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Abstract
Species-specific antimicrobial therapy has the potential to combat the increasing threat of

antibiotic resistance and alteration of the human microbiome. We therefore set out to dem-

onstrate the beginning of a pathogen-selective drug discovery method using the periodontal

pathogen Porphyromonas gingivalis as a model. Through our knowledge of metabolic net-

works and essential genes we identified a “druggable” essential target,meso-diaminopime-

late dehydrogenase, which is found in a limited number of species. We adopted a high-

throughput virtual screen method on the ZINC chemical library to select a group of potential

small-molecule inhibitors.Meso-diaminopimelate dehydrogenase from P. gingivalis was
first expressed and purified in Escherichia coli then characterized for enzymatic inhibitor

screening studies. Several inhibitors with similar structural scaffolds containing a sulfon-

amide core and aromatic substituents showed dose-dependent inhibition. These com-

pounds were further assayed showing reasonable whole-cell activity and the inhibition

mechanism was determined. We conclude that the establishment of this target and screen-

ing strategy provides a model for the future development of new antimicrobials.

Introduction
Antibiotic resistance has become a prominent public health concern as it has reduced the effec-
tiveness of current antimicrobials and led to increased mortality rates for previous treatable
bacterial infections, e.g. multi-drug resistant tuberculosis [1]. Despite this fact, antimicrobial
drug research has declined. On average, it requires approximately $800 million plus 10 or more
years to bring a drug to market [2, 3]. Coupled with difficulties in target identification and
drug screening methods, the pharmaceutical industry’s interest in antibiotic development has
waned [3]. Meanwhile, we are beginning to understand the dynamics between the human
microbiome and antibiotics more comprehensively. Microbes that makes up the human
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microbiome outnumber our cells by a factor of 10 to 1 [4] and studies show that they play criti-
cal roles in development [5] and maintaining human health [6]. Accordingly, the microbiome
can be considered an essential part of our ecosystem that warrants consideration in dietary,
genetic and medicinal elements. However, issues arise when there is a disruption in the homeo-
stasis of the environment such as with the use of broad-spectrum antibiotics. Antibiotic ther-
apy can affect both pathogenic and non-pathogenic species which disrupts the normal
microbial population, resulting in various opportunistic infections, systemic co-morbidities
and selects for bacterial resistance populations [7, 8]. Recent studies have shown that antibiot-
ics taken at a young age can alter the gut microbiota, reducing the dominant species [9] and
this change in species diversity can be long lasting, contributing to adverse effects like weight
gain and the development of autoimmune disorders [10, 11].

New approaches in drug development research are critical to the future of antibiotics. Novel
drugs that selectively target pathogenic species would offer an alternative to currently overused
broad-spectrum antimicrobials. If an etiological agent can be identified within a poly-microbial
environment, antimicrobials targeting a limited range of species not only will reduce the
chances of resistance but also be more cost effective, reduce toxicity and allow for the mainte-
nance of the healthy flora [12]. Advances in genomics, structural biology and computational
chemistry have provided many novel approaches to target discovery and drug development
[13]. Metabolic understanding of essential gene functions allow for the rapid prediction of
essential genes as potential antimicrobial targets in a variety of organisms, even if experimental
data is lacking [14]. This understanding coupled with knowledge of alternative pathways and
differing metabolic requirements can be used to identify unique or species limited genes. Com-
puter-based molecular modeling and structure-based virtual screening have become essential
drug discovery tools that are part of successful rational drug design strategies in both industry
and academia. When complemented with effective biochemical screening assays for binding
and function, structure-based virtual screening can be a rapid, efficient and inexpensive way to
identify and obtain a selection of potential inhibitors.

The oral cavity is one of the most diversified sites of the microbiome, consisting of 700–
1000 phylotypes. Disruption in the microbial homeostasis leads to oral diseases such as peri-
odontitis, a chronic inflammatory process. Periodontitis is characterized by the destruction of
tooth supporting structures, bone resorption and the loss of tooth attachment [15]. It affects
approximately 46% of the US adult population, 10% globally [16, 17] and is associated with sys-
temic comorbidities such as pregnancy complications, arthritis, respiratory, cardiovascular and
cerebrovascular diseases [18, 19]. Studies have shown that Porphyromonas gingivalis, a Gram-
negative anaerobe, is a key pathogen in the development of this disease [20–22]. Therefore, we
aimed to selectively target this organism within the oral cavity. Here we present an exploratory
model for pathogenic-specific drug discovery using P. gingivalis and periodontal disease. We
applied our knowledge of essential genes to predict a target limited to specific species and
adopted a high-throughput virtual screening strategy utilizing the ZINC drug-like database of
commercially available chemicals to identify small-molecule inhibitors. We then experimen-
tally assessed the properties of the target and potential candidate inhibitors as the initial steps
of developing a novel therapeutic approach.

