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Abstract

Bone marrow stromal cells (BMSCs) are considered as candidates for regenerative therapy
and a useful model for studying neuronal differentiation. The role of basic fibroblast growth
factor (bFGF) in neuronal differentiation has been previously studied; however, the signal-
ing pathway involved in this process remains poorly understood. In this study, we investi-
gated the signaling pathway in the bFGF-induced neuronal differentiation of canine
BMSCs. bFGF induced the mRNA expression of the neuron marker, microtubule associ-
ated protein-2 (MAP2) and the neuron-like morphological change in canine BMSCs. In the
presence of inhibitors of fibroblast growth factor receptors (FGFR), phosphatidylinositol 3-
kinase (PI3K) and Akt, i.e., SU5402, LY294002, and MK2206, respectively, bFGF failed to
induce the MAP2 mRNA expression and the neuron-like morphological change. bFGF
induced Akt phosphorylation, but it was attenuated by the FGFR inhibitor SU5402 and the
PI3K inhibitor LY294002. In canine BMSCs, expression of FGFR-1 and FGFR-2 was con-
firmed, but only FGFR-2 activation was detected by cross-linking and immunoprecipitation
analysis. Small interfering RNA-mediated knockdown of FGFR-2 in canine BMSCs resulted
in the attenuation of bFGF-induced Akt phosphorylation. These results suggest that the
FGFR-2/PI3K/Akt signaling pathway is involved in the bFGF-induced neuronal differentia-
tion of canine BMSCs.
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Introduction

Neuronal differentiation is a complex process coordinated by the down-regulation of pluripo-
tent genes and concomitant up-regulation of neuron-specific lineage genes. Established cell
culture models are frequently used to study in vitro neuronal differentiation. These models
exhibit neuron-like morphology and express neuronal marker mRNAs and proteins in
response to several neurotrophins, growth factors, and chemical compounds. Rat adrenal
pheochromocytoma cells (PC12) differentiate into sympathetic neuron-like cells, which are
characterized by neurite outgrowth, electrical excitability, and expression of neuronal markers
in response to nerve growth factor (NGF) [1-3]. Mouse neuroblastoma cells (Neuro-2A)
exhibited neuron-like morphology in the presence of the cannabinoid receptor agonist HU-
210 [4, 5]. In human neuroblastoma cell lines (SK-N-SH, BE(2)-C, and NB1643), all-trans reti-
noic acid induced neurite outgrowth and expression of neuronal markers [6, 7]. Recently, adult
tissue stem cells have been reported to possess neuronal differentiation potency, and consid-
ered as a useful tool for neuronal differentiation research [8, 9].

Bone marrow stromal cells (BMSCs) are fibroblastic adherent cells isolated from the bone
marrow in adult human and animals such as mouse and dogs. Similar to other stem cell types,
BMSC:s have a high capacity for self-renewal, and are capable of differentiating into meso-
dermal cells, including adipocytes, chondrocytes, osteocytes, and ectodermal cells such as neu-
rons and glial cells [10-14]. Cells undergo the following three steps in their differentiation into
mature neurons: commitment of an ectodermal lineage, specialization of the neuronal lineage,
and maturation of neuron characteristics. Previous studies using several animal models found
that in vitro neuronal differentiation follows the processes of in vivo neuronal development,
which are related to the surrounding microenvironments. Therefore, the arrangement of a
proper microenvironment for the neuronal development process is essential to induce BMSCs
into neurons. Treatment of rat BMSCs with chemical compounds such as -mercaptoethanol
and butylated hydroxyanisole resulted in the expression of neuron markers and neuron-like
morphological changes [15]. Similarly, mice BMSCs treated with B-mercaptoethanol and
brain-derived neurotrophic factor (BDNF) expressed neuron marker mRNAs, exhibited neu-
ron-like morphologies, and voltage-dependent inward currents [16]. In human BMSCs, -mer-
captoethanol, butylated hydroxyanisole, and retinoic acid induced the expression of neuron
marker mRNAs and proteins, but failed to induce the exhibition of voltage-dependent Na™ cur-
rent [17]. On the other hand, human BMSCs were reported to express neuron marker mRNAs
and proteins and exhibit functional a-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid
(AMPA) receptors using cAMP, 3-isobutyl-1-methylxanthine, NGF and insulin [18].

Basic fibroblast growth factor (bFGF) functions as a differentiation factor as well as a neuro-
trophic factor in the central nervous system, where it is highly expressed. It supports cell sur-
vival, growth, and differentiation. [19-21]. bFGF contributes to the specification of the
neuronal lineage in the in vitro neuronal differentiation process along with other extracellular
molecules. In mouse BMSCs treated with bFGF, neuron-specific proteins, functional dopamine
receptors, and voltage-dependent channels were expressed, and neuron-like K™ outward cur-
rents were detected [22, 23]. In human BMSCs, bFGF contributed to differentiation of BMSCs
into functional neuron-like cells; these BMSCs expressed neuron-specific mRNAs and proteins
as well as exerted voltage-responsive and dopamine-secreting neuron-like functions [24-27].
Moreover, we have previously reported that canine BMSCs treated with bFGF alone expressed
neuron-specific mRNAs (microtubule associated protein-2 [MAP2], neurofilament light chain,
and neuron-specific enolase) and proteins (neurofilament light chain and neuron-specific eno-
lase), and exhibited neuron-like morphology. In the bFGEF-treated canine BMSCs, KCl and L-
glutamate evoked a sharp rise in intracellular Ca** concentrations, suggesting that bFGF
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induced differentiation of canine BMSCs into voltage- and glutamate-responsive neuron-like
cells [28].

