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Abstract
Helios transcription factor and semaphorin receptor Nrp-1 were originally described as con-

stitutively expressed at high levels on CD4+Foxp3+ T regulatory cells of intrathymic origin

(tTregs). On the other hand, CD4+Foxp3+ Tregs generated in the periphery (pTregs) or

induced ex vivo (iTregs) were reported to express low levels of Helios and Nrp-1. Soon

afterwards the reliability of Nrp-1 and Helios as markers discriminating between tTregs and

pTregs was questioned and until now no consensus has been reached. Here, we used sev-

eral genetically modified mouse strains that favor pTregs or tTregs formation and analyzed

the TCR repertoire of these cells. We found that Tregs with variable levels of Nrp-1 and

Helios were abundant in mice with compromised ability to support natural differentiation of

tTregs or pTregs. We also report that TCR repertoires of Treg clones expressing high or low

levels of Nrp-1 or Helios are similar and more alike repertoire of CD4+Foxp3+ than repertoire

of CD4+Foxp3- thymocytes. These results show that high vs. low expression of Nrp-1 or

Helios does not unequivocally identify Treg clones of thymic or peripheral origin.

Introduction
Regulatory CD4+Foxp3+ T cells (Tregs) play an indispensable role in maintaining homeostasis
of the immune system by preventing autoimmunity and by controlling the strength and dura-
tion of immune responses against a variety of self and non-self antigens [1, 2]. Tregs can be
divided into two major populations according to their cellular origin: tTregs, which develop
from CD4+CD8+ thymocytes in the thymus and pTregs, which arise by conversion from con-
ventional CD4+Foxp3- T cells in peripheral tissues [3]. Both subsets share similar molecular
and phenotypic signatures, including high expression of Foxp3, CD25, CTLA-4, GITR, ICOS,
CD103, low expression of CD127, a broad TCR repertoire, and use various suppressive
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mechanisms to control effector cells [3]. However, the basic questions concerning the propor-
tions of tTregs and pTregs in different organs and whether these subsets represent “more of the
same” or differ in function and/or antigen specificities have not been satisfactorily clarified
thus far [4, 5]. This information is critically important for the design of clinical protocols that
will either expand preexisting tTregs or accelerate de novo conversion to pTregs. Because mice
with impaired tTregs development suffer from multiorgan autoimmunity [6–8], whereas aged,
pTreg-deficient mice develop allergic inflammation in the small intestine and have increased
rates of preeclampsia [9, 10], Tregs of different origin may play non-redundant roles in con-
trolling autoimmunity [4]. It has also been proposed that tTregs control tolerance to self-anti-
gens because their differentiation in the thymus is guided by TCRs that recognize self-antigens
with relatively high affinities [11, 12]. On the other hand, pTregs may represent clones with
TCRs specific for foreign antigens derived from commensal microbiota, diet and various path-
ogens [13–15]. Comprehensive analysis of tTregs specificities showed that tTregs and pTregs
can recognize both self and non–self antigens [16–19]. Thus, to understand how pTregs
recruitment complements tTregs induced peripheral tolerance to self and non-self antigens, it
is desirable to have a reliable marker(s) discriminating Treg clones of different origin.

It was reported that tTregs, but not pTregs, constitutively express high level of Helios tran-
scription factor [20]. Helios is a member of the Ikaros family of transcription factors, which
regulate lymphocyte development, and almost all CD4+Foxp3+ thymocytes are Helioshigh [3].
However, Helios deficiency does not affect development of tTregs or their survival, suggesting
that Helios is not mandatory for tTregs lineage commitment [3]. It was also found that most
CD4+CD8+ thymocytes that are Helioshigh die upon negative selection [21]. This observation
concurred with the current paradigm that thymic precursors of tTregs can withstand stronger
TCR-mediated signals, but whether this feature is responsible for positive selection or reflects
lower sensitivity to negative selection of tTregs remains controversial [22–24]. The physiologi-
cal importance of Helios for tTregs function is also unclear because Helios-deficient Tregs had
unimpaired immunoregulatory properties [3].