Materials and Methods

Bacterial strains, plasmids and growth conditions
P. gingivalisW83 strain was cultured anaerobically (10% CO2, 10% H2, and 80% N2) at 37°C in
tryptic soy broth (TSB) (Becton Dickinson, Franklin Lakes, NJ) supplemented with 1 μg/mL
menadione and 5 μg/mL hemin. When appropriate, erythromycin (Fisher Scientific, Fair
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Lawn, NJ) was used at a concentration of 5 μg/ml. Plasmid pVA2198 (Richmond, VA) [23]
was used to isolate the erythromycin resistance cassette.

Primer design and recombinant PCR product construction
Primer design was based on the method by Xu et al. [14]. Two set of primers, F1/F2 (5’- CTC
CGA ATA GCA AAC ATC TAC TG -3’ and 5’- GAA AAA TTT CAT CCT TCG TAG TCG
AGC AGC CAT GCG C -3’) and F3/R3 (5’- GGG CAA TTT CTT TTT TGT CAT TTG TCA
AAT CTG GGG G -3’ and 5’- GAT AAT CAT GCT TCG GAG ATG -3’), were designed to
amplify a 1.2kb sequence upstream and downstream, respectively, of the P. gingivalis target
gene. A third primer set, F2/R2 (5’- GCG CAT GGC TGC TCG ACT ACG AAG GAT GAA
ATT TTT C -3’ and 5’- CCC CCA GAT TTG ACA AAT GAC AAA AAA GAA ATT GCC C
-3’) was designed to amplify the 800 bp erythromycin resistance cassette (ErmR) containing the
ermF gene from plasmid pVA2198. To minimize polar effects from mutagenesis, primers were
designed to include stop codons within frame and the antibiotic resistance cassette was
designed to run in the same orientation as the target gene to ensure transcription. The three
PCR fragments were created using F1/R1, F2/R2 and F3/R3. All PCR reactions were performed
with an initial denature of 98°C for 30 sec, 30 cycles of 98°C for 10 sec, 56°C for 30 sec, 72°C
for 36 sec and a final extension of 72°C for 7 min. The PCR products were purified using QIA-
quick PCR Purification Kit (Qiagen, Valencia, CA); the three fragments were then combined in
equal amounts and amplified again using F1 and R3 primers to generate the final linear recom-
binant product. The PCR reaction was performed with an initial denature of 98°C for 30 sec,
30 cycles of 98°C for 10 sec, 56°C for 30 sec, 72°C for 1 min 36 sec and a final extension of 72°C
for 7 min. Phusion High-Fidelity Taq DNA polymerase (New England Biolabs, Ipswich, MA)
was used in all reactions.

Transformation
The electroporation method was adapted from Fletcher et al. [23]. Briefly, 0.2 ml of an actively
growing culture of P. gingivalis was used to inoculate 2 ml of BHI broth supplemented with
yeast extract, hemin and menadione, which was then incubated overnight at 37°C. Five millili-
ters of the same medium pre-warmed at 37°C was then inoculated with 0.5 ml of the overnight
culture and was incubated for an additional 4 h (OD600 �0.7). The cells were harvested by cen-
trifugation at 6,000 x g for 15 min at 4°C and washed twice in 10 ml of ice-cold electroporation
buffer (10% glycerol, 1 mMMgCl2). The final cell pellet was re-suspended in 0.5 ml of electro-
poration buffer. A 100 μl sample of re-suspended cells and 5 μg of DNA were placed in a sterile
electrode cuvette (0.2-cm gap). The cells were then pulsed with a Bio-Rad (Hercules, CA) gene
pulser at 2,500 V for 9.5 ms and incubated on ice for 5 min. The cell suspension was then
added to 0.6 ml of BHI broth supplemented with yeast extract, hemin and menadione and
incubated for approximately 16 h. A 100 μl sample was plated on agar medium containing
erythromycin and was incubated anaerobically at 37°C for 5 to 10 days.

