-
ment, which has been likened to a ‘continuous feast’ [27,28], can lead to overweight and obe-
sity. Even so, in the pre-modern environment it is unlikely that food shortages are sufficiently
common to prevent animals becoming overweight, nor is it the case that food availability is
only barely sufficient to maintain energy balance the rest of the time. Furthermore, it is not
clear why animals have evolved the desire to store excess fat but not to avoid morbidity costs of
being overweight or obese, because if animals will gain a large amount of weight when it is pos-
sible, we would expect that natural selection would have reduced or removed the health costs
of being overweight.

The dynamics of the food supply in natural environments are not limited to ‘barely suffi-
cient’ and ‘insufficient’: often there will be gluts of food, such as during brief wet seasons, whilst
trees are fruiting, and at harvest time [17]. Such gluts may provide a reason for individuals to
consume more food than they should maintain in the long term. Gluts are likely to be short-
lived and so fat will eventually be used up, but during periods when fat stores are above the
long-term requirements, the animal does not have to look for food to meet its needs. A major
cost of foraging in animals is exposure to predators [29–32] so the risk of predation is a reason
to avoid foraging when possible. Furthermore, when not foraging animals are typically carrying
out other behaviours that increase reproductive success. For instance, many mammals gain
weight when food is abundant and eat little during the breeding season [33]. The need to forage
can therefore be considered to be a cost that prevents investment in reproduction. In such con-
ditions, the selective pressure for changes in physiology that reduce the long-term costs of
being overweight will typically be weak because the extra reserves are not maintained long-
term. However, the ‘constant glut’ conditions in artificial environments have led to high levels
of obesity [27] and the health costs are significant. In this paper we show that by considering
the optimal behaviour in response to both gluts of food and the costs of foraging–two key fea-
tures of natural environments–we are able to understand current behaviour and make predic-
tions about current levels of mortality from obesity. The starvation-predation trade-off has
been successful at predicting levels of body fat across animal species [34]. Here, we show that
this trade-off could have interacted with the occurrence of gluts of food to select for strategies
that cause maladaptive fat storage in artificial environments.

The Model
We consider an animal that is attempting to survive a long period in which it does not repro-
duce in an environment with rare and short-lived gluts of food. The animal faces three sources
of mortality: death due to low fat reserves (e.g. starvation due to food shortage, or disease due
to a poor immune system), obesity-associated morbidity, and predation while foraging. For
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clarity we assume that the mortality from predation when resting is zero, but our argument only
depends on external mortality (from predation, injury from defensive prey, accident, conflict with
other humans, or disease) being greater when foraging than when resting. The mortality rates
from these three sources depend on howmuch fat the animal stores. The rate of starvation is
assumed to decrease with the level of fat maintained because the animals can survive a longer
period without food or invest more in the immune system. In this general approach we do not
explicitly model the actual mechanism, but the assumed rate of mortality represents them. The
rate of predation while foraging is assumed to increase with the current level of fat due to
increased vulnerability because of reduced mobility [35–37]. The rate of obesity-related mortality
is assumed to increase with reserves at an accelerating rate, as observed in studies of humans [38].

We consider that natural selection on the animal (e.g. Palaeolithic hunter-gathering
humans) has led to a fat-storage strategy that minimises the total rate of mortality [29,39]. A
strategy is specified by two target levels of fat: the amount of fat to store during normal condi-
tions (FN) and the level of fat to build up to during a glut (FG). Consider the animal under nor-
mal conditions. Suppose that the animal alternates between foraging and resting so as to
maintain its fat reserves at level x. The animal will be subject to three sources of mortality; pre-
dation risk while foraging, the risk of starvation should a food shortage occur and mortality
due to the level of fat carried. Let A(x) denote the average mortality rate of this animal. Then
over a time interval of length T the probability that the animal does not die is

ST ¼ exp

(
�
ZT
0

AðxÞdt
)

¼ e�AðxÞT :

Thus for any T, the probability it survives the time interval is maximized by choosing x to
minimize A(x). We denote the level of fat reserves x at which this minimum is achieved by F�

N .
Now suppose that the animal is maintaining reserves at F�

N when a rare glut of food occurs.
We assume that during a glut the animal can gain as much fat as it likes very quickly and that
during this time the rate of predation is negligible compared to baseline. By the end of this
time, conditions have returned to normal. Building up fat during a glut enables the animal then
to forgo foraging for the time it takes for fat levels to fall from FG to FN, and so avoid the risk of
predation during that time. However, the mortality rate associated with obesity increases with
FG, which limits the benefit of fat and leads to a trade-off between obesity-related mortality and
mortality from predation (Fig 1).