Neuropilin-1 (Nrp-1) is another molecule that was reported to be expressed at high levels
on mouse tTregs but not on pTregs [25, 26]. Nrp-1 plays a diverse role during embryonic
development in the vascular and neural systems and Nrp-1-deficient mice die prematurely
[27]. However, mice with conditional Nrp-1 deficiency in T cells develop normally, and their
thymic differentiation of tTregs proceeds unperturbed. Constitutively high expression of Nrp-
1 on Tregs is not influenced by TCR activation but depends on TGFβ and is directly controlled
by Foxp3 [28]. In the periphery, Nrp-1 expression boosts Tregs capacity to infiltrate tumors
[29, 30], potentiates their suppressive activity by enhancing their clustering with dendritic cells
(DCs), and participates in formation of immunological synapses [31]. Nrp-1 also improves
Treg stability at inflammatory sites [32], supports conversion of naive CD4+ cells to pTregs
and interferes with their differentiation to T helper 17 (Th17) cell lineage [33]. Thus, there is
convincing experimental evidence that Nrp-1 expression on Tregs enhances these cells immu-
noregulatory properties, but whether its variable expression levels mark Tregs of different ori-
gins remains unclear.

There is a general consensus that most CD4+Foxp3+ thymocytes that are immediate precur-
sors of tTregs have constitutively high expression of Helios and Nrp-1 [25]. However, different
cues in the periphery can alter expression of these molecules on tTregs and pTregs. Akimova
and colleagues, reported that expression of Helios is increased in all Tregs activated by self and
non-self antigens outside the thymus [34], and Gottschalk and colleagues reported that in
vitro-induced Tregs (iTregs) are Foxp3+Helioshigh, and that in vivo the type of APCs presenting
antigen(s) to naive CD4+ T cells converting to pTregs influence the expression of Helios by
pTregs [35]. It was also reported that the Foxp3+Helioslow subset comprises Tregs of different
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origin that encountered antigen sometime in the past but not recently, whereas Foxp3+-

Helioshigh can be also generated ex vivo as iTregs [35]. In agreement with the last observation,
Schliesser et al. showed that naive allogenic CD4+ T cells that converted to iTregs in the pres-
ence of TGFβ and retinoic acid or rapamycin were mostly Helioshigh, and half of these cells
were also Nrp-1high [36]. Furthermore, although high expression of Helios correlates well with
high expression of Nrp-1 on tTregs, Helioslow Tregs contain a significant fraction of Nrp-1high

cells, particularly in the peripheral lymph nodes, probably because Nrp-1 can be induced by
TGFβ and proinflammatory cytokines. Because Helios−Nrp-1− iTregs can make IFN-γ and/or
IL-17 in the proinflammatory milieu in the gut, it is possible that these cells are not stably com-
mitted Tregs, but instead can be reprogrammed into CD4+ effectors [37]. In view of above
described observations it is clear that the elucidation whether variable levels of Helios and Nrp-
1 on Tregs can be used as indicators of their intrathymic or extrathymic origin requires other,
not yet exploited, experimental approaches.

Here, we analyzed expression levels of Nrp-1 and Helios by Tregs in various genetically
modified mouse strains that have impaired development of tTregs or pTregs, and then com-
pared the TCR repertoires of CD4+Foxp3+ Tregs expressing low vs. high levels of Nrp-1 or
Helios to the TCR repertoires of CD4+Foxp3+ and CD4+Foxp3- thymocytes, to estimate their
relative similarity to each other. First, we show that absence of Aire-controlled self-peptides,
which reportedly drive tTregs differentiation but that are unessential for pTregs generation,
did not change the proportions of Tregs with low vs high expression of Nrp-1 or Helios. Sec-
ond, we found no change in the expression profiles of Nrp-1 or Helios on intestinal Tregs
thriving in the gut of mice unable to convert naïve, intestinal CD4+ cells to pTregs due to either
abolished presentation of microbe and diet–derived antigens or a dysfunctional CNS1 region
in the Foxp3 locus. Third, we found that the peripheral TCR repertoires of CD4+Foxp3+Nrp-
1high (or Helioshigh) and CD4+Foxp3+Nrp-1low (or Helioslow) cells were similar to each other
and resembled the repertoire of CD4+Foxp3+ thymocytes, but both these repertoires were dif-
ferent from TCRs expressed by naive CD4+Foxp3- cells. Altogether, these results indicate that
high or low expression of Helios or Nrp-1 does not unambiguously discriminate between
pTregs and tTregs.