Multiple sequence alignment
For the prediction of the substrate binding site, the protein database, UniProtKB/Swiss-Prot
(www.uniprot.org) [24], was referenced for organisms with completed enzymatic and func-
tional data form-Ddh. This included Corynebacterium glutamicum ATCC 27405, Lysinibacil-
lus sphaericus, Bacteroides fragilis ATCC 25285, Clostridium thermocellum ATCC 13032 and
Ureibacillus thermosphaericus (Uniprot ID: P04964, Q9KWR0, Q5L9Q6, A3DDX7, G1UII1).
Complete protein sequences were obtained from the National Center for Biotechnology Infor-
mation (NCBI, www.ncbi.nlm.nih.gov/) database. The multiple sequence alignment analyses
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were then performed using the T-Coffee multiple alignment [25]. The alignment figure was
generated in ESpript 3.0 [26] for visualization.

Cloning, expression and purification ofm-Ddh
The amino acid sequence ofm-Ddh from P. gingivalis was codon-optimized for expression in
E. coli cells, synthesized and cloned into a pUC57 vector by GenScript (Piscataway, NJ). To
introduce the 6×-HIS tag to the C-terminal end of the gene, the plasmid was digested at NdeI
and NotI restriction sites. The digested fragments were loaded onto a 1% agarose gel and puri-
fied using MinElute1 Gel Extraction kit (Qiagen, Valencia, CA). The purified DNA insert
was ligated into a NdeI- and NotI-digested pET-21a (+) vector (Merck Millipore, Billerica,
MA) by T4 DNA ligase (New England Biolabs, Ipswich, MA), yielding the expression plasmid
pET-Ddh. The plasmids containing the DNA construct were isolated using QIAprep1 Spin
Miniprep plasmid (Qiagen, Valencia, CA) and sequenced at VCU Nucleic Acids Research
Facilities (Richmond, VA).

The pET-Ddh plasmid was introduced into E. coli BL21 (DE3) pLysS (BioLine, Taunton,
MA) and grown overnight in auto-inducing media ZYP5052 containing 100 μg/ml ampicillin
at 37°C. For purification, cells were disrupted by Emulsiflex C3 high pressure emulsifier (Aves-
tin, Ottawa, Canada). Soluble protein was collected and separated from cell debris by centrifu-
gation (20, 000 × g for 20 mins at 4°C). The resulting supernatant was loaded onto a NTA-Ni2+

affinity column (Qiagen) pre-equilibrated with running buffer (25 mM Tris, 300 mM NaCl,
10 mM imidazole, pH 8.0). Unbound protein was washed off with wash buffer (25 mM Tris,
300 mM NaCl, 10 mM imidazole, pH 8.0) and chelated protein was eluted off with elution
buffer (25 mM Tris, 300 mMNaCl, 100 mM imidazole, pH 8.0). Protein concentration was cal-
culated based off of absorbance at 280 nm. Purified protein was boiled in 2X Laemmli buffer
(4% SDS, 10% β-mercaptoethanol, 20% glycerol, 0.125 M Tris-HCl, 0.004% bromophenol
blue) and visualized by 12.5% sodium dodecyl sulfate-polyacrylamide gel electrophoresis
(SDS-PAGE) stained with Coomassie Blue G-250 (Bio-Rad, Hercules, CA).

m-Ddh kinetic assay
The enzymatic activity form-Ddh was determined by observing the standard oxidative deami-
nation reaction of the substratemeso-diaminopimelate [27, 28]. The reaction contained
400 μM ofmeso-diaminopimelate (Sigma-Aldrich, St. Louis, MO), 180 μMNADP+ (Sigma-
Aldrich, St. Louis, MO), 200 mM glycine-KCl-KOH buffer (pH 10.5), and the enzyme in a
final volume of 1 ml. The reaction was initiated with the addition of NADP+. The reaction
velocity was calculated from the increase in absorbance at 340 nm, spectrophotometrically
monitored at 25°C, where one unit of enzyme was defined as the amount of enzyme catalyzing
the formation of 1 mmol of NADPH per min.

Determination of kinetic parameters
Initial velocity measurements form-DAP and NADP+ were determined at 25°C in a similar
reaction for the standard oxidative deamination reaction assay. The reaction contained
200 mM glycine-KCl-KOH buffer (pH 10.5) withm-DAP as the variable substrate with
concentrations between 0.001 mM and 1 mM and NADP+ held constant at a saturating con-
centration of 0.5 mM or NADP+ as the variable substrate with concentrations between 0.01
mM to 1 mM andm-DAP held constant at 0.5 mM. Km and Vmax values were determined
through non-linear fitting. All assays were performed in triplicates and non-linear fitting
Michaelis-Menten data were calculated from Graphpad Prism version 5.04 (Graphpad, San
Diego, CA).
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Molecular modeling
Protein structure. The structure ofmeso-diaminopimelate dehydrogenase (oxidoreductase,