Mortality rates under the optimal strategy
Here, we show that the animal should build up reserves during a glut to the level where the
total mortality when resting is equal to the total mortality under normal conditions. We denote
the critical levels of FN and FG that minimise the total mortality rate by F�

N and F�
G respectively.

Since gluts are rare, F�
N is not influenced by what happens during gluts and just minimises the

total mortality rate under normal conditions. Suppose that during the glut the animal builds up
its fat reserves to level y and this build up is essentially instantaneous and is achieved at no
additional risk of predation. The animal then rests until fat reserves fall to F�

N again. Suppose
that this takes time τ(y). Once fat reserves fall to F�

N the animal maintains its reserves at this
level. Then the probability the animal is still alive time T after the glut (where T> τ(y)) is

ŜTðyÞ ¼ exp

(
�
 ZtðyÞ

0

RðxðtÞÞdt þ
ZT
tðyÞ

AðF�
NÞdt

!)
;
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where R(x) is the mortality rate while resting at reserve level x and x(t) is the animal’s fat
reserves at time t. We rewrite this survival probability as

ŜTðyÞ ¼ exp

(
�
 ZtðyÞ

0

½RðxðtÞÞ � AðF�
NÞ�dt þ

ZT
0

AðF�
NÞdt

!)
:

Fig 1. Illustration of the trade-off between the mortality rates from obesity and predation when setting the target level of reserves during a glut (FG).
The two illustrated strategies have the same target under normal conditions (FN) but different FG values. The higher FGmeans that when a glut occurs
reserves increase by a larger amount, which enables the animal to avoid foraging for a long time before reserves decrease to FN. However, at such high
reserves the mortality rate from obesity is higher. The lower FG avoids the period of very high reserves (labelled ‘extra obesity cost’) but reaches FN sooner,
and so incurs extra mortality from predation (‘extra time exposed to predation’).

doi:10.1371/journal.pone.0141811.g001
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Since the second integral does not depend on y, survival is maximized (for all T> τ(y)) by
minimizing

IðyÞ ¼
ZtðyÞ
0

½RðxðtÞÞ�AðF�
NÞ�dt:

Changing the integral to one over x rather than t (using the fact that x(0) = y and
xðtðyÞÞ ¼ F�

N) gives

IðyÞ ¼
ZFN�
y

½RðxÞ � AðF�
NÞ�

dt
dx

dx

Differentiating with respect to y we obtain

I 0ðyÞ ¼ ½RðyÞ � AðF�
NÞ�ð�

dt
dx

ðyÞÞ: ð1Þ

Note that, since reserves decrease during resting we have� dt
dx
ðxÞ > 0 for all reserves x.

Since resting incurs a lower mortality rate than active foraging we have RðF�
NÞ < AðF�

NÞ,
so that I0(FN�)< 0. We assume that the mortality increase with fat reserves is such that
RðyÞ > AðF�

NÞ for all sufficiently large y, so that I0(y)> 0 for all sufficiently large y. Then I(y)
has a minimum value at some value y ¼ F�

G that satisfies I
0ðF�

GÞ ¼ 0. By Eq (1) it follows that

RðF�
GÞ ¼ AðF�

NÞ:

That is, the optimal FG is the level of reserves at which the total mortality when not foraging
(i.e. due to starvation and obesity, but not predation) is equal to the overall mortality rate
under normal conditions when maintaining fat levels at F�

N . To understand this result, recall
that building up fat during a glut allows the animal to rest safe from predators for a while. The
more fat that is put on, the longer the period of rest. Assuming that at the start of the period of
rest the fat level is higher than under normal conditions and the mortality rate while resting is
less than the normal mortality rate, it is worth putting on more fat to prolong the period of rest
still further.

Implications for obesity
In many modern human societies and the artificial environments in which domestic animals
are kept, food is always abundant (i.e. glut is the usual condition). If there has been insufficient
time for natural selection to act on the pre-modern adaptations then animals still follow the
rule that is appropriate for the natural environment, in which gluts are rare, and their level of
fat will always be F�

G. It follows from our result that the mortality rate (from starvation and obe-
sity-related illness) in the current predator-free environment should equal the average mortal-
ity rate in the environment in which animals (including humans) evolved. Since the rate of
starvation is likely to be small when the individual has large fat stores, we conclude that the
obesity-related mortality rate in constant glut conditions should approximately equal the aver-
age total mortality rate in the pre-modern environment.