Results

Expression of Nrp-1 and Helios by tTregs in mice lacking low-abundant
self-peptides
Several lines of evidence suggest that tTregs differentiate from immature thymocytes which
bind low-abundant, often tissue specific self-peptides with relatively high affinity [38, 39].
Therefore, we first compared the levels of Nrp-1 and Helios expression on CD4+Foxp3+ thy-
mocytes in two strains of mice that lack intrathymic expression of many or all tissue-specific
peptides. The first strain, Aire-, has impaired expression of these peptides because Aire controls
their processing and expression by thymic medullary epithelial cells [40, 41]. The second strain,
AbEp, expresses class II MHCmolecules (Ab) bound exclusively with a single covalently linked
peptide (Ep) [42]. The covalently linked Ep prevents presentation of endogenously processed
self-peptides other than Ep, including Aire-controlled peptides, and eliminates the formation
of peptide-specific thymic niches, which were suggested to facilitate differentiation of tTreg
precursors [43]. As previously reported, (also see S1 Fig), both the aforementioned strains of
mutant mice supported development of CD4+ thymocytes into CD4+Foxp3- and CD4+Foxp3+

lineages [19, 44]. Fig 1A and 1B show that in Aire- and in AbEp mice the proportion of CD4+-

Foxp3+ thymocytes expressing high levels of Nrp-1 or Helios was similar to the proportions of
these cells in wild type mice, although in AbEp mice slightly lower proportion of
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CD4+Foxp3+Nrp-1high could be observed. These results showed that elimination of self-pep-
tides considered to play an essential role in positive selection of tTregs had no or little impact
on the phenotype of CD4+Foxp3+ thymocytes with regard to the level of constitutive expres-
sion of Nrp-1 or Helios. Thus, it is unlikely that high expression of these two genes by develop-
ing CD4+Foxp3+ thymocytes depends on high affinity binding of the unique, positively
selecting self-peptides.

Nrp-1 and Helios expression on Tregs in mice unable to present non-self
antigens from microbiota and diet in the colon
Colonic Tregs contain a higher proportion of Nrp-1low and Helioslow clones [20, 25]. Because
conversion of naive CD4+ T cells to pTregs occurs most frequently in mucosal organs,
increased frequency of Nrp-1low and Helioslow Tregs in the colon was explained by enhanced
recruitment of pTregs upon contact with microbe or diet derived antigens [14, 45]. Therefore,
we examined whether the abundance of colonic pTregs expressing low levels of Nrp-1 and/or
Helios will change in “single peptide” AbEp mice with impaired ability to present non-self anti-
gens. Surprisingly, regardless of the inability to present commensals and food-derived antigens,
there was no significant difference in expression profile of Nrp-1 on colonic Tregs in these
mice (S3A and S3B Fig). This observation suggested that lack of microbe and diet antigens-spe-
cific recruitment of pTregs had little effect on the proportion of the Foxp3+Nrp-1low colonic
Tregs. In contrast, the proportion of Foxp3+Helioshigh cells was increased in all peripheral
organs (including colon) of AbEp mice as compared to control mice (S3C and S3D Fig). This
last observation suggested that abundant expression of the same auto-antigen in the thymus

Fig 1. Expression of Nrp-1 and Helios on CD4+Foxp3+ thymocytes positively selected in the presence
or absence of Aire controlled self-peptides. (A) Expression of Nrp-1 and Helios on CD4+Foxp3+

thymocytes from C57BL/6, Aire- or “single peptide” AbEp mice. The filled histograms show staining with
specific antibodies, and the open histograms show staining with irrelevant IgG (also applicable to other
figures). (B) Bars show the mean% of cells (+/- SD) expressing high level of indicated marker, and represent
data from three to five mice. Gating for Nrp-1 and Helios stainings is shown in S2 Fig. For all data shown,
numbers on plots show percentage of gated cells in the studied CD4+ subset, and statistical significance was
calculated using Student’s t test (p<0.05). Total number of CD4+ and Tregs in analyzed strains is shown in
S4A Fig.

doi:10.1371/journal.pone.0141161.g001
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and in the periphery of “single peptide” AbEp mice provides sustained, weak TCR-mediated
signal to all Tregs, which supports constitutively high expression of Helios on these cells. This
conclusion corresponds with the previous reports that Helios expression increases on recently
activated Tregs and with an observation that the phenotype of genuine antigen-inexperienced
CD4+Foxp3- clones in AbEp mice resembles the phenotype of chronically activated T cells [46,
47].