bFGF activates several signaling pathways such as MAPK/ERK kinase (MEK)/Extracellular
signal-regulated kinase (ERK) pathway. In mouse BMSCs, bFGF induces neuronal differentia-
tion via the MEK/ERK pathway [23]; therefore, activation of this pathway is considered crucial
in bFGF-induced neuronal differentiation of mouse BMSCs. bFGF also activates the phosphoi-
nositide 3-kinase (PI3K)/Akt pathway. Furthermore, bFGF mediates cell survival via the PI3K/
Akt pathway in mouse models of neuronal differentiation, embryonic carcinoma cell lines (P19
cells), embryonic stem cells, and primary neural stem cells [29]. In PC12 cells, bFGF sup-
pressed endoplasmic reticulum stress-induced apoptosis via the PI3K/Akt pathway [30, 31]. In
this study, we examined the role of activation of PI3K/Akt pathway in bFGF-induced neuronal
differentiation of canine BMSCs.

Materials and Methods
Isolation and Culture of Canine BMSCs

This study was approved by the Nihon University Animal Care and Use Committee
(AP12B015). Three healthy beagles (male, 3 years old) were purchased from Japan SLC Inc.,
and bred and maintained in cages (height: 137 cm; width: 80 cm; length: 86 cm). The experi-
mental food TC-2 (250 g/head; Oriental Yeast Co. Ltd.) was provided to all study animals once
a day. The dogs were exercised using some toys inside (once a day) and outside (once a month)
of the animal breeding facility. The physical conditions of the facility were monitored once a
day. To avoid infection, the dogs were housed distantly from each other. All efforts were made
to improve animal welfare and minimize discomfort. The dogs were premedicated with an
intravenous injection of midazolam hydrochloride (0.2 mg/kg; Astellas Pharma Inc., Tokyo,
Japan) and butorphanol tartrate (0.2 mg/kg; Meiji Seika Pharma Co. Ltd., Tokyo, Japan). Anes-
thesia was induced intravenously with propofol (4.0 mg/kg; Intervet K.K, Osaka, Japan) and
maintained with 2.0% isoflurane (Intervet K.K.) and 100% oxygen was provided in an endotra-
cheal tube. To minimize potential pain and infection, butorphanol tartrate (0.2 mg/kg) and
cefazolin sodium hydrate (20 mg/kg, Astellas Pharma Inc.) were administered intravenously
before awakening. Canine BMSCs were isolated by a previously described method [28, 32-34].
Briefly, canine bone marrow was aspirated from the humerus and mononuclear cells were sep-
arated by density-gradient centrifugation using Histopaque-1077 (Sigma-Aldrich Inc.,

St. Louis, MO). Thereafter, the mononuclear cells were then transferred to a 75-cm? plastic cul-
ture flask (Thermo Fisher Scientific, Inc., St. Waltham, MA) and static-cultured in an incubator
at 5% CO, and 37°C using o-modified Eagle minimum essential medium (Life Technologies
Co., Carlsbad, CA) supplemented with 10% fetal bovine serum (Life Technologies Co.). On the
fourth day of culture, nonadherent cells were removed when the culture medium was replaced,
thus isolating canine BMSCs. The cells were harvested using 0.25% trypsin-ethylenediamine-
tetraacetic acid (trypsin-EDTA; Life Technologies Co.) once they reached approximately 90%
confluence. Then, the collected cells were seeded at a density of 14,000 cells/cm”. The second-
passage canine BMSCs were used for all subsequent experiments.

Neuronal Induction Using bFGF

Canine BMSCs were placed in a 25-cm” plastic culture flask (Thermo Fisher Scientific, Inc.) at
a density of 4,000 cells/cm”. bFGF-induced neuronal differentiation was performed as
described previously [28]. In brief, the medium was changed to Neurobasal-A medium (Life
Technologies Co.) supplemented with 2% B-27 supplement (Life Technologies Co.) and 100
ng/ml recombinant human bFGF (Immunostep, Salamanca, Spain) at 24 h of passage.
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Table 1. Primers used for RT-PCR.