Fig 2 illustrates this result for some example forms and parameters of the mortality func-
tions (see Appendix). For these functions, most mortality during normal conditions is due to
predation, in line with many observations of wild animals (e.g. [40,41–44]), and obesity-related
mortality is rare but present, consistent with the observation that non-obese people do, but less
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commonly, suffer from obesity-related diseases [3–6]. As a consequence, our result means that
current obesity-related mortality is approximately equal to mortality from predation in the nat-
ural environment.

Fig 2. Illustration of the mortality ratesmi as a function of reserves xwhen foraging at the appropriate rate to maintain reserves at x (dashed line)
and when resting (solid line) for a specific model implementation (see Appendix). The mortality from starvation (mS, green line) declines rapidly with
increasing fat reserves x, and so is only substantial at low reserves. The mortality from obesity (mB, blue line) is small at low reserves and increases at an
accelerating rate. Mortality due to predation during foraging (mP, red line) increases with reserves. The optimal normal fat level F�

N is at the minimum of the
sum of the mortality rates under normal conditions (mS +mB + αmP). During a glut, the animal should feed up to reserves level F�

G where the mortality from
obesity causes total mortality (not includingmP, which is zero while resting) to equal that at F�

N (dotted lines). It can then rest, avoiding the risk of predation,
until its reserves fall to F�

N, whereupon it must start to forage again before it suffers a large increase in mortality due to low reserves. Parameter values: γ = 10,
ψ = 3, μ = 0.005, ϕ = 2, β = 3, κ = 0.01, ρ = 0.0001.

doi:10.1371/journal.pone.0141811.g002
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As predation risk increases, animals should be less fat in normal conditions to reduce the
risk of predation, and feed more in gluts to enable a longer resting period (Fig 3A). Mortality in
gluts will therefore increase with natural predation risk (Fig 3C). As the obesity cost (κ)
decreases, weight gain during gluts increases (Fig 3B), mortality in normal conditions decreases
whilst mortality in constant glut conditions may even increase (Fig 3D). That is, lowering the
cost of being overweight may not reduce the predicted obesity-dependent mortality rate during

Fig 3. Effects of varying (a, c) risk of predation μ and (b, d) the cost of obesity κ on (a, b) the optimal strategy (dashed lines: F�
N , solid lines: F�

G) and
(c, d) the various sources of mortality under normal conditions (starvationmS, green lines; predationmP, red lines; obesitymB, blue lines), total
mortality under normal conditions (dashed lines), andmortality from obesity in constant glut (solid lines).Note that the mortality from obesity under
normal conditions is always very small and that at low κmortality under constant glut conditions increases (to a small extent) as κ decreases. Baseline
parameter values: γ = 10, ψ = 3, μ = 0.005, ϕ = 2, β = 3, κ = 0.01, ρ = 0.0001.

doi:10.1371/journal.pone.0141811.g003
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a constant glut, and may even increase it, since a lower cost results in greater fat storage in a
glut (i.e. larger F�

G). We can now answer the following question: If carrying high fat loads had a
health cost why hasn’t natural selection acted on our physiology to reduce this cost? In the con-
text of our model, the deleterious effects of high fat levels would mostly operate in a short
period after rare gluts. This suggests that the selection pressure on animals to change their
physiology has been low. Furthermore, any selection that did act to reduce the intrinsic health
costs of obesity could have counter-intuitively led to increased obesity (and obesity-related
mortality) in constant-glut conditions.

Discussion
Our simple evolutionary model provides a novel hypothesis for the functional causes of obesity
in domestic animals (e.g. humans, pets and laboratory subjects) in altered environments to
which they are not yet adapted, where food is abundant and foraging carries no predation risk.
Overweight individuals do not gain weight indefinitely, but maintain a given, high level of fat
reserves [10,45]. Any explanation for obesity must provide reasons why selection has not led to
a weight control system that avoids storing a maladaptive level of fat, why the system appears
to defend a level of fat that is too high, and how being overweight can still be unhealthy if adap-
tive fat storage strategies cause it to occur. Our model suggests that these are all consequences
of an artificial environment that triggers an adaptive response. That is, selective pressures from
risky foraging and a variable food supply have favoured a feeding strategy that attempts to
build up fat reserves to a deleterious, fixed, level when food is abundant.