Nrp-1 and Helios expression on Tregs in pTreg-deficient CNS1mut mice
Recently, it has been shown that conserved, non-coding sequence (CNS-1) in the Foxp3 pro-
moter region containing TGFβ-NFAT response element is required for generation of pTregs
[48]. Thus, CNS-1 deficient mice lack most of the TGFβ-induced pTregs, and with age become
prone to allergic inflammation in the small intestine [9]. We therefore compared the propor-
tions of CD4+Foxp3+ T cells expressing high and low levels of Nrp-1 and Helios from CNS1mut

deficient and C57BL/6 mice. Fig 2A shows that the proportions of Nrp-1high to Nrp-1low Tregs
in all tested organs, including the colon, from control and CNS-1 mutant mice were not signifi-
cantly different (Fig 2B). This indicated that CNS-1 ablation, which interferes with pTregs dif-
ferentiation, had little or no influence on the proportions of CD4+Foxp3+Nrp-1low vs
CD4+Foxp3+Nrp-1high cells. The proportions of Tregs expressing high and low levels of Helios
in CNS1mut mice as compared to normal mice were slightly changed in favor of the former
population (Fig 2C), but these changes were not statistically significant (Fig 2D) in the colon.

Fig 2. Expression of Nrp-1 and Helios on Tregs from CNS1mut mice. Expression of Nrp-1 (A) and Helios (C) on CD4+Foxp3+ cells from C57BL/6 and
CNS1mut mice in indicated organs. (B, D) Bars show the mean% of cells expressing high level of indicated marker (+/- SD), and represent data from three to
five mice. Total number of CD4+ and Tregs in analyzed strains is shown in S4B Fig.

doi:10.1371/journal.pone.0141161.g002
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Overall, since CNS1-deficient mice are virtually devoid of pTregs, the above observations sug-
gest that in vivo tTregs can express reduced levels of Nrp-1 and Helios.

Impact of pro-inflammatory milieu on expression of Nrp-1 and Helios by
Tregs
It was proposed that in pro-inflammatory environment CD4+Foxp3- T cells up-regulate Nrp-1
and Helios prior to their conversion to pTregs which maintain expression of these molecules at
high levels [25, 34]. Therefore, to find whether higher proportion of Foxp3- T cells expressing
elevated levels of Nrp-1 and Helios translates into higher proportion of Tregs (i.e. Foxp3+) that
constitutively express these markers, we examined the expression of Nrp-1 and Helios on CD4-
+Foxp3-CD62Llow T cells in SfFoxp3GFP (scurfy)mice, where most CD4+ T cells are activated
by self-antigens, and in which Tregs lack functional Foxp3 but express the GFP reporter
(SfTregs) [49, 50]. As shown in (Fig 3A–3D) scurfymice had higher proportions of CD4+-

Foxp3GFP-CD62LlowHelioshigh and CD4+Foxp3GFP-CD62LlowNrp-1high cells than normal mice,
in all examined organs. In contrast, the proportions of Nrp-1high or Helioshigh SfTregs (GFP+)
in scurfymice were not higher or—as in case of Nrp-1high cells in lymph nodes—significantly
lower than in normal mice (Fig 3E–3H). These observations show that increased proportion of
Tregs expressing high levels of Nrp-1 or Helios cannot be explained by conversion of higher
number of Foxp3- precursors expressing high levels of these molecules.

Analysis of the TCR repertoires of Nrp-1highor Nrp-1low and Helioshigh or
Helioslow Tregs
It has been proposed that progenitors of tTregs and pTregs, i.e. CD4+Foxp3+ vs CD4+Foxp3-

thymocytes, undergo positive selection within different windows of TCR sensitivity for the
selecting self MHC/peptide complexes [22] and therefore, many TCRs frequently found on
tTregs are rare or not found on naïve T cells and vice versa. This asymmetric allocation of
TCRs is reflected in the peripheral repertoires of tTregs and pTregs, allowing one to deduce the
origin of specific Tregs clones [51–53]. To compare the TCR repertoires of different CD4+ sub-
sets we used TCRmini mice in which a limited but diverse repertoire allows for a comprehensive
analysis of TCRs on CD4+ T cells in various organs. The diversity of TCR repertoire in these
mice can be studied by analysis of the diversity of the TCR-α chain only. The TCRmini mice
have a normal cellular composition of lymphoid organs [52], and Fig 4A and 4C show that pro-
portions of Nrp-1high or Helioshigh cells among Tregs from various organs of TCRmini and nor-
mal control mice were similar (Fig 4B and 4D). To determine how the TCR repertoires of
Tregs with high or low expression of Nrp-1 or Helios correspond to TCR repertoires of CD4+-