Gfo/Idh/MocA family member) from P. gingivalis strainW83, was crystallized as part of the
National Institute of Health-National Institute of General Medical Sciences (NIH-NIGMS) spon-
sored Protein Structure Initiative (http://www.nigms.nih.gov/Initiatives/PSI/) [29, 30] and was
solved at a resolution of 1.80 Å. The crystal structure data was downloaded from the Protein Data
Bank (PDB ID: 3BIO) and applied in our study. The binding site was identified by sequence
homology to the ortholog in C. glutamicum, whose crystal structure was previously determined in
a complex with the substrate,meso-diaminopimelate (m-DAP), in the binding pocket (PDB ID:
2DAP) [31]. Using Sybyl X.1 (Tripos, St. Louis, MO), the protein was prepared for virtual screen-
ing and docking studies by extracting water molecules and co-crystallized ligands and deleting
one of the two monomers. The pKa values of the amino acid residues within the binding pocket
were predicted and the appropriate ionization states were assigned in SYBYL for a pH 10.5, deter-
mined based on the conditions of the in vitro experimental assay. Appropriate atom types were
assigned, hydrogens were added and the protein was minimized with Sybyl’s Tripos force field.

Structure-based virtual screening. Virtual screening was performed with the UNITY
module within the Sybyl-X molecular modeling program. Unity uses a directed tweak algo-
rithm [32] to simulate molecular flexibility while screening small-molecules. The binding
pocket ofm-Ddh was used as the target site, by constructing a variety of queries based on the
pocket’s properties. Over 9 million small-molecules were screened in silico from ZINC [33]
drug-like databases (http://www.zinc.docking.org).

Molecular docking. Docking and two-step scoring was used to evaluate the results of vir-
tual screening. By visually inspecting and filtering the UNITY hits, we selected the top 132
small-molecule inhibitors for further computational analysis. We used GOLD (Genetic Opti-
mization Ligand Docking) docking program (Version 5.2) [34], targeting the binding site of in
m-Ddh. A sphere with radius of 12 Å from Arg183 was set as the docking region. This allowed
for the inclusion of all residues expected to be within the binding site. The protein model was
prepared for docking as described above. Conformational flexibility was allowed for the small-
molecules. We allowed for 50 GA (Genetic Algorithms) runs with a distance of 1 Å between
clusters. The 132 compounds selected from our virtual screening hits were docked by GOLD,
ranked by Goldscore and then re-ranked by the CHEMPLP as implemented in GOLD. All
docked compounds were then scored in a second pass by HINT (Hydropathic INTeractions)
[35]. The binding mode corresponding to the highest-ranking HINT score for each compound
was chosen as the best and most likely conformation for that compound. From these 132 com-
pounds, the top 30% of the best-scored, structurally diverse compounds as ranked by HINT
were re-docked and minimized with 10,000 iterations within them-Ddh binding site. Finally,
out of forty top scored small-molecules, 11 compounds were commercially available and were
purchased for assay. All modeling images were generated in Pymol (http://www.pymol.org).

Compounds
The selected compounds were purchased from Vitas-M Laboratory, Ltd. (Moscow, Russia),
Molport (Riga, Latvia) and/or eMolecules (La Jolla, CA, USA), which reported compound puri-
ties over 90%, analyzed by NMR and/or LC- MS. All compounds were re-suspended in DMSO
(Sigma–Aldrich, St. Louis, MO, USA) prior to use.

Inhibitor screening and determination of IC50 values
A range of concentrations (0–3 mM) of each small-molecule compound inhibitor were added
to the standard reaction and the percent ofm-Ddh enzymatic inhibition was measured by the
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kinetic assay described above. Percent inhibition was determined by the formula:
ð rate of reactionno inhibitor Þ�ðrate of reactioninhibitor Þ

rate of reactionno inhibitor
� 100: The concentration of each compound inhibitor

which caused 50% enzymatic inhibition (IC50) was calculated using PRISM v6.04 software
(Graphpad, San Diego, CA) from three independent experiments.

Determination of antimicrobial properties
Minimal Inhibitory Concentration (MIC) assays were performed using a broth microdilution
method [36]. P. gingivalis cells were grown overnight and the following day diluted 1/10 into
fresh medium. Cells were allowed to grow to mid-log phase (OD600 � 0.5). Compounds were
serially diluted in 96-well microtiter plates (Jet Biofil, Genesee Scientific, San Diego, CA) and
an aliquot of the cell suspension was added to each well with the compound inhibitor sample
for a final cell count of 1×105 CFU/ml. Plates were incubated for five days at 37°C in anaerobic
conditions. The MIC was defined as the lowest concentration of compound inhibitor that visu-
ally reduced cell growth relative to the controls.