We have explored what the evolutionary consequences would be in the assumed conditions.
We now assess the extent to which our model applies to humans. Existing approaches to
understanding obesity focus on the usefulness of fat as an insurance against a shortage of food.
However, there is much doubt about whether food shortages were sufficiently common to
exert a strong selective pressure on ancestral human populations [46]. The thrifty genotype
and thrifty phenotype hypotheses are based on the idea that the body prepares for periods of
food shortage [20]. However, it is unlikely that food shortages were sufficiently common nor
food under normal conditions sufficiently restricted to prevent humans in ancestral environ-
ments becoming overweight [47]. It is therefore necessary to explain why humans are not over-
weight in natural conditions but become so in constant-glut conditions, and do so even if the
starvation rate has always been low. Our explanation follows from the acknowledgment that
storing energy is also a way to avoid the need for foraging and its associated costs (e.g. preda-
tion) for some time. In many traditional societies people experience occasional gluts of food
and practice ritual feeding [48,49], which allows them to avoid intensive foraging when food is
scarce. The innovations of weaponry and the control of fire did not eliminate the risk of mor-
tality from predation and other sources while foraging for humans [50,51], so selection for
avoiding predation will have influenced the evolution of current human feeding behaviour.
Now, of course, there is essentially no predation risk, which may lead eventually to a lower tar-
get as humans evolve.

In line with work on the use of fat by animals, we assume that the selective pressure against
foraging is from predation [31,34] and that the risk of predation is assumed to increase with fat
stores. This is based on observations of reduced mobility demonstrated in birds [35–37], so it
would be useful to have studies of mobility and predator evasion in running animals. We have
also assumed that mortality from obesity is instantaneous in the same way as predation, when
in reality morbidity occurs due to chronic overweight or obesity [4,5,52]. Further work with a
completely new model is needed to investigate how model predictions are changed when the
effects of obesity are cumulative. Nevertheless, we would expect the insights gained from our
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current model to still apply. Our model does predict that some individuals will suffer from obe-
sity-related diseases even when not obese (i.e.mB>0 even when FG is not large in Fig 3), and
these may be the so-called metabolically unhealthy lean people. However, these values are
quite small, so mortality from obesity-related diseases is predicted to be high only when indi-
viduals are obese, as is observed in humans [3–7]. One further issue with our hypothesis is the
challenge to explain how selection could act on body weights that were unachievable in pre-
modern environments (hunter-gatherers typically do not become obese [53]).

All of these issues can be resolved by considering that our model is a conceptual one that
illustrates the idea of a response to glut that reduces the need to forage; the real situation need
not match exactly how we have discussed it. We have described the three costs in our model as
mortality rates, but the hypothesis also works if the three costs are ongoing impacts on repro-
ductive value: starvation could be substituted by any cost of having low reserves that reduces
breeding ability, such as a compromised immune function [4]; obesity-related morbidity need
not be fatal to affect reproductive success [54,55]; and the increasing costs of foraging may not
be predation rate but that time spent not foraging is invested in other activities that increase
reproductive fitness, meaning it would then be worth gaining a great deal of weight during glut
and relying on this energy whilst, for example, competing for mates. We have assumed that
gluts are rare and instantaneous, reflecting the idea that an abundance of fruit or animal prey
would be short-lived compared to the duration of normal conditions, the length of food short-
ages, and the impacts of obesity on health. Our predictions would not be qualitatively affected
if we assumed that feeding up in gluts took time and predation occurred during gluts provided
that the predation risk associated with foraging is lower than that under normal conditions.

Our results on the role of predation (Fig 3A and 3C) allow us to speculate about a possible rea-
son for between-individual variability in the amount of energy reserves that individuals store.
Variability in the amount of fat stored by individuals may be due to variability in the subcon-
scious perception of risk, which may explain observed correlations between obesity and anxiety
[2,56]. Furthermore, under this view we would not expect any individual gene to have strong
effects on body weight, since the tendency to eat will be subject to a range of genetic and environ-
ment influences that all affect responses to risk and rewards. Our perspective enables us to pro-
vide an explanation rooted in evolutionary theory for why not all individuals become obese and
why even populations in the most affluent societies maintain a very wide range of body weights.

Current efforts to reduce the incidence of obesity are largely focussed on influencing the
behaviour of individuals that are viewed as having a disease. Our results suggest that a different
perspective might lead to more successful medical interventions. In our model, overweight peo-
ple are viewed as simply following feeding strategies that were adaptive in ancestral humans
but not in modern, constant-glut conditions. Such a fundamental innate strategy for ensuring
survival is likely to be resistant to conscious control, and so it should be unsurprising that treat-
ments for obesity are ineffective [2]. Whilst we would expect humans to adapt to the constant-
glut conditions, this will only occur over evolutionary time, taking many generations. Efforts to
reduce the incidence of obesity that are focussed on altering individual behaviour will be inef-
fective whilst the altered food environment triggers previously adaptive behavioural responses.
Future research effort should therefore be focussed on understanding exactly what aspects of
the modern environment trigger these naturally selected behavioural responses.