Foxp3+ and CD4+Foxp3- thymocytes, we compared the dominant TCRs expressed by Nrp-
1high vs Nrp-1low and Helioshigh vs Helioslow Tregs from colon or MLNs to CD4+Foxp3+ and
CD4+Foxp3- thymocytes. For this purpose, we sorted these cells according to expression of
Foxp3 and high vs. low expression of Nrp-1 or Helios, amplified their TCR-α chains and
sequenced their complementarity determining region 3 (CDR3) by high-throughput sequenc-
ing. We anticipated that if most tTregs exported to the periphery retain Helioshigh and Nrp-
1high expression, whereas extrathymically generated pTregs remain Helioslow and Nrp-1low, the
TCR repertoire of CD4+Foxp3+Nrp-1high or CD4+Foxp3+Helioshigh thymocytes will be similar
to TCR repertoire of CD4+Foxp3+Nrp-1high or CD4+Foxp3+Helioshigh Tregs respectively, but
will be mostly different from the TCR repertoires expressed by Nrp-1low or Helioslow pTregs,
which should resemble the repertoire of CD4+Foxp3- thymocytes.

Fig 5 shows heat maps that depict the frequencies and distribution of 50 dominant TCRs
from Nrp-1high or Nrp-1low (Fig 5A and 5B) and Helioshigh or Helioslow (Fig 5C and 5D) Tregs
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Fig 3. Expression of Nrp-1 and Helios on activated non-Treg and Treg cells in pro-inflammatory
milieu. Expression of Nrp-1 or Helios on CD4+Foxp3GFP-CD62Llow cells (A-D) and on Tregs (GFP+) (E-H)
from indicated organs of normal C57BL/6 and scurfy (Sf) mice. Bars (B, D, F, H) show the proportion (+/- SD)
of cells and represent data from three to five mice. Total number of CD4+ and Tregs in analyzed strains is
shown in S4C Fig.

doi:10.1371/journal.pone.0141161.g003

Expression of Nrp-1 and Helios by CD4+Foxp3+ Cells

PLOS ONE | DOI:10.1371/journal.pone.0141161 October 23, 2015 7 / 16



from mesenteric lymph nodes (MLNs) or colon, and these TCR frequencies on the respective
subsets of CD4+Foxp3+ or CD4+Foxp3- thymocytes. Vast majority of TCRs retrieved from
colonic Nrp-1high or Nrp-1low and Helioshigh or Helioslow Tregs expressed the same TCRs and
often at comparable frequencies. In fact, the TCR repertoires of Tregs with variable levels of
Nrp-1 and Helios shared many dominant TCRs, of which a significant number was also found
on CD4+Foxp3+ thymocytes. These results were also confirmed by statistical analysis where
TCR repertoires expressed by Nrp-1high or Nrp-1low and Helioslow or Helioshigh Tregs and
CD4+Foxp3+ thymocytes clustered on separate branch of the diagram than naive, peripheral
CD4+Foxp3- populations retrieved from different lymphoid or mucosal organs (Fig 5E and
5F). Overall, these results indicate that the level of Nrp-1 or Helios expression does not mark
different, peripheral Treg subsets and suggested that many of clones contained in these Treg
subsets are shared, suggesting that these cells recognize the same spectrum of antigens.

Discussion
In the present study, we used several approaches to examine whether different expression levels
of Nrp-1 and/or Helios by Tregs marks their intrathymic and extrathymic origin. First, we ana-
lyzed the proportions of Tregs expressing high or low levels of these molecules in different
genetically modified mouse strains, in which the differentiation of tTregs and pTregs was com-
promised due to (a) reduced diversity of self-peptides that are believed to drive selection of

Fig 4. Proportions of CD4+Foxp3+ cells expressing high levels of Nrp-1 and Helios in TCRmini vs C57BL/6 mice. Expression of Nrp-1 (A) and Helios
(C) on CD4+Foxp3+ cells from C57BL/6 and TCRmini mice in indicated organs. (B, D) Bars show the mean% of cells expressing high level of indicated marker
(+/- SD), and represent data from three to five mice. Total number of CD4+ and Tregs in analyzed strains is shown in S4D Fig.