Gene Name
FGFR-1

FGFR-2

FGFR-3

FGFR-4

BP

doi:10.1371/journal.pone.0141581.t1001

Inhibitor Treatment

Canine BMSCs were placed in a 25-cm? plastic culture flask at a density of 4,000 cells/cm*. The
cells were pretreated with Neurobasal-A medium with 2% B-27 supplement containing the
fibroblast growth factor receptor (FGFR) inhibitor SU5402 (20 uM; Sigma-Aldrich Inc.), the
PI3K inhibitor LY294002 (50 uM; Cell Signaling Technology Japan K.K., Tokyo, Japan), the
Akt inhibitor MK2206 (1 pM; Selleck Chemicals Llc., Houston, TX), the PLC inhibitor U73122
(8 uM; Sigma-Aldrich Inc.), or the MEK/ERK inhibitor U0126 (20 pM; Sigma-Aldrich Inc.) for
1 h, following a slightly modified version of previously reported methods [23]. Next, cells were
treated with bFGF as described above. After 3 days of bFGF treatment, total RNA was extracted
from each sample, which was then subjected to real-time RT-PCR to evaluate mRNA expres-
sion of MAP2.

Reverse Transcription-Polymerase Chain Reaction (RT-PCR)

Total RNA was extracted from canine BMSCs using TRIzol™ reagent (Life Technologies Co.)
according to the manufacturer’s instructions. Total RNA concentration was measured spectro-
photometrically by reading absorbance at 260/280 nm. First-strand cDNA synthesis was car-
ried out using 500 ng of total RNA using the PrimeScript RT Master Mix (TaKaRa Bio Inc.,
Shiga, Japan). PCRs were performed using 2 pl of first-strand cDNA in 10 pl total reaction vol-
ume, with primers specific for canine FGF receptor (FGFR)-1, FGFR-2, FGFR-3 and FGFR-4
(Table 1) and Ex Taq (TaKaRa Bio Inc.). PCRs were conducted using iCycler (Bio-Rad, Hercu-
les, CA). The thermal cycler was programmed for initial denaturation at 94°C for 2 min, fol-
lowed by 25 cycles of denaturation at 94°C for 30 sec, primer annealing at 55°C for 30 sec, and
primer extension at 72°C for 30 sec. The PCR products were separated using 2% agarose gel
electrophoresis, followed by ethidium bromide staining and visualization under UV light.
mRNA expression levels in each sample were normalized to that of TATA box-binding protein
[TBP].

Real-Time RT-PCR

Real-time RT-PCRs were performed as previously reported [28, 34]. Total RNAs were
extracted from canine BMSCs using TRIzol ™ reagent (Life Technologies Co.) according to the
manufacturer’s instructions. First-strand cDNA synthesis was performed using 500 ng of total
RNA, using PrimeScript™ RT Master Mix (TaKaRa Bio Inc.). Real-time RT-PCRs were per-
formed with 2 pl of the first-strand cDNA in 25 pl total reaction volume, with canine-specific

GenBank ID Primer sequences
XM_003639562.1 F: 5-ACCAAAGTGGCCGTGAAGATG-3

R: 5'-CAGCAGGTTGATGATGTTCTTGTG-3
NM_001003336.1 F: 5-TCGAGGGTGGACCTTAGTTGAGA-3

R: 5-TCAGTGTTTCAATTTCGACGATGAC-3
XM_545926.3 F: 5-CTGGTGTCTGAGATGGAGATGATGA-3

R: 5'-GCAGGTATTCCCGCAGGTTG-3
XM_003434496.1 F: 5-CAGAGGCCTTTGGCATGGA-3

R: 5'-TTATGTCGGCCGATCAGCTTC-3
XM_863452 F: 5-ACTGTTGGTGGGTCAGCACAAG-3

R: 5-ATGGTGTGTACGGGAGCCAAG-3'
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Table 2. Primers used for Real-time RT-PCR.

Gene Name GenBank ID Primer sequences

MAP2 XM_845165.1 F: 5-AAGCATCAACCTGCTCGAATCC-3
R: 5'-GCTTAGCGAGTGCAGCAGTGAC-3'

GUSB NM_001003191.1 F: 5-ACATCGACGACATCACCGTCA-3

R: 5-GGAAGTGTTCACTGCCCTGGA-3'
doi:10.1371/journal.pone.0141581.1002

primers for the neuron marker MAP2 (Table 2) and SYBR™® Premix Ex Taq™ II (TaKaRa Bio
Inc.). The real-time RT-PCRs of no template controls were performed with 2 ul of RNase- and
DNA-free water. In addition, real-time PCRs of no-reverse transcription controls were per-
formed using 2 pl of each RNA sample. The PCRs were conducted using Thermal Cycler
Dice™ Real Time System II (TaKaRa Bio Inc.). The PCR reactions consisted of 1 cycle of dena-
turing at 95°C for 30 sec, followed by 40 cycles of denaturing at 95°C for 5 sec and annealing
and extension at 60°C for 30 sec. The specificity of each primer was previously verified using
dissociation curve analysis and direct sequencing of each PCR product [34]. The results were
analyzed by means of the second derivative method and the comparative cycle threshold
method using TP900 DiceRealTime v4.02B (TaKaRa Bio Inc.). Amplification of f-glucuroni-
dase (GUSB) from the same amount of cDNA was used as an endogenous control.

