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Abstract
Machado-Joseph disease (MJD) is an inherited neurodegenerative disease, caused by a

CAG repeat expansion within the coding region of ATXN3 gene, and which currently lacks

effective treatment. In this work we tested the therapeutic efficacy of chronic treatment with

valproic acid (VPA) (200mg/kg), a compound with known neuroprotection activity, and pre-

viously shown to be effective in cell, fly and nematode models of MJD. We show that chronic

VPA treatment in the CMVMJD135 mouse model had limited effects in the motor deficits of

these mice, seen mostly at late stages in the motor swimming, beam walk, rotarod and

spontaneous locomotor activity tests, and did not modify the ATXN3 inclusion load and

astrogliosis in affected brain regions. However, VPA chronic treatment was able to increase

GRP78 protein levels at 30 weeks of age, one of its known neuroprotective effects, confirm-

ing target engagement. In spite of limited results, the use of another dosage of VPA or of

VPA in a combined therapy with molecules targeting other pathways, cannot be excluded

as potential strategies for MJD therapeutics.

Introduction
Polyglutamine (PolyQ) diseases are neurodegenerative disorders caused by an expansion of tri-
nucleotide CAG repeats within the coding region of specific genes [1]. This group of disorders
includes spinal bulbar muscular atrophy (SBMA), Huntington’s disease (HD), Dentatorubral-
Pallidoluysian atrophy (DRPLA), and six types of spinocerebellar ataxias (SCA’s) [2].
Machado-Joseph disease (MJD) or Spinocerebellar Ataxia type 3 (SCA3) is the most common
dominantly inherited SCA worldwide and is caused by the expansion of a polyQ tract in the C-
terminus of the ATXN3 gene product [3]. Both the normal and expanded ataxin-3 (ATXN3)
proteins are expressed ubiquitously, although the neurodegeneration in MJD is limited to some
brain regions, mainly in cerebellum, brainstem and spinal cord [4]. The symptoms include
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ataxia, progressive external ophthalmoplegia, pyramidal and extrapyramidal signs, peripheral
amyotrophies, intention fasciculation-like movements of facial and lingual muscles, rigidity,
and bulging eyes [5–7]. The pathological hallmark of the disease is the presence of neuronal
intranuclear inclusions (NIIs) of aggregation-prone expanded ATXN3 in the patients' brain,
being the pathogenic relevance of these aggregates still unclear [8–11].

Despite the recent efforts towards the understanding of the pathogenesis of this disorder,
the molecular pathways that ultimately lead to neuronal demise remain mostly unknown and
no effective treatments are yet available for MJD, as for other polyQ diseases. Nevertheless,
there seem to be common pathways between all polyQ diseases that were shown to be altered,
which could be explored in the development of therapeutics, related to transcriptional dysregu-
lation, mitochondrial dysfunction, oxidative stress, Ubiquitine Proteasome System (UPS)
impairment, excitotoxicity, DNA damage and activation of apoptotic pathways [12].

Nevertheless, the translation of candidate therapies to clinical trials is a very long process
due to uncertainty for human safety and has not improved significantly in the last years. In this
context, drug re-purposing strategies, which relies on finding new uses for existing FDA-
approved compounds, has been gaining attractiveness due to the faster translation to the clinic,
with predictably less safety issues.

VPA is an FDA-approved compound that has been used over the years as an anticonvulsant
and mood-stabilizing drug in the treatment of epilepsy, bipolar disorder and migraine [13], with
a relatively safe profile in clinical use. In the last years, a growing body of evidence indicates that
VPA holds promise in treating other neurodegenerative diseases due to its diverse mechanisms
of action. Its pharmacological effects comprise a range of mechanisms, including inhibition of
histone deacetylases, increased gamma-aminobutyric acid (GABA)-ergic transmission, reduced
release and/or effects of excitatory amino acids, blockade of voltage-gated sodium channels and
modulation of dopaminergic and serotoninergic transmission [14]. VPA treatment is also known
to produce changes in the expression of multiple genes, involved in transcription regulation, cell
survival, ion homeostasis, cytoskeletal modifications, signal transduction, endoplasmic reticulum
stress and longevity [13,15] This drug has been shown to delay the disease onset, to reduce neuro-
logical deficits and/or to prolong survival in several models of neurodegenerative diseases, includ-
ing HD, SBMA and Amyotrophic Lateral Sclerosis (ALS) [16–18]. In MJD, VPA was reported to
alleviate neurodegeneration in a Drosophilamodel of the disease [19] and to attenuate mutant
ATXN3-induced cell toxicity in a human neuronal cell model [20]. Moreover, we have previously
shown a significant reduction of mutant ATXN3 aggregation and neurological dysfunction in a
C. elegansmodel of MJD upon VPA treatment through the protective role of the transcription
factor DAF-16, supporting a role in protection against proteotoxicity related to aging and cell
survival [21]. However, its therapeutic efficacy is still not demonstrated in a mammalian model
of MJD. The goal of this work was to test the therapeutic efficacy of chronic VPA treatment in a
mouse model of MJD, CMVMJD135 [22]. Our results show that chronic VPA treatment at the
dosage used in this pre-clinical trial, lead to very limited and transient phenotypic effects in the
CMVMJD135 mouse model, and did not change the ATXN3 inclusion load neither astrogliosis
in affected brain regions.