doi:10.1371/journal.pone.0141161.g004
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Fig 5. Distribution of dominant TCRs from intestinal CD4+Foxp3+ cells with high or low expression of Nrp-1 or Helios on different subsets of CD4+

thymocytes. Distribution of 50 most dominant TCRs frommesenteric (A, C) or colonic (B, D) CD4+Foxp3+ Nrp-1high or Nrp-1low (A, B) and CD4+Foxp3+

Helioshigh or Helioslow cells (C, D) (two inner columns) on CD4+Foxp3+Nrp-1high (A) or CD4+Foxp3+Helioshigh (C) and on CD4+Foxp3- thymocytes (A-D)(two
outer columns). Color shades reflect the relative frequency of a given TCR in each organ. Sequences for heat maps (A-D) are listed in S5A–S5D Figs
(respectively). (E, F) The hierarchical diagrams depict similarity indices (MII) for the whole TCR repertoires retrieved from Nrp-1low or Nrp-1high and from
Helioslow or Helioshigh subsets from indicated organs to the corresponding CD4+Foxp3− subsets.

doi:10.1371/journal.pone.0141161.g005
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tTregs in the thymus (AbEp and Aire-), (b) compromised presentation of microbial antigens in
the mucosal tissues driving conversion to pTregs or (c) impaired regulation of Foxp3 which
affects exclusively pTregs formation later in life (CNS1mut). In all of these mice, the proportions
(and total number) of Tregs with low or high expression of Nrp-1 was approximately similar,
suggesting that independently of the origin, Tregs do not remain imprinted with either low or
high expression of Nrp-1. Our results also suggest that high expression of Nrp-1 is not a char-
acteristic of as many tTregs as high expression of Helios, suggesting that of these two mole-
cules, the high expression of the latter is more suitable to detect tTregs in certain
circumstances. A similar conclusion has also been reached when expression of Nrp-1 and
Helios by Tregs was analyzed in different inbred or outbred strains of mice or in humans [54]
[55]. Likewise, in the Foxp3IRES-RFP × BAC-Foxp3Cre-GFP mice where pTregs and tTregs clones
express distinctive pattern of fluorescent tags, many ex vivo or in vivo converted pTregs were
consistently Nrp-1high, whereas most, though not all, in vivo converted pTregs were Helioslow

[56]. However, Helios is expressed by fraction of in vivo antigen-primed CD4+Foxp3- cells, and
some of them may convert to pTregs in the presence of TGFβ [3].

To date, no unambiguous phenotypic marker distinguishing tTregs from pTregs or a defini-
tive test that distinguishes their in vivo functions have been developed. So far, the most conclu-
sive way to determine the origin of specific Treg clones is to sequence their TCRs and then
extrapolate these to the repertoire of CD4+Foxp3+ thymocytes [16, 51–53, 57]. If these TCRs
are found on the tTregs precursors, it strongly supports the scenario in which commitment of
these cells to Treg lineage occurred during their intrathymic differentiation. In this report we
examined how often Foxp3+ and Foxp3- thymocytes express TCRs that can also be expressed
by colonic Tregs with low and high levels of Nrp-1 or Helios. Most notably we found that
whereas TCRs on CD4+Foxp3- and CD4+Foxp3+ thymocytes overlapped only marginally,
many TCRs expressed on colonic Foxp3+ T cells with low or high expression of Nrp-1 or
Helios were shared. Our findings that Tregs expressing similar TCRs can have different levels
of Nrp-1 and different origin agreed with other report, which also found that tTreg and iTreg
subsets with low or high expression of Nrp-1 respectively, displayed comparable TCR reper-
toires and each could completely fill the same Treg-cell niche [58]. In contrast, two other stud-
ies found that Nrp-1low colonic Tregs shared only 8 and 9.1% of their CDR3 amino acid
sequences with conventional T cells (Tconv) and tTregs, respectively [59]. Similar estimates
were also made from analysis of TCRs from peripherally generated pTregs [60]. However, the
global diversity of the repertoires studied in the above mentioned reports is disproportionally
high as compared to the size of the samples that were compared. Therefore these investigations
barely sampled the content of these repertoires, thereby weakening the conclusiveness of these
studies.