Cross-Linking and Immunoprecipitation

Cross-linking and immunoprecipitation (CLIP) was performed as described previously [23],
with some modifications. After incubation with bFGF (100 ng/ml) for 2 min, canine BMSCs
were washed twice with cold PBS and cross-linked with 1 mM dithiobis(sulfosuccinimidyl pro-
pionate) disodium salt (DTSSP) at 4°C for 2 h. A fresh DTSSP stock solution was prepared in
dimethyl sulfoxide. The reactions were terminated by the addition of glycine (final concentra-
tion of 100 mM) and incubation at room temperature for 15 min. The cells were washed twice
with cold PBS and then lysed with lysis buffer (20 mM Tris-HCI, pH 7.5, 150 mM NaCl, 1 mM
EDTA, 1 mM ethylene glycol tetraacetic acid, 1% Triton X-100, 2.5 mM Na,P,0;, 1 mM B-gly-
cerophosphate, 1 mM Na;VO,, 1 mM phenylmethylsulfonyl fluoride, and complete mini
EDTA-free protease inhibitor cocktail; from Roche, Mannheim, Germany) and centrifuged at
14,000 g for 20 min at 4°C. The proteins in the supernatant were quantified using DC™ protein
assay reagent kit (Bio-Rad). For immunoprecipitation analysis, 500 pg of total cell lysates was
precleared with protein A plus G Sepharose (GE Healthcare, Piscataway, NJ) before incubation
with specific antibodies, followed by addition of protein A plus G Sepharose. Total cell lysate
was incubated with 5 pg anti-bFGF antibody (Sigma-Aldrich Inc.) at 4°C for 18 h. The precipi-
tated proteins were dissolved in sodium dodecyl sulfate (SDS) sample buffer before electropho-
resis. Finally, the precipitated proteins were incubated in the presence or absence 200 mM
dithiothreitol (DTT) and analyzed by western blotting with anti-FGFR-1 antibody (Abcam
Plc., Cambridge, UK) or FGFR-2 antibody (Abcam Plc.).

Western Blotting

Canine BMSCs before and after bFGF treatment were lysed with the lysis buffer containing 20
mM HEPES, 1 mM phenylmethylsulfonyl fluoride, 10 mM NaF, and complete mini EDTA-
free protease inhibitor cocktail (Roche, Mannheim, Germany) at pH 7.4. Canine brain lysate
obtained using the same lysis solution was used as a positive control for FGFR-1 and FGFR-2.
Protein concentrations were normalized in accordance with Bradford’s method [35]. Extracted
proteins were boiled at 95°C for 5 min in SDS-DTT buffer. Samples containing 30 ug of protein
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Table 3. siRNA sequence for canine FGFR-2.

Gene Name
FGFR-2
doi:10.1371/journal.pone.0141581.1003

GenBank ID siRNA sequences
NM_001003336.1 5-GAGAUAGCCAUUUACUGCATT-3'.

were loaded in each lane of a 7.5% polyacrylamide gel (Mini-PROTEAN TGX gel; Bio-Rad)
and separated via electrophoresis. Thereafter, the separated proteins were transferred onto
polyvinylidene difluoride membranes using Trans-Blot Turbo Transfer System (Bio-Rad). The
membranes were blocked at room temperature for 50 min in Block Ace (DS Pharma Biomedi-
cal, Osaka, Japan), and then incubated with anti-FGFR-1 (1:250), FGFR-2 (1:1,000), phosphor-
ylated Akt (p-Akt; Cell Signaling Technology Japan K.K., Tokyo, Japan, 1:1,000) or total Akt
(t-Akt; Cell Signaling Technology Japan K.K., 1:1,000) antibody for 120 min at room tempera-
ture. After washing, the membranes were incubated with a horseradish peroxidase-conjugated
anti-mouse, rabbit or goat IgG (GE Healthcare, 1:10,000) at room temperature for 90 min.
Immunoreactivity was detected with ECL Western blotting Analysis System (GE Healthcare).
The chemiluminescent signals of the membranes were measured, and densitometric analyses
were performed using ImageQuant LAS 4000 mini (GE Healthcare).

Small Interfering RNA (siRNA)

Canine BMSCs (4,000 cells/cm?) were placed in a 90-mm diameter plastic dish (Thermo Fisher
Scientific, Inc.). The cells were transfected with 33 nM FGFR-2 siRNA (Sigma-Aldrich Inc.;
Table 3) or 33 nM scramble siRNA (Sigma-Aldrich Inc.) as scramble control, combined with
Lipofectamine 2000 (Life Technologies Co.) for 24 h, and then, bFGF treatment was performed
as described above. After the treatment, total RNAs and proteins were extracted from each
sample. Real-time RT-PCRs were performed to evaluate the mRNA expression of FGFR-2, and
western blotting was performed to evaluate the phosphorylation of Akt (as described above).

Statistical Analysis

Data are presented as mean + standard error (SE). Statistical analyses were performed using
StatMate IV (ATMS, Tokyo, Japan). Data were analyzed using two-way analysis of variance.
Tukey’s test was used as post-hoc analysis, and P-values less than 0.05 were considered statisti-
cally significant.