Appendix: Specific Model Implementation
Here, we provide a full description of a specific implementation of the model and the deriva-
tion of results. We assume that the magnitudes of the rates of mortality from starvation (mS),
predation (mP), and obesity (mB) are controlled by the scalars ρ, μ, and κ respectively.
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We assume that under normal conditions the animal must set its foraging rate to maintain
energy balance. At foraging rate α and cost of activity relative to resting ψ, the energy usage
rate is αψ + (1 − α). The availability of food is γ and so the energy gain rate is γα, and the ani-
mal maintains a constant level of energy reserves, so rearrangement of the energy balance equa-
tion gives the foraging rate

a ¼ 1

g� cþ 1
: ðA1Þ

The predation rate is

mP ¼ amð1þ �xÞ ðA2Þ

where μ is predator density and ϕ controls the extent to which energy reserves make the animal
more vulnerable to predation.

Substituting Eq (A1) into Eq (A2) gives the mortality rate due to predation when the animal
balances energy in normal conditions:

mP ¼
mð1þ �xÞ
g� cþ 1

: ðA3Þ

The rate of mortality from obesity does not depend on activity level but is mass-dependent,
increasing with fat reserves according to

mB ¼ kxb; ðA4Þ

where κ and β are fixed parameters. We assume β>1 to reflect the trend for the relationship
between body weight and the health costs of overweight are accelerating for overweight and
obese people [57].

The rate of starvation depends on how often periods of no food availability occur (ρ). For
tractability we assume that the distribution of famine durations is such that mortality during
famine is described by the reciprocal of reserves (e.g. because most famines are fairly short):

mS ¼
r
x
: ðA5Þ

The total mortality rate under normal conditions is the sum A =mP+ mB+ mS, so from
equations (A3–A5)

AðxÞ ¼ mð1þ �xÞ
g� cþ 1

þ kxb þ r
x
:

Since gluts are rare, the optimal level of reserves under normal conditions FN� is that which
minimises the A(x):

AðF �
NÞ ¼

mð1þ �F �
NÞ

g� cþ 1
þ kF�

N
b þ r

F�
N

: ðA6Þ

When resting and safe from predators, the mortality rate is

RðxÞ ¼ kxb þ r
x
: ðA7Þ

We are interested in the optimal reserves to feed up to in a glut, F�
G. We show in the main

text that RðF�
GÞ ¼ AðF�

NÞ, so we can use Eqs (A6) and (A7) to find F�
G. Given F�

G, we can assess
mortality from obesity in an obesogenic environment of constant glut and no predation or
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starvation. Progress is possible only if we assign values to the parameters. The values we used
are given in the figure legends.

Acknowledgments
The authors are grateful to Tim Fawcett, Pete Trimmer, Patrick Miller and an anonymous
reviewer for stimulating discussion and comments on the manuscript. This work was sup-
ported by the European Research Council (Advanced Grant 250209 to A. I. H.) and a NERC
Independent Research Fellowship (NE/L011921/1) awarded to A.D.H. The funders had no role
in study design, data collection and analysis, decision to publish, or preparation of the
manuscript.

Author Contributions
Conceived and designed the experiments: JMM. Performed the experiments: JMM ADH. Ana-
lyzed the data: ADH. Wrote the paper: JMM ADH AIH.

References
1. James PT. Obesity: The worldwide epidemic. Clin Dermatol 2004; 22: 276–280. PMID: 15475226

2. Popkin BM, Gordon-Larsen P. The nutrition transition: worldwide obesity dynamics and their determi-
nants. Int J Obes 2004; 28: S2–S9.