Minimal bactericidal concentrations (MBC) were determined by plating bacteria from wells
of the MIC assay that showed no visible growth. Samples were plated on tryptic soy agar plates
supplemented with 5% sheep blood (Becton, Dickinson, Franklin Lakes, NJ) and incubated at
37°C in anaerobic conditions for 7 days. MBC was defined as the lowest concentration of com-
pound inhibitor that resulted in no colony formation/growth.

Time-kill assay
P. gingivalis cells were grown overnight and the following day diluted 1/10 into fresh medium.
Cells were allowed to grow to mid-log phase (OD600 � 0.5) then diluted to a final cell suspen-
sion of 1×105 CFU/ml. Compounds were added at a concentration of 5x the MIC determined
from the 96-well broth microdilution assay. Samples were taken at different time intervals (0,
0.25, 0.5, 1, 2, 3, 4, 6 and 24 hours) and plated on tryptic soy agar plates supplemented with 5%
sheep blood (Becton, Dickinson, Franklin Lakes, NJ) using an automated Eddy Jet spiral plater
(Neutec Group, Farmingdale, NY). Plates were incubated at 37°C in anaerobic conditions for
7 days.

SEM analysis of compound exposed P. gingivalis cells
Untreated or treated P. gingivalis cells were deposited onto a 0.1 μm disposable Millipore filter
to remove medium, and samples were fixed using 2% glutaraldehyde in 0.1 M sodium cacody-
late buffer (pH 7.4) for 30 min, followed by 1% osmium tetroxide in 0.1 M sodium cacodylate
buffer (pH 7.4). Samples embedded in the filters were then dehydrated in ethanol followed by
hexamethyldisilazane (HMDS) and allowed to air-dry. The filters were sectioned and mounted
onto stubs and coated with gold for three minutes (EMS– 550 Automated Sputter Coater, Elec-
tron Microscopy Sciences, Hatfield, PA). Micrographs were taken at 30,000× total magnifica-
tion using a Zeiss EVO 50 XVP scanning electron microscope (Carl Zeiss, Peabody, MA).

Analysis of inhibition mechanisms
Kinetic studies were carried out using the standard kinetic assay for the oxidative deamination
ofm-DAP. Reactions were performed in the absence or presence of compound inhibitors (0–
0.4 mM) with varying concentrations of the substratem-DAP or co-substrate NADP+. The
mode of inhibition was determined from non-linear regression using PRISM v6.04 software
(Graphpad, San Diego, CA) from three independent experiments. The mode of inhibition was
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graphically visualized with Lineweaver-Burk or Hanes-Woolf plots according to Cleland kinet-
ics [37].

Result

Identification and assessment ofm-Ddh as a target
Based on what we know of bacterial metabolism, the lysine biosynthesis pathway presented an
attractive option for pathogen-selective targeting. Lysine is a required amino acid for bacteria
and the pathway is directly involved in the biosynthesis of peptidoglycan. However, what
makes lysine biosynthesis suitable for species selective targeting is the presence of pathway
variants. The pathway is composed of four different branches, differing by the substrate inter-
mediates at the branch point of L-2, 3, 4, 5-tetrahydrodipicolinate’s (THDP) conversion to
meso-diaminopimelate (m-DAP). The succinylase branch utilizes succinyl-CoA to generate
succinylated intermediates; similarly the acetylase branch utilizes acetyl-CoA to produce acety-
lated intermediates. These two variants are used by the majority of Gram-negative and Gram-
positive bacteria. The aminotransferase branch, used by plants and methanococci, involves a
single step amine transfer to produce the precursor ofm-DAP, LL-DAP [38]. However, limited
to a few species,m-DAP is directly produced by the enzymemeso-diaminopimelate dehydroge-
nase (m-Ddh; GenBank ID: AAQ65966.1) in a single step [10, 39–42]. As the healthy oral cav-
ity is composed of roughly 80% streptococcus species, the absence ofm-Ddh in streptococci
while present in the key periodontal pathogen, P. gingivalis, indicated this enzyme could be a
suitable target for periodontal disease.