Results
bFGF Induces Neuronal Differentiation of Canine BMSCs via FGFR

We have previously reported that mRNA expression of the neuron marker MAP2 and neuron-
like morphology were observed in bFGF-induced neuronal cell differentiation of canine
BMSCs by bEGF [28]. Therefore, to elucidate the signaling pathway involved in bFGF-induced
neuronal differentiation of canine BMSCs, we first examined the effect of the FGFR inhibitor
SU5402 (20 uM) on bFGF-induced MAP2 mRNA expression. bFGF significantly induced
MAP2 mRNA expression in the absence of this inhibitor, but its effect was attenuated in the
presence of the inhibitor (Fig 1A). Basal MAP2 mRNA expression was unaffected by the inhibi-
tor compared to untreated cells, and the expression of the housekeeping gene GUSB remained
stable for 3 days.

Next, we checked the effect of the FGFR inhibitor on morphological changes of bFGF-
treated cells. Untreated canine BMSCs exhibited a flattened and fibroblast-like morphology
(Fig 1B). bFGF treatment resulted in canine BMSCs exhibiting neuron-like morphology, which
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Fig 1. The FGFR inhibitor SU5402 attenuates bFGF-induced MAP2 mRNA expression and neuron-like
morphological change of canine BMSCs. A, After pretreatment with SU5402 (20 uM) for 1 h, canine
BMSCs were incubated with bFGF (100 ng/ml) for 3 days. SU5402 completely suppressed bFGF-induced
MAP2 mRNA expression. Results are presented as means + SE. n = 3. *P < 0.05. B, The morphology of
untreated canine BMSCs was flattened and fibroblast-like. C, bFGF-treated cells exhibited neuron-like
morphology, which was characterized by small cell bodies (arrowheads) and several long sharp processes
like dendrites and axons (arrows). D, bFGF-induced morphological changes of the cells were inhibited in the
presence of SU5402, which maintained a fibroblast-like shape.

doi:10.1371/journal.pone.0141581.g001

was characterized by a small cell body and several long and sharp processes; this change was
observed within 3 days of treatment (Fig 1C). However, the FGFR inhibitor inhibited the
bFGF-induced neuron-like morphological changes (Fig 1D). No effect of these inhibitors on
the viability of BMSCs was verified by trypan blue exclusion assay. The FGFR inhibitor was
previously reported to attenuate the bFGF-induced neuron marker expression and morpholog-
ical changes in mouse BMSCs [23]. In rat microglia, the FGFR inhibitor inhibited bFGF-pro-
moted generation of MAP2-positive cells [36]. Therefore, our observations suggest that bEGF-
induced neuronal differentiation in canine BMSCs is largely dependent on FGFR.

Binding of bFGF with FGFR-2

Four subtypes of FGFRs have been identified in mammals [37]; therefore, to determine which
of these subtypes contributes to the specific neurogenic effects of bFGF in canine BMSCs, we
examined the mRNA and protein expression of FGFR subtypes. mRNA expression of FGFR-1
and FGFR-2 was detectable, whereas that of FGFR-3 and FGFR-4 was undetectable by RT-PCR
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Fig 2. Expression of various FGFR subtypes and binding of bFGF to these subtypes in canine BMSCs. A, mRNA expression of four different subtypes
of FGFR determined by RT-PCR using total RNA extracted from canine BMSCs. PCR products for FGFR-1 and FGFR-2 were detected to be 120 and 193 bp,
respectively. TBP control was used as an internal standard for the PCR analysis. B, Detection of FGFR-1 and FGFR-2 proteins (arrowheads) by western
blotting using anti-FGFR-1 and anti-FGFR-2 antibodies. Canine brain extracts served as positive controls. C, Canine BMSCs were incubated with bFGF (100
ng/ml) for 2 min and cross-linked with DTSSP (1 mM) at 4°C for 2 h. Whole-cell proteins were extracted and immunoprecipitated with anti-bFGF antibody.
Finally, the precipitated bFGF/FGFR complex was treated in the presence or absence DTT (200 mM) and detected by western blotting with anti-FGFR-1 or
anti-FGFR-2 antibody. FGFR-2 protein was clearly detected after CLIP in the absence of DTT as indicated by an arrowhead.

doi:10.1371/journal.pone.0141581.9002

experiments using canine BMSCs (Fig 2A). Expression of FGFR-1 and FGFR-2 proteins in
canine BMSCs was confirmed by western blotting (Fig 2B); these results suggested that FGFR-
1 and FGFR-2 are the major subtypes of FGFR in canine BMSCs.