3. Marik PE. The malignant obesity hypoventilation syndrome (MOHS). Obesity Rev 2012; 13: 902–909.

4. Milner JJ, Beck MA. The impact of obesity on the immune response to infection. 2012; Proc Nutr Soc
71: 298–306. doi: 10.1017/S0029665112000158 PMID: 22414338

5. Nikolopoulou A, Kadoglou NPE. Obesity and metabolic syndrome as related to cardiovascular disease.
Expert Rev Cardiovasc Ther 2012; 10: 933–939. doi: 10.1586/erc.12.74 PMID: 22908926

6. Raj M. Obesity and cardiovascular risk in children and adolescents. Indian J Endocrinol Metab 2012;
16: 13–19. doi: 10.4103/2230-8210.91176 PMID: 22276248

7. Rius B, Lopez-Vicario C, Gonzalez-Periz A, Moran-Salvador E, Garcia-Alonso V, et al. Resolution of
inflammation in obesity-induced liver disease. Front Immunol 2012; 3: 257–257. doi: 10.3389/fimmu.
2012.00257 PMID: 22934096

8. Strubbe JH. Obesity. 1994; In: Westerterp-Plantenga MS, Fredrix EWHM, Steffens AB, editors. Food
intake and energy expenditure. London: CRC Press.

9. Heymsfield SB, Harp JB, Reitman ML, Beetsch JW, Schoeller DA, et al. Why do obese patients not
lose more weight when treated with low-calorie diets? A mechanistic perspective. Am J Clin Nutr 2007;
85: 346–354. PMID: 17284728

10. Anderson JW, Konz EC, Frederich RC, Wood CL. Long-term weight loss maintenance: a meta-analysis
of U.S. studies. Am J Clin Nutr 2001; 74: 579–584. PMID: 11684524

11. Wells JCK, Siervo M. Obesity and energy balance: is the tail wagging the dog? Eur J Clin Nutr 2011;
65: 1173–1189. doi: 10.1038/ejcn.2011.132 PMID: 21772313

12. Davis C, Fox J, McCool C, Wight K, Curtis C, et al. Is human seasonality implicated in the risk profile for
obesity? Eat Behav 2010; 11: 301–304. doi: 10.1016/j.eatbeh.2010.07.004 PMID: 20850068

13. Siervo M, Wells JCK, Cizza G. Evolutionary theories, psychosocial stress and the modern obesity epi-
demic. Obesity Metab 2008; 4: 131–142.

14. Siervo M, Wells JCK, Cizza G. The contribution of psychosocial stress to the obesity epidemic: An evo-
lutionary approach. HormMetab Res 2009; 41: 261–270. doi: 10.1055/s-0028-1119377 PMID:
19156597

15. Zafon C. Oscillations in total body fat content through life: an evolutionary perspective. Obes Rev 2007;
8: 525–530. PMID: 17949356

16. Speakman JR. Evolutionary perspectives on the obesity epidemic: Adaptive, maladaptive, and neutral
viewpoints. Annu Rev Nutr 2013; 33: 289–317. doi: 10.1146/annurev-nutr-071811-150711 PMID:
23862645

17. Wells JCK. The evolution of human fatness and susceptibility to obesity: an ethological approach. Biol
Rev 2006; 81: 183–205. PMID: 16677431

Foraging Costs and Obesity

PLOS ONE | DOI:10.1371/journal.pone.0141811 November 6, 2015 11 / 13

http://www.ncbi.nlm.nih.gov/pubmed/15475226
http://dx.doi.org/10.1017/S0029665112000158
http://www.ncbi.nlm.nih.gov/pubmed/22414338
http://dx.doi.org/10.1586/erc.12.74
http://www.ncbi.nlm.nih.gov/pubmed/22908926
http://dx.doi.org/10.4103/2230-8210.91176
http://www.ncbi.nlm.nih.gov/pubmed/22276248
http://dx.doi.org/10.3389/fimmu.2012.00257
http://dx.doi.org/10.3389/fimmu.2012.00257
http://www.ncbi.nlm.nih.gov/pubmed/22934096
http://www.ncbi.nlm.nih.gov/pubmed/17284728
http://www.ncbi.nlm.nih.gov/pubmed/11684524
http://dx.doi.org/10.1038/ejcn.2011.132
http://www.ncbi.nlm.nih.gov/pubmed/21772313
http://dx.doi.org/10.1016/j.eatbeh.2010.07.004
http://www.ncbi.nlm.nih.gov/pubmed/20850068
http://dx.doi.org/10.1055/s-0028-1119377
http://www.ncbi.nlm.nih.gov/pubmed/19156597
http://www.ncbi.nlm.nih.gov/pubmed/17949356
http://dx.doi.org/10.1146/annurev-nutr-071811-150711
http://www.ncbi.nlm.nih.gov/pubmed/23862645
http://www.ncbi.nlm.nih.gov/pubmed/16677431


18. Fawcett TW, Fallenstein B, Higginson AD, Houston AI, Mallpress DEW, et al. The evolution of decision
rules in complex environments. Trends Cogn Sci 2014; 18: 153–161. doi: 10.1016/j.tics.2013.12.012
PMID: 24467913

19. FrankenhuisWE, del Giudice M. When do adaptive developmental mechanisms yield maladaptive out-
comes? Dev Psych 2012; 48: 628–642.