Results

Effect of VPA acute treatment in histone acetylation and neuroprotective
molecules in the cerebellum
Although CMVMJD135 mouse model do not present a general hypoacetylation of histones in
specific brain regions, we measured the H3 acetylation and we observed a trend towards an
increase in H3 acetylation levels upon 5 days of VPA acute treatment (Fig 1A)
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This result did not present statistical difference due to high variability between samples,
however, a trend was observed to an hyperacetylation of histone H3 in the cerebellum upon
VPA treatment, when normalized to the nuclear protein Lamin B1. Furthermore, and consid-
ering our previous results in C.elegansmodel of MJD upon VPA treatment, we also assessed
the mRNA levels of GADD45α and BIM, two genes related to stress resistance and apoptosis
regulation, respectively [23–26], in the cerebellum of CMVMJD135 mice, where a trend
towards an increase upon VPA acute treatment was also observed (Fig 1B).

Fig 1. VPA acute treatment effects in cerebellum of CMVMJD135mousemodel. (A) A trend towards an increase in the H3 histone acetylation upon VPA
acute treatment; (B) a trend towards an increase in GADD45α and BIM mRNA levels upon VPA acute treatment and (C) VPA concentration in the plasma
after 30 and 120 minutes post-injection. Bars represent the mean ± SEM (n = 4 males for each group), One-Way ANOVA.

doi:10.1371/journal.pone.0141610.g001
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Plasma VPA concentration was also assessed after 30 and 120 minutes post-injection. An
average of 252 ± 15.8 μmol/L after 30 minutes was observed in VPA-treated animals while a
25.7 ± 8.7 μmol/L concentration was detected after 120 minutes post-injection (Fig 1C).

VPA treatment had limited effects in neurological deficits and decreased
the body weight gain in CMVMJD135 mice
Chronic VPA treatment was initiated at 5 weeks of age, with a dosage of 200mg/kg, for 5 conse-
cutive days each week, until 30 weeks of age. A battery of neurological and motor coordination
tests was performed since 4 weeks of age until 30 weeks of age (Fig 2).

No differences were found betweenWT and CMVMJD135 mice at 4 weeks of age before the
beginning of the injections. CMVMJD135 mice start showing less body weight gain at 16 weeks
of age, being statistically different from age-matchedWT littermates at 24 weeks of age (Fig 3A).
VPA treatment significantly reduced the already diminished body weight gain of the transgenic
animals since very early in this trial (Fig 3A) suggesting some toxicity to these animals.

Other than reduced weight gain, no apparent clinical symptoms indicative of significant
health impact were observed during long-term VPA treatment of WT and transgenic animals,
and no more than 20% of their total body weight was lost at any instance. The first sign of neu-
rological disease in the CMVMJD135 mouse model is the presence of muscular grip strength
abnormalities at 6 weeks of age, given by the significant decrease in the latency to fall off in the
hanging wire test [22]. VPA treatment did not alter the progression of the CMVMJD135 ani-
mals in the hanging wire, demonstrating an absence of effect in muscle strength and/or fine
motor coordination of the paws (Fig 3B). Spontaneous locomotor activity of transgenic ani-
mals, given by the number of squares travelled in the arena, was markedly increased upon VPA
treatment at 24 weeks of age (Fig 3C). However, spontaneous vertical exploratory activity,
tremors and clasping were not improved by VPA treatment (Fig 3D, 3E and 3F).