Indirectly, our results also suggest that the antigenic specificities and the role of pTregs and
tTregs in maintaining tolerance overlap and that these subsets do not have specialized suppres-
sive functions adapted to specific immunological milieus or inflammatory settings. In our view
tTregs control immune homeostasis and a broad spectrum of autoimmune responses, as well
as inflammation whereas pTregs are recruited to complement tTregs and to replenish their rep-
ertoire as tTregs differentiation decays with age. Our results do not contradict the reports that
Helios and Nrp-1 can influence Tregs function. Reportedly, Helioshigh Tregs had stronger sup-
pressive capacity and better lineage stability [61, 62], because Helios per semay regulate IL-2
production in Tregs by epigenetic silencing of the IL-2 gene [63]. Similarly, Tregs retrieved
from Nrp-1-deficient mice were less suppressive than the respective Tregs from wild type mice,
and blocking Nrp-1 abrogates suppression of proliferation of responder cells by Tregs [31].
Nrp-1 also enhances the interactions between Tregs and DCs and promotes the activation of
the latent form of TGFβ [64]. Finally, expression of Nrp-1 on Tregs was required to limit anti-
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tumor immune responses and to cure established inflammatory colitis, whereas Nrp-1-induced
transcriptome promoted Tregs stability and prevented these cells from further differentiation
[29, 65]. Thus, whereas low surface expression of Helios and Nrp-1 does not exclusively label
pTregs cells, these molecules can play a specific roles in Tregs activation, tissue-specific homing
and marks Tregs subsets with non-overlapping pattern of response or production of specific
cytokines [64, 66, 67]. Polyclonal tTregs effectively suppress Th1 and moderately Th2 cells, but
Th17 effectors are only minimally suppressed by this subset [68]. CD4+Nrp-1 deficient T cells
tend to differentiate to overtly autoreactive Th17 effectors and in wild type mice Nrp-1 may
direct these cells reprogramming to pTregs, but how often pTregs recruited through this path-
way retain or loose Nrp-1 expression is not clear. Likely, the circumstances in which naive or
effector CD4+ T cells underwent conversion to pTregs determine their phenotypic features,
including the expression levels of the two molecules discussed in this report.

Materials and Methods

Mice
AbEpFoxp3GFP (AbEp), Aire-Foxp3GFP (Aire-), CNS1mutFoxp3GFP (CNS1mut) and SfFoxp3GFP

(Sf) strains were obtained by mating AbEp [42], Aire-deficient (lacking Aire-dependent, tissue-
specific antigens expression [69]), Foxp3CNS1mut (received from Dr. Susan Schlenner (KU Leu-
ven, Belgium)) or B6.Cg-Foxp3sf/J (JAX Laboratory) mice, respectively, with C57BL/
6Foxp3GFP mice (C57BL/6) [50]. TCRminiFoxp3GFP (TCRmini) mice were obtained by mating
C57BL/6Foxp3GFP with original TCRmini mice [52]. To eliminate expression of the endogenous
TCR-α chains, all TCRmini mice were crossed with mice deficient in endogenous TCR-α loci
(JAX laboratory) and were heterozygous for the TCR-α Vα2Jα26(Jα2) mini-locus to ensure
expression of a single TCR-α chain per T cell. Sf (and respective control C57BL/6) mice were
used at ages 3–4 weeks old and all remaining animals were 8–12 weeks old. Only males with
mutated Sf or CNS1 (both loci are on X chromosome) and males and females from other
strains were used. All mice were housed under specific pathogen-free (SPF) conditions, in
room temperature; 22°C, 12:12-h light: dark cycle, and had free access to sterilized food and
water. Animal welfare was monitored twice daily by assessment of clinical conditions. Mice
were euthanized using CO2 gas followed by decapitation.

Ethics statement
Animals were housed in the Georgia Regents University animal facility in accordance to Insti-
tutional regulations. Presented here research has been approved by Georgia Regents University
Institutional Animal Care and Use Committee.