20. Wells JCK. Thrift: a guide to thrifty genes, thrifty phenotypes and thrifty norms. Int J Obes 2009; 33:
1331–1338.

21. Morrison CD, Berthoud HR. Neurobiology of nutrition and obesity. Nutr Rev 2007; 65: 517–534. PMID:
18236691

22. Rowland NE, Vaughan CH, Mathes CM, Mitra A. Feeding behaviour, obesity, and and neuroeco-
nomics. Physiol Behav 2008; 93: 97–109. PMID: 17825853

23. Speakman JR. Thrifty genes for obesity, an attractive but flawed idea, and an alternative perspective:
the 'drifty gene' hypothesis. Int J Obes 2008; 32: 1611–1617.

24. Barker DJP. Maternal nutrition, fetal nutrition, and disease in later life. Nutrition 1997; 13: 807–813.
PMID: 9290095

25. Neel JV. Diabetes mellitus: a "thrifty" genotype rendered detrimental by "progress"? Am J Human
Genetics. 1962; 14: 353–362

26. McCue MD. Starvation physiology: Reviewing the different strategies animals use to survive a common
challenge. Comp Biochem Physiol A 2010; 156: 1–18.

27. O'Dea K. Obesity and diabetes in the land of milk and honey. Diabet Metabol Rev 1992; 8: 373–388.

28. Rogers PJ. Eating habits and appetite control: a psychobiological perspective. Proc Nutr Soc 1999; 58:
59–67. PMID: 10343341

29. McNamara JM, Houston AI. The value of fat reserves and the tradeoff between starvation and preda-
tion. Acta Biotheoret 1990; 38: 37–61.

30. Brodin A. Mass-dependent predation and metabolic expenditure in wintering birds: is there a trade-off
between different forms of predation? Anim Behav 2001; 62: 993–999.

31. Gosler AG, Greenwood JJD, Perrins C. Predation risk and the cost of being fat. Nature 1995; 377:
621–623.

32. Lima SL. Predation risk and unpredictable feeding conditions—determinants of body mass in birds.
Ecology 1986; 67: 377–385.

33. Mysterud A, Bonenfant C, Loe LE, Langvatn R, Yoccoz NG, et al. Age-specific feeding cessation in
male red deer during rut. J Zool 2008; 275: 407–412.

34. Higginson AD, McNamara JM, Houston AI. The starvation-predation trade-off predicts trends in body
size, muscularity, and adiposity between and within taxa. Amer Nat 2012; 179: 338–350.

35. Witter MS, Cuthill IC. The ecological costs of avian fat storage. Philos T Roy Soc B 1993; 340: 73–92.

36. Wells J. The evolutionary biology of human body fatness: Thrift and control. 2010; Cambridge: Cam-
bridge University Press.

37. Zimmer C, Boos M, Poulin N, Gosler A, Petit O, et al. Evidence of the trade-off between starvation and
predation risks in ducks. PLoS One 2011; 6: e22352. doi: 10.1371/journal.pone.0022352 PMID:
21789252

38. Garaulet M, Ordovas JM, Madrid JA. The chronobiology, etiology and pathophysiology of obesity. Int J
Obes 2010; 34: 1667–1683.

39. McNamara JM. The policy which maximises long-term survival of an animal faced with the risks of star-
vation and predation. Adv Appl Prob 1990; 22: 295–308.

40. Gazzola A, Bertelli I, Avanzinelli E, Tolosano A, Bertotto P, et al. Predation by wolves (Canis lupus) on
wild and domestic ungulates of the western Alps, Italy. J Zool 2005; 266: 205–213.

41. Hocken AG Cause of death in blue penguins (Eudyptula m.minor) in North Otago, New Zealand. New
Zealand J Zool 2000; 27: 305–309.

42. Pereira JA, Fracassi NG, Rago V, Ferreyra H, Marull CA, et al. Causes of mortality in a Geoffroy's cat
population-a long-term survey using diverse recording methods. Eur J Wildl Res 2010; 56: 939–942.

43. Putaala A, Turtola A, Hissa R. Mortality of wild and released hand-reared grey partridges (Perdix per-
dix) in Finland. Wildl Biol 2001; 18: 291–304.