Because bFGF is known to show varying binding affinities for various FGFR subtypes [38],
we further analyzed binding of bFGF with FGFR subtypes by CLIP experiments. After incuba-
tion with bFGF, FGFR-2 was clearly detectable by the CLIP experiments, whereas FGFR-1 was
undetectable (Fig 2C). These results indicate that bFGF mainly bound to FGFR-2 on the sur-
face of BMSCs.
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bFGF Induced Neuronal Differentiation Depends on the Activation of
PI3K/Akt Pathway

To investigate the downstream signaling pathway of FGFR in canine BMSCs, we examined
effect of the PI3K inhibitor LY294002 (50 pM), the Akt inhibitor MK2206 (1 pM), and the
MEK/ERK inhibitor U0126 (20 uM) on bFGF-induced MAP2 mRNA expression. bFGF signifi-
cantly induced MAP2 mRNA expression in the absence of these inhibitors (Fig 3A). In the
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inhibitor control - LY294002 MK2206 U0126
bFGF

Fig 3. PI3K and Akt inhibitors, but not PLC and MEK/ERK inhibitors, attenuate bFGF-induced MAP2
mRNA expression and neuron-like morphological changes in canine BMSCs. A, BMSCs pretreated
with the PI3K inhibitor LY294002 (50 uM), the Akt inhibitor MK2206 (1 uM), the MEK/ERK inhibitor U0126
(20 M), and the PLC inhibitor U73122 (8 uM) for 1 h were incubated with bFGF (100 ng/ml) for 3 days.
bFGF-induced MAP2 mRNA expression was completely inhibited in cells treated with LY294002 and
MK2206, but not in cells treated with U0126 and U73122. Results are presented as means + SE. n = 3.

*P < 0.05. B, Untreated canine BMSCs exhibited fibroblast-like morphology, which had flattened cell body. C,
In the presence of bFGF, the cells exhibited neuron-like morphology, characterized by small cell bodies
(arrowheads) and several long sharp processes such as dendrites and axons (arrows). D-F, In the presence
of the PI3K (D) and Akt inhibitors (E), bFGF-induced morphological changes of the cells were inhibited, which
maintained fibroblast-like shape.

doi:10.1371/journal.pone.0141581.9003
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presence of the PI3K and Akt inhibitors, the bFGF-induced MAP2 mRNA expression was
attenuated (Fig 3A). However, the MEK/ERK inhibitor had no effect on the bFGF-induced
MAP2 mRNA expression (Fig 3A). The expression of the housekeeping gene GUSB remained
stable for 3 days.

We next investigated the morphology of bEGF-treated cells in the presence of PI3K and Akt
inhibitors. Canine BMSCs showed fibroblast-like shape in the absence of bFGF (Fig 3B). The
bFGF-treated cells exhibited neuron-like morphology within 3 days of treatment (Fig 3C). In
the presence of the PI3K and Akt inhibitors, bFGF failed to induce neuron-like morphological
change (Fig 3D and 3E). Furthermore, no effect of these inhibitors on viability of the cells was
verified by the trypan blue exclusion assay.

The MEK/ERK inhibitor U0126 is known to inhibit bFGF-induced neuronal differentiation
of mouse BMSCs [23]. However, in the present study, unlike the PI3K and Akt inhibitors, the
MEK/ERK inhibitor had no effect on the bFGF-induced neuronal differentiation of canine
BMSCs. These results suggest that the signaling pathway of neuronal differentiation in canine
BMSC:s differs from that previously reported in a mouse model, which depends on the activa-
tion of the PI3K/Akt pathway.

bFGF induces Akt phosphorylation through FGFR and PI3K

A serine/threonine kinase Akt is a downstream target of PI3K and is activated by phosphoryla-
tion within the carboxy-terminus at serine 473 [39]. To verify whether bFGF activates the
PI3K/Akt pathway, we examined the activation of Akt using an anti-p-Akt antibody. Akt phos-
phorylation occurred after bFGF treatment in a time-dependent manner, which peaked at 10
min (Fig 4). To confirm whether the Akt phosphorylation is dependent on FGFR and PI3K, we
examined the effects of the FGFR inhibitor SU5402, the PI3K inhibitor LY294002 and the Akt
inhibitor MK2206 on bFGF-induced Akt phosphorylation. We found that all three inhibitors
completely inhibited bFGF-induced phosphorylation of Akt (Fig 5). These observations
strongly suggest that bFGF induces activation of Akt by its phosphorylation via FGFR and
PI3K.

FGFR-2 Contributes to bFGF-Induced Akt Activation

To elucidate whether FGFR-2 plays a central role in the activation of the PI3K/Akt pathway,
we performed an FGFR-2 knockdown experiment using FGFR-2 siRNA transfection. As
shown in Fig 6A, FGFR-2 mRNA expression was significantly decreased by FGFR-2 siRNA
transfection, but not by control and scramble siRNA transfection. Thereafter, we examined for
Akt phosphorylation in control cells, scramble siRNA-transfected cells, and FGFR-2 siRNA-
transfected cells. Akt phosphorylation was clearly inhibited by FGFR-2 siRNA transfection
compared with the control, but to a lesser extent by scramble siRNA transfection (Fig 6B).
These results strongly suggest that FGFR-2 activation contributes to activation of the PI3K/Akt
signaling pathway, which attributes to bFGF-induced neuronal differentiation of canine
BMSCs.

Discussion

In this study, we demonstrated that FGFR-2 activation contributes to bFGF-induced neuronal
differentiation through the activation of the PI3K/Akt signaling pathway in canine BMSCs.