An important component in antimicrobial therapy is the ability to target critical biological
processes required for bacterial cell survival. Historically, these targets have focused on key bio-
logical functions such as DNA replication, protein translation and cell wall biosynthesis [43].
Whilem-Ddh is involved in protein and cell wall biosynthesis and we predicted the gene to be
essential, prior to the start of our study we did not know whether this was experimentally true.
To verifym-Ddh was essential in P. gingivalisW83, we knocked out the gene by transforming
cells with a recombinant PCR product carrying an erythromycin resistance cassette (ErmR)
allowing for allelic replacement mutagenesis within the genome. Through this method, the
antibiotic resistance cassette replaces the target gene and, if essential, results in non-viable cells
following transformation. The disruption of the PG0806 gene with the ErmR cassette resulted
in no colony formation following electroporation and recovery in selective media (Fig 1A). To
show that the lack of colony formation was in response to the essential nature of the gene and
not due to problems with the transformation or electroporation, we simultaneously carried out
allelic replacement mutagenesis for a non-essential hypothetical membrane protein (GenBank
ID: AAQ65282.1). For this control we were able to obtain substantial colony formation (Fig
1B). These result were repeated independently displaying similar results as shown in Fig 1; sug-
gesting that deletion of PG0806 is lethal to P. gingivalis and therefore essential.

Another important component for a potential target is “druggability” corresponding to the
chance a small molecule will be able to bind and have a significant effect on the protein’s activ-
ity [44]. Druggability can be assessed in several methods including previous proof-of-concept
in similar proteins, conserved or targetable sequence motifs and structural analysis [45].m-
Ddh enzymes from several organisms referenced in UniprotKB/Swiss-Prot with known or
binding sites predicted by similarity were aligned (Fig 2A). P. gingivalis has approximately 30%
sequence identity to C. glutamicum, L. sphaericus, C. thermocellum and U. thermosphaericus
and 70% sequence identity to B. fragilis. Alignment of the secondary structure revealed that the
binding site and residues are maintained across species, indicating that the enzyme and its
function is highly conserved (Fig 2B). Druggable proteins have been shown to consist of a
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higher ratio of non-polar to polar amino acid residues (59.1% vs 40.9%) and a lower isoelectric
point (5.39 vs 7.44 in non-targets) [46]. Analysis showed thatm-Ddh contains an oxidoreduc-
tase domain, a favored targeted enzyme class [46] and which has been previously determine
with high confidence to be “druggable” by the Druggable Cavity Directory. Structural analysis
by SYBYL revealed a solvent inaccessible binding cavity with residues corresponding to them-
DAP sequence alignment and the conserved motifs (Fig 3A). This binding cavity consists of a
relatively deep and hydrophobic region consisting of hydrophobic amino acid residues methio-
nine, tryptophan and phenylalanine (Fig 3B). In addition,m-Ddh from C. glutamicum has
been co-crystallized in a complex with the endogenous substrate [31]. Therefore,m-Ddh struc-
ture appears to be “druggable”, making it a suitable target for drug discovery.

As the role of an antimicrobial compound is to alter the functional behavior of its target,
understanding the biological function of the enzyme plays a critical role in the drug design and
discovery process. Therefore, in order to monitor changes in behavior and establish an assay
for target-based screening to support the enzyme’s role as a potential antimicrobial target, we
needed to first purify and characterized the protein and its enzymatic activity. To obtain a large
amount of recombinant P. gingivalis m-Ddh protein for characterization, we synthesized the
gene and expressed it in E. coli. The gene sequence encoding for P. gingivalis m-Ddh was
codon-optimized and cloned into a T7 pET-21a (+) expression vector carrying a C-terminal 6×
HIS tag. The protein was isolated following the expression and purification described in Mate-
rials and Methods. Expression from E. coli BL21 (DE3) pLysS cells at 37°C overnight resulted
in the majority of the protein found within the soluble fraction. A 2-L culture produced
approximately 16 mg of protein, determined by spectrophotometric analysis. The protein
sequence ofm-Ddh is 301 amino acid residues with a calculated molecular weight of 32 kDa,
corresponding to the SDS-PAGE analysis of the purified protein (S1 Fig).

m-Ddh catalyzes the reversible NADP+-dependent oxidative deamination of the D-amino
acid center ofmeso-diaminopimelate to produce L-α-amino-ε-ketopimelate and NADPH [27].
The production of NADPH allows for the continuous spectrophotometric monitoring of the
enzymatic activity by measuring the change in absorbance at 340 nm as NADP+ is converted

Fig 1. Allelic replacement mutagenesis for predicted essential and non-essential gene. (a) Predicted
essential gene PG0806 was transformed and plated on antibiotic selective media resulting in no colony
formation, validating prediction that the gene was essential. (b) Predicted non-essential gene PG0027 was
transformed and plated on antibiotic selective media resulting in colony formation, validating prediction that
the gene was not essential. Transformations were performed two independent times.

doi:10.1371/journal.pone.0141126.g001
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to NADPH. We examined the steady state kinetics to determine the kinetic parameters of the
reaction. Analysis of the initial velocity showed typical Michaelis-Menten kinetics (S2 Fig). The
apparent Km and Vmax form-DAP was determined to be 370 μM and 130.1 nmol·sec-1 and
60 μM and 91.95 nmol·sec-1 for NADP+ respectively.