Isolation of thymocytes and T cells from organs
Single-cell suspensions were prepared from the thymus, inguinal and mesenteric lymph nodes
by mechanical disruption. Colons were opened longitudinally and contents were flushed with
ice-cold HBSS (Cellgro). Subsequently they were cut into small pieces and washed with HBSS
supplemented with 5% FCS (HyClone) and 2mM EDTA at 37°C. A single-cell suspension was
obtained after treatment with collagenase D (1.0mg/ml) and DNase I (0.1mg/ml) (both from
Roche). A purified and concentrated suspension of lymphocytes was obtained after centrifuga-
tion on Percoll (GE Healthcare) gradient (45% and 70%). The interface, enriched in leukocytes,
was collected and used for experiments.
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Flow cytometry and cell sorting
Thymocytes and T cells were stained with antibodies against CD4, CD8, Helios, Foxp3 or GFP
(BD Bioscience, eBioscience or BioLegend), unconjugated Nrp-1 (R&D Systems) and fluoro-
phore-conjugated rabbit anti–goat IgG (Invitrogen), and analyzed using a BD FACS Canto
(BD Biosciences). Intranuclear staining for Helios and Foxp3 was performed using the
eBioscience kit according to the manufacturer’s instructions. Cells were sorted using MoFlo
cell sorter (Beckman Coulter), with 99% purity.

High-throughput CDR3 sequencing
Analysis of the TCRmini Vα2Jα26(Jα2) CDR3 regions was performed from sorted CD4+Foxp3-
+Nrp-1high/low and CD4+Foxp3+Helioshigh/low T cells (purity 97%). RNA from Nrp-1 popula-
tions was isolated using RNeasy Mini Kit (Qiagen). RNA from Helios populations was isolated
using RNeasy FFPE Kit (Qiagen). RNA was converted to cDNA (SuperScript III, Invitrogen)
with a Cα-specific primer (5’-TCGGCACATTGATTTGGGAGTC-3’). TCR-α CDR3 regions
were amplified using primers with incorporated barcodes (Vα2IT, 5’-CCATCTCATCCCT
GCGTGTCTCCGACTCAGTCTCAGCCTGGAGACTCAGC-3’; CαIT, 5’-CCTCTCTAT
GGGCAGTCGGTGATTGGTACACAGCAGGTTCTGGGT-3’), and the PCR product was
sequenced by EdgeBio/BioServ (Gaithersburg, MD). CDR3 regions sequenced on the same
chip and derived from different subsets were discriminated based on barcodes, which were vali-
dated for optimal performance with the Ion Torrent PGM. Data was analyzed using the custom
made CDR3 extraction program (that uses BLAST for sequence comparison to locate known V
and J regions in high volumes of sequencing data), and evaluated with statistical methods as
previously described [16, 70]. Briefly, MII similarity index was used that measures pairwise
similarities between populations by considering the overlap and relative abundances of TCRs.

Statistical analysis
Statistical significance was determined based on p-value of the two-sided t-test. The index mea-
suring pairwise similarities between populations by considering the overlap and relative abun-
dances of TCRs, as described in [16, 70] was calculated using R package ‘divo’ developed by
our group (cran.r-project.org/package = divo).

Supporting Information
S1 Fig. Proportions of CD4+Foxp3+ thymocytes in C57BL/6, Aire- and “single peptide”
AbEp mice. Bars show the mean % of cells expressing high level of Foxp3 (+/- SD) and repre-
sent data from three mice.
(TIF)

S2 Fig. Gating strategy for analysis of CD4+Foxp3+ T cells with different expression levels
of Nrp-1 or Helios. (A) CD4+Foxp3+ cells were gated for Nrp-1high and Nrp-1low populations.
(B) CD4+Foxp3+ cells were intracellularly stained for Foxp3 and Helios, and gated for
Helioshigh and Helioslow populations. Sample shown is from peripheral lymph nodes.
(TIF)

S3 Fig. Proportions of Nrp-1high and Helioshigh Tregs in “single peptide”mice. Expression
of Nrp-1 (A) and Helios (C) on CD4+Foxp3+ cells from C57BL/6 and “single peptide” AbEp
mice in indicated organs. (B, D) Bars show the mean % of cells expressing high level of respec-
tive marker (+/- SD), and represent data from three to five mice.
(TIF)
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S4 Fig. Total number of CD4+ and Treg cells in indicated organs from mouse strains ana-
lyzed in Figs 1–4. (A-D) Total number of CD4+ (left panel) and Treg (right panel) cells. Bars
show the mean value of total number of cells (+/- SD), and represent data from three to five
mice.
(TIF)

S5 Fig. Sequences used for preparation of heat maps in Fig 5. (A-D) 50 most dominant
sequences used to prepare heat map in Fig 5 (A-D respectively).
(TIF)
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