Fig 2. Schematic representation of the VPA pre-clinical therapeutic trial.

doi:10.1371/journal.pone.0141610.g002
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Fig 3. Minor effects in neurological deficits and body weight gain presented by CMVMJD135mice upon VPA treatment. (A) Decreased body weight
gain in CMVMJD135 VPA-treated animals compared to CMVMJD135 vehicle-treated animals; (B) no improvement of VPA-treated animals in grip strength as
assessed through the hanging wire test; (C) Improvement in spontaneous locomotor activity at 24 weeks of age; (D,E,F) No improvement in spontaneous
activity (vertical movement), in tremors and limb clasping, respectively, (G) transient improvement in footdragging severity at 14 weeks, and (H) tendency
toward an improvement in stride length at 22 and 24 weeks of age. Bars represent the mean ± SEM (WT veh, n = 10; WT VPA, n = 15; CMVMJD135 vehicle,
n = 10; CMVMJD135 VPA, n = 13), * represent p<0.05, ** represent p<0.01 and *** represent p<0.001, black asterisks represents the difference between
WT and CMVMJD135, blue asterisks represents the difference between non-treated and VPA-treated CMVMJD135 (Repeated-measures ANOVA, Tukey
correction for continuous variables, One-Way ANOVA for differences between groups in specific ages of the continuous variables and Chi-square Fisher’s
exact test for categorical non-continuous variables).

doi:10.1371/journal.pone.0141610.g003
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Gait abnormalities were assessed qualitatively by the analysis of the footprint pattern.
CMVMJD135 mice model presented foot dragging already at 12 weeks progressing through
age. VPA was able to decrease the severity of this phenotype only at 14 weeks (Fig 3G), while
no effect was observed at more advanced stages of the trial. In addition, stride length was also
measured and although not significant, a trend towards and improvement in transgenic ani-
mals upon VPA treatment was observed at 22 and 24 weeks of age (Fig 3H).

Long-term VPA treatment led to limited improvement in balance and
motor coordination at later disease stages
Since chronic VPA treatment induced a decrease in body weight of transgenic animals, behav-
ior performance in the motor and balance coordination tests was normalized to body weight.
Results of behavioral tests without normalization to body weight are included in supplemen-
tary data (S1 Fig).

VPA treatment ameliorated balance and motor coordination of CMVMJD135 mice at 24
weeks of age, after 20 weeks of daily treatment, as assessed by the time taken to cross the 11
mm circle and 12 mm beams in the balance beam walk test. However, this improvement was
not maintained at 30 weeks of age (Fig 4A and 4B).

Fig 4. Balance andmotor coordination performance normalized for animal body weight. (A,B) No differences were observed between non-normalized
and normalized performance for body weight in balance beam walk test; (C) improvement motor swimming test at 22 and 30 weeks of age and (D)
improvement at 22 weeks of in 8 and 20 rpm of Rotarod test. Bars represent the mean ± SEM (WT veh, n = 10; WT VPA, n = 15, CMVMJD135 vehicle, n = 10;
CMVMJD135 VPA, n = 13), * represent p<0.05, ** represent p<0.01 and *** represent p<0.001, black asterisks represents the difference betweenWT and
CMVMJD135, blue asterisks represents the difference between non-treated and VPA-treated CMVMJD135, (Repeated-measures ANOVA, Tukey correction
for continuous variables, One-Way ANOVA for differences between groups in specific ages of the continuous variables and Mann-Whitney U test for
continuous variables without normal distribution (Rotarod).

doi:10.1371/journal.pone.0141610.g004
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In the motor swimming test, VPA-treated CMVMJD135 mice also had a better performance
later in life (22 and 30 weeks of age) when compared to vehicle-treated mice (Fig 4C). Other
motor deficits observed in CMVMJD135 mice, namely the loss of motor coordination observed
in the Rotarod test, were alleviated by VPA treatment at 22 weeks of age for 8 and 20 rpm, but
not maintained at 30 weeks of age. (Fig 4D and 4E).

VPA treatment did not change the ataxin-3 inclusion load and
astrogliosis in specific brain regions of CMVMJD135 mice
At the pathological level, CMVMJD135 mice show presence of ATXN3 NIIs in the nucleus of
cells in different regions of the CNS including the pontine nuclei, reticulotegmental nucleus of
the pons, spinal cord neurons, facial motor nuclei, anterior olfactory nuclei, ventral tenia tecta,
inferior olive, dentate nuclei, locus coeruleus, cuneate nuclei and lateral reticular nuclei [22].
The analysis of brain tissue of VPA-treated and non-treated CMVMJD135 by immunohis-
tochemistry of ATXN3 in facial motor nuclei (7N) and lateral reticular nuclei (LRt), did not
reveal significant differences between groups (Fig 5A–5D).