44. Schekkerman H, TeunissenW, Oosterveld E. Mortality of black-tailed godwit Limosa limosa and north-
ern lapwing Vanellus vanellus chicks in wet grasslands: influence of predation and agriculture. J Ornithol
2009; 150: 133–145.

Foraging Costs and Obesity

PLOS ONE | DOI:10.1371/journal.pone.0141811 November 6, 2015 12 / 13

http://dx.doi.org/10.1016/j.tics.2013.12.012
http://www.ncbi.nlm.nih.gov/pubmed/24467913
http://www.ncbi.nlm.nih.gov/pubmed/18236691
http://www.ncbi.nlm.nih.gov/pubmed/17825853
http://www.ncbi.nlm.nih.gov/pubmed/9290095
http://www.ncbi.nlm.nih.gov/pubmed/10343341
http://dx.doi.org/10.1371/journal.pone.0022352
http://www.ncbi.nlm.nih.gov/pubmed/21789252


45. White CL, Purpera MN, Ballard K, Morrison CD. Decreased food intake following overfeeding involves
leptin-dependent and leptin-independent mechanisms. Physiol Behav 2010; 100: 408–416. doi: 10.
1016/j.physbeh.2010.04.006 PMID: 20385158

46. Hayward AD, Holopainen J, Pettay JE, Lummaa V (2012) Food and fitness: associations between crop
yields and life-history traits in a longitudinally monitored pre-industrial human population. Proc Roy Soc
Lond B 279: 4165–4173.

47. Benyshek DC, Watson JT (2006) Exploring the thrifty genotype's food-shortage assumptions: A cross-
cultural comparison of ethnographic accounts of food security among foraging and agricultural socie-
ties. 131: 120–126. PMID: 16485298

48. Pasquet P, Brigant L, Froment A, Koppert GA, Bard D, et al. Massive overfeeding and energy-balance
in men—the Guru-Walla model. Am J Clin Nutr 1992; 56: 483–490. PMID: 1503058

49. Pollock NJ. Cultural elaborations of obesity—fattening practices in Pacific societies. Asia Pacific J Clin
Nutr 1995; 4: 357–360.

50. Pickering TR. Man the hunted: Primates, predators, and human evolution. Evol Anthropol 2005; 14:
159–164.

51. Treves A, Naughton-Treves L. Risk and opportunity for humans coexisting with large carnivores. J
Hum Evol 1999; 36: 275–282. PMID: 10074384

52. Scott KA, McGee MA, Wells JE, Browne MAO. Obesity and mental disorders in the adult general popu-
lation. J Psychosom Res 2008; 64: 97–105. PMID: 18158005

53. Kirchengast S. Weight status of adult! Kung San and Kavango people from Northern Namibia. Annals
Human Biol 1998; 25: 541–551.

54. Klenov VE, Jungheim ES. Obesity and reproductive function: a review of the evidence. Curr Opin
Obstet Gynecol 2014; 26: 455–460. doi: 10.1097/GCO.0000000000000113 PMID: 25254319

55. Sermondade N, Faure C, Fezeu L, Shayeb AG, Bonde JP, et al. BMI in relation to sperm count: an
updated systematic review and collaborative meta-analysis. Hum Reprod Update 2013; 19: 221–231.
doi: 10.1093/humupd/dms050 PMID: 23242914

56. Gariepy G, Nitka D, Schmitz N. The association between obesity and anxiety disorders in the popula-
tion: a systematic review and meta-analysis. Int J Obes 2010; 34: 407–419.

57. Troiano RP, Frongillo EA, Sobal J, Levistsky DA. The relationship between body weight and mortality:
a quantitative analysis of combined information from existing studies. Int J Obes 1996; 20: 63–75.

Foraging Costs and Obesity

PLOS ONE | DOI:10.1371/journal.pone.0141811 November 6, 2015 13 / 13

http://dx.doi.org/10.1016/j.physbeh.2010.04.006
http://dx.doi.org/10.1016/j.physbeh.2010.04.006
http://www.ncbi.nlm.nih.gov/pubmed/20385158
http://www.ncbi.nlm.nih.gov/pubmed/16485298
http://www.ncbi.nlm.nih.gov/pubmed/1503058
http://www.ncbi.nlm.nih.gov/pubmed/10074384
http://www.ncbi.nlm.nih.gov/pubmed/18158005
http://dx.doi.org/10.1097/GCO.0000000000000113
http://www.ncbi.nlm.nih.gov/pubmed/25254319
http://dx.doi.org/10.1093/humupd/dms050
http://www.ncbi.nlm.nih.gov/pubmed/23242914