Fig 2. Protein sequence and structural alignment ofm-Ddh. (a) Sequence alignment ofm-Ddh from other bacterial organisms. Sequences were aligned
using T-Coffee and the multiple alignment was then created in Espript 3.0. The putative binding sites of Corynebacterium glutamicum (Cg), Lysinibacillus
sphaericus (Ls), Bacteroides fragilis (Bf), Clostridium thermocellum (Ct) andUreibacillus thermosphaericus (Ut) cited in the sequence annotations in
UniProtKB/Swiss-Prot and P. gingivalis (Pg) predicted based on homology are indicated by astericks. The oxidoreductase domain for P. gingivalis is
indicated by arrows below sequence. Secondary structure for P. gingivalis is annotated above the sequence. Relative percentage of characterized amino
acid residues are shown below. (b) Secondary structure alignment ofm-Ddh’s putative binding site from P. gingivalis (green),C. glutamicum (cyan) andU.
thermosphaericus (purple). Key residues are labeled, side chains are displayed as sticks and colored corresponding to atom type. Hydrogens were omitted
for clarity.

doi:10.1371/journal.pone.0141126.g002
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Pharmacophore model and virtual screening for the identification of
small-molecule compound inhibitors
To identify a binding model for inhibition, we searched the literature for known inhibitors.
Unsaturated analogues ofm-DAP, containing a planar α-carbon and lacking the active D-
amino acid amine center ofm-DAP have been shown to be strong inhibitors ofm-Ddh isolated
from Bacillus sphaericus and C. glutamicum [47]. It was assumed the analogue inhibitors bind
in manner opposite to that of the substrate; thus, the non-reactive L-amino acid center is posi-
tioned near the C-4 position of the co-substrate NADP+. This would prevent the oxidation
reaction and hydride exchange that normally would occur between the substrate and co-sub-
strate. We obtained two of these previously reported compounds; testing in vitro showed dose-
dependent inhibition againstm-DAP from P. gingivalis (S3 Fig).

The X-ray crystal structure was modeled and the unsaturated analogue inhibitors (Com-
pounds 1–3) as well as them-DAP substrate were docked into them-Ddh binding pocket to

Fig 3. Cartoon representation ofm-Ddh protein structure. (a) Ribbon based structure ofm-Ddh with a zoomed in view of the substratem-DAP binding
cavity (b) and the hydrophobicity of binding site protein surface (red = hydrophobic).

doi:10.1371/journal.pone.0141126.g003

Inhibitors against Porphyromonas gingivalis

PLOSONE | DOI:10.1371/journal.pone.0141126 November 6, 2015 10 / 24



identify the features that should be important for inhibitor interactions (Fig 4A). The docking
model which best fit the expected in vitro interaction and displayed high docking scores was
used to generate a pharmacophore model. Based on the best ranking interaction, the pharma-
cophore model focused on four features that were shared between the inhibitors and substrate:
1) a hydrophobic region complementary to amino acid residues Trp123 and Phe148; 2) a
ligand donor atom complementary to residues Asp94 and Asp124; 3) a negative (acceptor) cen-
ter complementary to the side chain of residue Ser153 and the backbone of residues Met154
and Gly155; and 4) a negative (acceptor) center complementary to the side chains of residues
Arg183 and Thr173. The interaction was also restricted to a sphere of radius 12 Å centered
around Arg183. Interactions with Arg183 were assumed to be critical for the interaction
because preliminary site-directed mutagenesis decreased the substrate-protein binding affinity
by 32-fold [Stone et al., unpublished]. From our docking studies, Arg183 was seen to form
hydrogen bonds with the carboxylate groups of the substrate analogues.

The pharmacophore model shown in Fig 4B was used in a high-throughput virtual screen of
the ZINC 3D database [33] to identify small-molecule inhibitors that would fit the query con-
structed from the pharmacophore. ZINC (Zinc Is Not Commercial) is a publicly available list-
ing of molecules that are reportedly available for purchase, organized in a manner appropriate
for virtual screening studies. In simple terms, a compound is classified as a hit if it fits all of the
features defined as mandatory in the model. The screening of more than 9 million compounds
within the ZINC database resulted in more than several hundred hits.