Astrogliosis observed in substantia nigra of the CMVMJD135 mouse model, was also not
mitigated upon VPA treatment (Fig 5E and 5F).

Chronic VPA treatment increases GRP78 protein levels in cerebellum of
CMVMJD135 mice
One of the neuroprotective actions described for VPA is its ability to increase GRP78 protein
levels, through HDAC inhibition [15]. GRP78, also known as binding immunoglobulin protein
(BiP), is a stress chaperone protein found in the lumen of the endoplasmic reticulum (ER)
which binds newly synthesized proteins as they are translocated into the ER, and keeps them in
a competent state for subsequent folding and oligomerization [27]. We specifically investigated
the potential role of HDAC inhibition by monitoring the GRP78 protein levels induction upon
VPA treatment. We observe a striking increase in GRP78 protein levels in
CMVMJD135-treated animals when compared to non-treated animals, in the cerebellum at 30
weeks of age (Fig 6).

Discussion
In the past years, the use of VPA as a treatment for neurodegenerative disease models has been
shown to improve neurological phenotypes, decrease cell degeneration and toxicity, together
with the increase of histone acetylation and subsequent gene transcription activation [28–33].
The dosage of VPA of 200mg/kg used in this pre-clinical trial was previously described in a
pre-clinical trial ALS, in which neuroprotective and histone acetylation effects were shown
[34,35]. Here, we also show that five days treatment with 200mg/kg of VPA was able to exert a
trend towards an increase in histone acetylation in cerebellum and a tendency to increase
GADD45α and BIM mRNA levels, which may be used as VPA target engagement [36–38].
The acute treatment and/or high variability between animals may account for the lack of statis-
tical differences between groups. Acute VPA treated animals presented therapeutic levels of
252 ± 15.8 μmol/L and 25.7 ± 8.7 μmol/L in plasma, after 30 and 120 minutes post-injection,
respectively, which was within the usually accepted therapeutic range of VPA. Therefore, we
performed a pre-clinical trial with five consecutive day treatment starting at 5 and ending at 30
weeks of age in CMVMJD135 mouse model. Animals in the pre-clinical trial were always
maintained in an appropriate and healthy environment avoiding the development of any
stressful condition that may interfere with their motor performance. Although previous
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findings by several groups suggested a therapeutic effect for VPA in cellular and invertebrate
animal models of SCA3, in the present study, chronic VPA treatment of CMVMJD135 mice
lead to a late and limited improvement in the motor performance, given by the beam balance,
motor swimming, rotarod and spontaneous locomotor activity tests. For other general health
and neuromuscular function, VPA-treatment had only marginal or even no effects comparing

Fig 5. Immnuhistochemistry and quantification of ATXN3 neuronal inclusions and astrogliosis of VPA-treated and non-treated CMVMJD135.No
differences in nuclear ATXN3 inclusion load were observed between groups in (A,B) 7N and (C,D) LRt brain regions. No differences in astrogliosis in
substantia nigra (SN) between VPA-treated and non-treated transgenic animals (E,F). Scale bar of ATXN3 figures, 20 μm; Scale bar of GFAP figure, 200 μm.
Bars represent the mean ± SEM (n = 4 for each group), One-Way ANOVA.

doi:10.1371/journal.pone.0141610.g005
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to vehicle-treated transgenic animals. In addition, the dosage used in this study is not consid-
ered toxic for mice and is already described as safe in the literature [18,34,35,39]. Nevertheless,
chronic VPA treatment at similar dosage was already described to reduce the body mass gain
in WT animals [34], even though chronically treated human patients are known to increase
their body weight upon VPA treatment [40–42]. Metabolic differences and biological system
diversity could be the reason for these contradictory observations.

At the pathological level, we examined the presence of ATXN3 neuronal nuclear inclusions
in facial nuclei (7N) and lateral reticular nuclei (LRt), two regions described to be affected in
MJD human patients [43,44], as well as in CMVMJD135 mouse model [22]. No differences
were observed in the amount of nuclear neuronal inclusions of ATXN3 in both VPA-treated
and non-treated CMVMJD135 mice.

Additionally, astrogliosis is a consistent pathological phenotype of CMVMJD135 mouse
model and human patients, which was also not mitigated by VPA chronic treatment.