In humans, rodents, and other species, such as zebrafish, amphibians, and chickens, four
subtypes of FGFR, FGFR-1 through FGFR-4, have been identified [40-42]. In canine BMSCs,
we previously demonstrated that bFGF predominantly bound to FGFR-2, which is thought to
be mostly associated with neuronal development in mammals [40, 43]. An FGFR-2 null
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Fig 4. bFGF stimulates Akt phosphorylation in canine BMSCs. Western blotting for detection of phosphorylated Akt (p-Akt) in BMSCs treated with bFGF
(100 ng/ml) for the indicated times (upper panel). Relative density of p-Akt compared with the results at 0 time (lower panel). Relative density of total Akt (t-
Akt) compared with the results at 0 time (lower panel). bFGF stimulated the phosphorylation of Akt in a time-dependent manner. Results are presented as
means + SE.n=3. *p <0.05.

doi:10.1371/journal.pone.0141581.9004

mutation in mice causes early mortality, prior to the formation of a mature central nervous sys-
tem [40, 43]. Mutations in FGFR-2 lead to aberrant neuronal development or to neuronal dis-
eases in humans, such as megalocephaly, midline disorders, hippocampal malformations, and
ventricular wall alterations [44, 45]. Therefore, FGFR-2 is likely to be involved in the bFGF-
induced neuronal differentiation of canine BMSCs.

bFGF has previously been reported to activate MEK/ERK pathways and consequently
induce neuronal differentiation in rat pheochromocytoma cells (PC12), mouse or human neu-
roblastoma cell lines (Neuro2A, SK-N-SH and BE(2)-C), and embryonic stem cells [2, 3, 5, 7,
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Fig 5. FGFR, PI3K, and Akt inhibitors attenuate bFGF-induced Akt phosphorylation. After pretreatment with the FGFR inhibitor SU5402 (25 pM), the
PI3K inhibitor LY294002 (50 uM), and the Akt inhibitor MK2206 (1 uM) for 1 h, BMSCs were incubated with bFGF (100 ng/ml) for 10 min. Phosphorylation of
Akt was examined by western blotting. The inhibitors of FGFR, PI3K, and Akt completely suppressed bFGF-induced Akt phosphorylation (arrowheads).

doi:10.1371/journal.pone.0141581.9005
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Fig 6. FGFR-2 siRNA inhibits the bFGF-induced neuronal differentiation signaling pathway. A, FGFR-2 siRNA transfection of canine BMSCs resulted
in a significant decrease of FGFR-2 mRNA expression but not control or scramble siRNA transfection. B, Western blotting for detection of bFGF-induced Akt
phosphorylation in control, scramble siRNA-transfected, or FGFR-2 siRNA-transfected cells. FGFR-2 siRNA transfection clearly inhibited the bFGF-induced
Akt phosphorylation compared with the control, but to a lesser extent scramble siRNA.

doi:10.1371/journal.pone.0141581.9006
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46]. In mouse BMSCs, a MEK/ERK inhibitor attenuated bFGF-induced neuronal differentia-
tion, but a PI3K inhibitor failed to induce the bFGF effect [23]. In mouse cells, bFGF-induced
phosphorylation of MEK and ERK was observed, but Akt phosphorylation was not [23].
Therefore, MEK/ERK pathways are considered to play a central role in bFGF-induced neuronal
differentiation. In contrast, in our study, PI3K and Akt inhibitors clearly attenuated bFGF-
induced neuronal marker expression and morphological change in canine BMSCs, but the
MEK/ERK inhibitor did not show this effect. Furthermore, we confirmed that bFGF induces
the phosphorylation of Akt through FGFR and PI3K. These results strongly suggest that the
PI3K/Akt pathway contributes to the bFGF-induced neuronal differentiation of canine
BMSCs. The PI3K/Akt pathway has been shown to play important roles in the regulation of
cytoskeletal rearrangement, membrane expansion, transcription, and translation [47]. PI3K
plays a fundamental role in regulating neuronal generation through the activation of Akt [48,
49]. PI3K phosphorylates the membrane phospholipid phosphatidylinositol 4,5-phosphate
(PIP,), converting it to phosphatidylinositol 3,4,5-trisphosphate (PIP;). PIP, and PIP; in turn
cause the activation of Akt [47, 50]. The accumulation of PIP; promotes the translocation of
Akt to the plasma membrane, where Akt binds to PIP; via its PH domain, allowing phosphory-
lation of the threonine-308 residue on Akt by phosphoinositide-dependent kinase 1. The maxi-
mal activation of Akt requires the additional phosphorylation of serine-473 in the regulatory
domain, although protein kinases involved in this phosphorylation are still obscure [51-53].
The constitutively active form of Akt initiates neurite elongation only in early differentiation
stages [54]. The overexpression of constitutively active Akt induces neurite outgrowth and the
expression of neuronal markers [7, 39]. Activated Akt promotes neuronal differentiation in
neural stem cells [49, 55, 56]. It is therefore conceivable that PI3K/Akt pathway contributes to
neuronal differentiation in canine BMSCs.