The overexpression of specific chaperones has been shown to allow protection against cellu-
lar damage and/or death caused from an extensive group of agents and conditions including
cytotoxic chemicals [45], oxidative stress [46] and ER stress [27]. Here we show that the induc-
tion of GRP78 protein levels upon VPA chronic treatment, whose overexpression may be neu-
roprotective in proteinopathies, including MJD [47,48], could be one of its cytoprotective
actions in the MJD context, enhancing the folding capacity of the ER. The induction of GRP78

Fig 6. Cerebellum western-blot and quantification of GRP78 protein levels in 30 week-old WT, VPA-
treated and non-treated CMVMJD135mice.GRP78 protein induction in CMVMJD135 animals upon VPA
treatment. Bars represent the mean ± SEM (n = 4 for each group), * represent p<0.05, One-way ANOVA.

doi:10.1371/journal.pone.0141610.g006
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also indicates VPA target engagement during the chronic treatment in the pre-clinical trial, as
this protein is known to be induced by VPA [15]. Although we did not observe a statistical dif-
ference in the CMVMJD135 animals when comparing to WT, enhancing the expression of this
molecular chaperone in the cerebellum of these mice could be one of the neuroprotective
mechanisms responsible for the late and mild improvement of the CMVMJD135 animal motor
performance.

The observed beneficial effects of VPA were transient, occurred mostly later in life and thus
at an advanced stage of disease (between 22 and 30 weeks of age), mainly in behavioral tests
more related with motor coordination. These results are comparable to some extent with previ-
ous findings, in which we have shown a significant reduction in neurological dysfunction in a
C. elegansmodel of MJD after VPA treatment that was more relevant later in the worm’s life
(day10) in spite of early treatment [21]. Previous evidence also suggested a protective role for
VPA in the context of MJD, both in cell and Drosophilamodels, by attenuating mutant
ATXN3 induced cell toxicity and alleviating polyQ-induced phenotypic abnormalities, without
major impact on ATXN3 inclusion [19,20]; in C. elegans, there was some improvement of
aggregation, but less prominent than that observed for other compounds, for instance Hsp90
inhibitors [21].

Although the effects observed in our mouse model were not striking, only one dosage of
VPA was tested; thus, the possibility of testing other dosages, far from toxic and lethal ones
[49,50], should be considered, as they could exert more pronounced effects. Moreover, the
complex activity and a broad range of VPA effects also create the need for further clarification
of the effects of this drug not only at the symptom level, but also molecular and pathological
levels in the CMVMJD135 mouse model. In fact, and although the use of HDACi’s in the con-
text of polyQ diseases has showed promising results, the evidence for a globally decreased his-
tone acetylation is not fully consistent [51], and this strategy still lacks some target specificity/
selectivity [52] and requires a more in depth study of the mechanisms of action of these com-
pounds in the central nervous system. Furthermore, chronic VPA treatment in human patients
can produce some side effects, such as weight gain [53,54], decreased reproductive potential
[55,56] and increased susceptibility to birth defects [57–59]. Nevertheless, the strategy of re-
purposing FDA/EMA-approved molecules, as VPA, could be of benefit for MJD and other rare
diseases lacking effective therapies. Additionally, there is still an open window for different
VPA dosages to be tested and since in the past years, a growing number of efforts are being
developed for the formulation of a new generation of more selective and specific compounds
this could be useful for the treatment not only of MJD, but also of other polyglutamine
diseases.

Material and Methods

Ethics statement
All animal procedures were conducted in accordance with European regulations (European
Union Directive 86/609/EEC). Animal facilities and the people directly involved in animal
experiments (SE, SDS, ANC and ASF) were certified by the Portuguese regulatory entity—
Direcção Geral de Alimentação e Veterinária. All of the protocols performed were approved by
the Ethics Subcommittee for Life and Health Sciences of the Life and Health Sciences Research
Institute, University of Minho. All experiments were designed with commitment to the princi-
ples of refinement, reduction, and replacement and performed according to the FELASA
guidelines to minimize discomfort, stress, and pain to the animals, with defined humane end-
points [60]. Humane endpoints for the preclinical trial were defined as 20% reduction of the
body weight, inability to reach food and water, presence of wounds in the body and
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dehydration), however they were not needed as the study period was conceived to include ages
at which animals do not reach these endpoints.

Transgenic mice model and drug administration
We used the CMVMJD135 (background C57BL/6) mouse model, expressing an expanded ver-
sion of the human MJD1-1 cDNA (the 3 UIMs-containing variant of ATXN3) under the regu-
lation of the CMV promoter, ubiquitously and at near-endogenous levels [22]. These animals
show a slowly progressive motor phenotype and CNS pathology consistent with that of MJD
patients [22]. Male transgenic and non-transgenic drug- and placebo- treated animals were
sequentially assigned and housed at weaning in groups of 5 animals in filter-topped polysul-
fone cages 267 × 207 × 140 mm (370 cm2 floor area) (Tecniplast, Buguggiate, Italy), with corn-
cob bedding (Scobis Due, Mucedola SRL, Settimo Milanese, Italy) in a conventional animal
facility. DNA extraction, animal genotyping and CAG repeat size analyses were performed as
previously described [61], with the mean repeat size (±SD) for all mice of (133±1). Male litter-
mates wild-type (WT) animals were used as controls. All animals were maintained under stan-
dard laboratory conditions: an artificial 12 h light/dark cycle (lights on from 8:00 to 20:00 h),
with an ambient temperature of 21±1°C and a relative humidity of 50–60%; the mice were
given a standard diet (4RF25 during the gestation and postnatal periods, and 4RF21 after wean-
ing, Mucedola SRL, Settimo Milanese, Italy) and water ad libitum. We administered Valproic
acid sodium salt (PG-4543, Sigma) during five consecutive days per week through intraperito-
neal injection (i.p), in a dosage of 200mg/kg dissolved in 0,9% saline. Control animals were
given a placebo of injection buffer (0.9% NaCl) with the same frequency. Treatment was initi-
ated at five weeks of age, i.e. one week before the onset of the first neurological symptoms, until
30 weeks of age of the pre-clinical trial. For a pilot study, WT animals were treated for 5 conse-
cutive days with i.p. injections of VPA at 200mg/kg or saline.

Western-blot analysis
Cerebellum tissues were thawed and homogenized with a Potter-Elvejhem 377 homogenizer
with a Teflon pestle, at 300 rpm, in lysis buffer (150 mMNaCl, 50 mM Tris, 5 mM EGTA, 1%
Triton X-100, 0.5% sodium deoxycholate, 0.1% SDS, pH 7.5) supplemented with 100 nM oka-
daic acid, 25 mMNaF, 1 mMNa3VO4, 1 mMDTT, 1 mM PMSF, 1 μg/mL of protease inhibi-
tor cocktail (chymostatin, pepstatin A, leupeptin and antipain), 1 μM trichostatin A (HDACs
inhibitor) and 10 mM nicotinamide (sirtuins inhibitor). The homogenates were then sonicated
for 15 s and centrifuged at 20,800 g for 10 min to remove cell debris. The pellet was discarded,
the supernatant (total extract) was collected and protein content quantified by Bio-Rad protein
assay (Bio-Rad). Total extracts were denatured with denaturing buffer (50 mM Tris-HCl pH
6.8, 2% SDS, 5% glycerol, 600 mM DTT, 0.01% bromophenol blue) at 95°C, for 5 min. Equiva-
lent amounts of protein (30μg) were separated on a 15% SDS-PAGE gel electrophoresis and
electroblotted onto polyvinylidene difuoride (PVDF) membranes. The membranes were
blocked for 1 h in Tris-buffered saline (TBS) solution containing 0.1% Tween (TBS-Tween)
and 5% BSA, followed by an overnight incubation with primary antibodies (rabbit anti-acH3
(1:1000, Milipore), rabbit anti-Lamin B1 (1:1000, Abcam) rabbit anti-GRP78 (1:1000, Abcam)
and mouse anti-actin (1:5000, Ambion), at 4°C, with gentle agitation. Membranes were then
washed 3 times, for 10 min, with TBS-Tween, and incubated with secondary antibodies conju-
gated with alkaline phosphatase (1:10000), for 1 h, at room temperature, with gentle agitation.
Immunoreactive bands were visualized by alkaline phosphatase activity after incubation with
ECL substrate, in a ChemiDoc Imaging System (Bio-Rad). Bands were quantified using the
Image Lab software (Bio-Rad).
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Gene expression quantification (qRT-PCR)
Cerebellum total RNA was isolated from 18 week-old CMVMJD135 littermate mice, vehicle-
and VPA-treated (n = 4 for each group) using TRIZOL (15596–026, Invitrogen, Calrsbad,
USA) according to the manufacturer’s protocol. RNA samples were treated with DNase I
(EN0525, Thermo Scientific1, USA) according to the manufacturer’s protocol. First-strand
cDNA, synthesized with iScript cDNA Synthesis kit (#170–8891, Bio-Rad, USA) was amplified
by quantitative reverse-transcriptase PCR (qRT-PCR) as previously described [22]. The following
primers were used for expression quantification: GADD45α (F 5-AGACCGAAAGGATGGAC
ACG-3’); GADD45α (R 5’-TGACTCCGAGCCTTGCTGA-3’); BIM (F 5’-CGGATCGGAGAC
GAGTTCA-3’); BIM (R 5’-TTCAGCCTCGCGGTAATCA-3’); B2m (F 5’-CCTTCAGCAAGGA
CTGGTCT-3’ and B2m (R 5’-TCTCGATCCCAGTAGACGGT-3’). Primers were designed
using PRIMER-BLAST (http://www.ncbi.nlm.nih.gov/tools/primer-blast/).