To investigate whether FGFR-2 activates the PI3K/Akt signaling pathway, we performed a
FGFR-2 knockdown experiment using the transfection of FGFR-2 siRNA. We showed that
knocking down FGFR-2 clearly inhibited bFGF-induced Akt phosphorylation. These observa-
tions strongly suggest that FGFR-2 has a crucial function, via the PI3K/Akt pathway, in the
neuronal differentiation of canine BMSCs. On the other hand, bFGF has been reported to bind
to FGFR-1 and play a central role in the bFGF-induced neuronal differentiation of mouse
BMSC:s via the MEK/ERK signaling pathway [23]. Therefore, FGFR expression patterns and
the binding affinity of bFGF to FGFRs appear to be attributable to the selection of signaling
pathways.

The downstream target of the FGFR-2/PI3K/Akt pathway in bFGF-induced neuronal differ-
entiation of canine BMSCs is still obscure. In mouse BMSCs, bFGF-induced activation of the
MEK/ERK pathway has been reported to activate transcription factor AP-1, which is subse-
quently involved in neuronal differentiation [23]. We therefore examined the effect of bFGF on
AP-1 activation in canine BMSCs. However, we observed that bFGF had no effect on the acti-
vation of AP-1 (data not shown), suggesting that transcription factors distinct from AP-1 are a
downstream target of the FGFR-2/PI3K/Akt pathway. Akt phosphorylates and inhibits glyco-
gen synthase kinase-3f (GSK-3p); this inhibition leads to the activation of a transcriptional co-
activator B-catenin, which consequently induces neuronal differentiation. In human neural
stem cells, the GSK-3B/pB-catenin pathway is involved in motor neuron differentiation [57-60].
This pathway also mediates neuronal differentiation in human BMSCs [61, 62]. The mamma-
lian target of rapamycin (mTOR) is also in a pathway downstream of Akt. In human neural
progenitor cells, mTOR activates P70S6K, and consequently induces neuronal differentiation,
although P70S6K targets involved in this process have not been investigated in detail [63]. In
canine adipose-derived stem cells, nTOR/p70S6K activation stimulated by PI3K/Akt partici-
pates in neuronal differentiation [64]. Therefore, we hypothesize that such factors are may
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mediate the neuronal differentiation of canine BMSCs. Further study of this possibility is
underway in our laboratory.

Currently, only bFGF has been reported to induce the differentiation of human BMSCs into
dopaminergic neurons. However, the downstream signaling of bFGF in this process is obscure
[27]. In human BMSCs, multiple signaling pathways, including MEK/ERK and PI3K/Akt, have
been reported to regulate neuronal differentiation [65]. In mice, bFGF has been shown to
induce the activation of the FGFR-1/MEK/ERK pathway but not the PI3K/Akt pathway in
BMSC:s [23]. In the present study, we demonstrated the activation of FGFR-2/PI3K/Akt signal-
ing in bFGF-treated canine BMSCs. The previous reports and our observations suggest that dif-
ferences in signal transduction mechanisms in neuronal differentiation are probably
dependent on species, intrinsic cellular processes, and the extracellular microenvironment.
Therefore, we hypothesize that canine models could partially mimic aspects of human neuro-
nal differentiation, making canine BMSCs useful as a model to understand the mechanisms of
neuronal differentiation and its regeneration in humans.

In human BMSCs, not only bFGF but also neurotrophins (NTs), glial cell line-derived neuro-
trophic factor (GDNF) and Wnt have been reported to induce the differentiation into neurons
[24, 62, 67-70]. NTs including nerve growth factor, brain-derived neurotrophic factor, neurotro-
phin-3, neurotrophin-4/5, promote the survival and growth of developing neurons, and axon
regrowth in SCI, maintain the function of mature neurons, and prevent neuron death. Neurotro-
phin-3 induced the differentiation of human BMSCs into GABAergic neuron, which exhibited
spontaneous post-synaptic currents, but none of them exerted action potentials [68-70]. Nerve
growth factor and brain-derived neurotrophic factor induced the differentiation of human
BMSC:s into cholinergic neuron-like cells in the presence of Wnt 7a [62]. GDNF, involving with
the generation and development of midbrain dopaminergic neurons, induced the expression of
dopaminergic neuron markers in human BMSCs [24, 67]. Contribution of epidermal growth fac-
tor, Sonic hedgehog, FGF-8, and all-trans retinoic acid to the differentiation of human BMSCs
into dopaminergic neuron-like cells in the presence or absence of bFGF has also been reported
[27, 66]. These observations imply that such exogenous factors affect intracellular signaling path-
ways, which results in the differentiation of BMSCs into specific neurotransmitter-responsive or
neurotransmitter-supplying neurons. It may facilitate the treatment of neuronal diseases to pro-
vide such specific neurons derived from BMSCs by activating signaling pathways. Therefore, the
results of this study could further the future use of BMSCs in cellular replacement therapy.

Conclusions

In conclusion, we demonstrated that the FGFR-2/PI3K/Akt pathway contributes to bFGF-
induced neuronal differentiation of canine BMSCs. Our results provide new insights into the
bFGF-induced neuronal differentiation mechanism, and may enable the development of new
cell-based treatments for neuronal diseases.
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