Behavioral analysis
Behavioral analysis was performed during the diurnal period in groups of 5 male animals per
cage including CMVMJD135 hemizygous transgenic mice and WT littermates (n = 10–15 per
genotype) treated and non-treated with VPA. All behavioral tests started in a pre-symptomatic
stage of the disease (4 weeks of age) and were conducted until an age at which the phenotype is
fully established (30 weeks) [22]. The animals were weighed one week before the start of drug
treatment (4 weeks) and then every two weeks until 30 weeks of age (Fig 2).

Neurological examination (based on SHIRPA protocol). Based on the SHIRPA protocol
we established an adapted protocol for phenotypic assessment applied since 4 weeks until 24
weeks of age, in which we used the tests for which, based on our previous experience,
CMVMJD135 mice usually present significant phenotypic alterations [22]. We assessed motor
function through the spontaneous activity test, by counting wall-leanings during five minutes,
and locomotor activity in which we counted the number of squares travelled over 30 secs, in an
arena (55×33×18 cm) with 15 labeled squares. Other observational measurements included
tremors and limb clasping, in which we suspended the animal by the tail and classified the
extensor reflexes. In this protocol we also included the hanging wire test, as a measure of mus-
cle strength and fine motor coordination of the paws. This protocol was adjusted in order to
minimize animal handling and to generate uniformity in waiting times between the tests [62].

Footprint analysis. To evaluate the dragging of the paws, the footprint test was used since
10 weeks of age. To obtain footprints, the hind‐ and forepaws of the mice were coated with
black and red non‐toxic paints, respectively. We used a clean rectangular paper sheet placed on
the floor of the runway for each run. The animals were allowed to walk along a 100‐cm‐

long × 4.2 cm width × 10 cm height corridor in the direction of an enclosed black box. Each
animal was allowed to achieve one valid trial per age. To evaluate the severity of foot-dragging
through age the footprinting pattern was classified at each time point considering six consecu-
tive steps (0 = absent dragging, up to three steps; 1 = moderate dragging, less than three steps
out of six; 2 = severe dragging, all steps out of six show dragging). The stride length was also
measured through the footprinting pattern by measuring the length between three consecutive
steps.

Motor swimming test. To assess swimming movement coordination, the time that ani-
mals take to reach a safe platform at the end of a container (60 cm distance) with 15 cm depth
of water at 24‐26°C was recorded bi-weekly since 22 weeks of age. The protocol consisted of 2
days of training with three trial followed by three days of test with two trials as previously
described [22,63].
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Beam walk test. Balance and fine motor coordination of mice were assessed by measuring
the ability of the mice to traverse, without falling, a graded series of narrow beams to reach an
enclosed safety platform as previously described [22,63]. During training, mice were placed at
the start of the 12 mm square beam and trained over 3 days (3 trials per day) to traverse the
beam to the safe platform. On the fourth day, they were tested in the training beam (12 mm
square) and 11 mm round beam (2 trials per beam).

Rotarod test. To evaluate motor skill learning and coordination with another paradigm,
mice were tested in a rotarod apparatus (TSE systems, Bad Homburg, Germany). The protocol
is comprised of 3 training days at a constant speed (15 rpm) for a maximum of 60 s in four tri-
als, with a 10 min interval between each trial. On the fourth day, animals were tested for each
of 6 different speeds (5 rpm, 8 rpm, 15 rpm, 20 rpm, 24 rpm and 31 rpm) for a maximum of
60s in two trials, with a 10-min-long interval between each trial, as previously described [61].

Immunohistochemistry and quantification of ataxin-3 neuronal inclusions
and astrogliosis
Thirty week-old WT and CMVMJD135 littermate mice, VPA-treated and non-treated (n = 4
for each group) were deeply anesthetized- with a mixture of ketamine hydrochloride (150 mg/
kg) plus medetomidine (0.3 mg/kg) and transcardially perfused with phosphate-buffered saline
(PBS) followed by 4% paraformaldehyde (PFA) (Panreac, USA). Brains were removed and
post fixed overnight in PFA 4% and embedded in paraffin. Slides with 4-μm-thick paraffin sec-
tions were subjected to antigen retrieval (Buffer Citrate, 1M) and then incubated with mouse
anti-ATXN3 (1H9) (1:1000, MAB5360, Milipore) and GFAP (1:500, Z0334, Dako corporation)
which were detected by incubation with a biotinylated anti-polyvalent antibody, followed by
detection through biotin-streptavidin coupled to horseradish peroxidase and reaction with the
DAB (3, 3'-diaminobenzidine) substrate (Lab VisionTM Ultra-VisionTM Detection kit,
Thermo Scientific). The slides were counterstained with 25% hematoxylin according to stan-
dard procedures. ATXN3 positive inclusions in the facial motor nucleus (7N) and lateral retic-
ular nucleus (LRt), and GFAP positive cells in substantia nigra (SN) of vehicle or VPA-treated
animals (n = 4 for each conditions, 4 slides per animal) were quantified and normalized for
total area using the Olympus BX51 stereological microscope (Olympus, Japan) and the Visio-
pharma integrator system software (Visopharm, Denmark) as previously described [22]. The
total area of 7N,LRT and SN were chosen based on the mouse brain atlas [64].

Determination of Valproic acid Plasma Levels
The plasma valproic acid levels were measured applying the VALP assay using the Dimension
Vista1 System (VALP Flex1 reagent cartridge)–SIEMENS.

Statistical analysis
The experimental unit used in this study was a single animal. Experimental design was based
on power analyses for optimization of sample size [65]. Mouse sample size calculations were
performed for each behavioral test and pathological analyses assuming a power of 0.8 and a sig-
nificance level of p< 0.05. The effect size was calculated aiming at detecting 50% improvement.
We used n = 10 to 15 per genotype/treatment for behavioral tests, and a group size of four ani-
mals per group for quantification of ATXN3 NIIs analysis. Data was analyzed through the
non-parametric Mann-Whitney U-test when variables were non-continuous or when a contin-
uous variable did not present a normal distribution (Kolmogorov-Smirnov test, p<0.05)
(Rotarod). Continuous variables with normal distributions and with homogeneity of variance
(Levene’s test) were analyzed with Repeated-Measures ANOVA for longitudinal multiple
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comparisons, using Tukey test for post-hoc comparisons and One-way ANOVA for paired
comparisons Non-continuous categorical variables were analyzed through Chi-Square Fisher
exact test. All statistical analyses were performed using SPSS 22.0 (SPSS Inc., Chicago, IL) and
G-Power 3.1.9.2 (University Kiel, Germany). A critical value for significance of P< 0.05 was
used throughout the study. Values were expressed as mean ± SEM for continuous variables
and as percentages for non‐continuous variables.

Supporting Information
S1 Checklist. NC3Rs ARRIVE Guidelines Checklist is provided as supporting information.
(DOCX)

S1 Fig. Balance and motor coordination were improved at later stages upon VPA treatment
given by the balance beam and motor swimming performance. (A) Amelioration of balance
and motor coordination at 24 weeks of age in 11 mm circle and (B) 12 mm square beams in
beam walk test; (C) Motor swimming coordination improvement; (D,E) no improvement in
increasing rotations in Rotarod were observed between VPA-treated and non-treated
CMVMJD135. Bars represent the mean ± SEM (WT veh, n = 10; WT VPA, n = 15,
CMVMJD135 vehicle, n = 10, CMVMJD135 VPA, n = 13), � represent p<0.05, �� represent
p<0.01 and ��� represent p<0.001, black asterisks represents the difference between WT and
CMVMJD135, blue asterisks represents the difference between non-treated and VPA-treated
CMVMJD135, (Repeated-measures ANOVA, Tukey correction for continuous variables, One-
Way ANOVA for differences between groups in specific ages of the continuous variables and
Mann-Whitney U test for continuous variables without normal distribution (Rotarod)).
(TIF)
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