Since the goal of virtual screening is to identify unique compounds and scaffolds that have the
potential to be developed into active inhibitors, a filter was applied to remove compounds within
the hit list too structurally similar to one another. The resulting list was then filtered for drug like-
ness (i.e., with algorithms based on Lipinski’s Rule of Five [45]) to remove compounds and scaf-
folds that were unlikely to have reasonable physiochemical properties. Compounds passing
through these filters were then docked to the binding site ofm-Ddh with GOLD (Genetic Opti-
mization of Ligand Docking) program [34] to predict their binding affinities and to assess the
modeled compound-protein interactions. Prediction of the best fit binding model of each com-
pound, again within 12 Å of Arg183, was determined and scored by Goldscore. The models with
top docking scores were re-docked to the binding site with the same docking parameters and
rescored by CHEMPLP. A filter based on binding pose was applied and molecules that interacted
favorably, mostly via hydrogen bonds with the key residue Arg183 were identified. This filter
yielded 132 hits, which were then scored by the HINT (Hydropathic INTeractions) force field
[35]. HINT uses an empirical force field that estimates the free energy of intermolecular interac-
tions based on small molecule partition coefficients (Log Po/w). The program accounts for the
sum all non-covalent interactions, quantitatively evaluating both favorable and unfavorable inter-
actions. Therefore, the higher the score the more favorable the overall interaction. HINT has
been used for over 20 years as a scoring tool and has shown to reliably correlate with the free
energy of docked molecules and binding efficiency [35, 48, 49]. The binding mode corresponding
to the highest HINT score for each compound was then re-docked and minimized within them-
Ddh binding site. From these 132 compounds, the top 30% of the best HINT-scored, structurally
diverse compounds were set-aside as the 48 final hits. Finally, samples of the commercially avail-
able compounds in this group were purchased for screening assays as described below. The
HINT scores and compound structures of each of these 11 compounds (4–14) are listed in Fig 5.

Evaluation of compound enzymatic and cellular inhibition againstm-Ddh
The initial screens for the compounds 4–14 were performed by individually adding each com-
pound to the assay solution at a concentration of 3 mM. Enzymatic activity was measured by

Inhibitors against Porphyromonas gingivalis

PLOSONE | DOI:10.1371/journal.pone.0141126 November 6, 2015 11 / 24



the standard assay described in Methods and % inhibition was calculated in comparison to the
untreated enzymatic rate. This resulted in four compounds (4, 5, 6 and 7) that displayed at
least 90% inhibition of enzymatic activity. The other compounds screened displayed 20% or

Fig 4. Generation of pharmacophore model for the high-throughput virtual screen. (a) Structure ofm-DAP and inhibitor analogs that were previously
shown to be active againstm-Ddh inC. glutamicum and B. sphaericus. (b) Compounds docked intom-Ddh binding site and conserved interactions were
identified. (c) Pharmacophore model with selected core features for inhibitor identification during virtual screen. The model focused on four features: first, a
hydrophobic region complementary to amino acid residues Trp123 and Phe148 (green), second, a ligand donor atom complementary to residues Asp94 and
Asp124 (purple), third, a negative center complementary to the side chain of residue Ser153 and the backbone of residues Met154 and Gly155 (red) and
fourth, a negative center complementary to the side chain of residues Arg183 and Thr173 (red). The interaction was also restricted for an area 12Å in
distance for Arg183. Key residues are labeled, displayed as ball and sticks and colored corresponding to atom type. Hydrogens were omitted for clarity.

doi:10.1371/journal.pone.0141126.g004
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less. Three of the compounds with high inhibitory activity (4, 5 and 6) shared the sulfonamide
core. These four compounds were then re-screened with a minimum of six compound concen-
trations to determine the IC50 value (Table 1). The IC50 values ranged between 100 μM and
1 mM.

It is known that compounds identified through large structural databases with high IC50 val-
ues can be non-specific aggregators, sequestering the enzyme to its surface preventing activity
and causing partial denaturation [50, 51]. Aggregation-based inhibition can be reversed
through the addition of non-ionic detergents such as Triton X-100. Therefore, to assess the
selectivity of our enzyme inhibitor, we re-assayed the dose-dependence with the addition of
.01% Triton-X 100, which had no effect on the normal enzymatic activity ofm-Ddh. The IC50

values for Compounds 4, 5 and 6 showed no difference in activity.
To determine if the small-molecule inhibitors displayed antimicrobial activity, we assessed

the minimum inhibitory concentration (MIC) using a standard broth microdilution assay.
Compounds 4, 5 and 6 were tested for their ability to visually inhibit growth of P. gingivalis
cells. Compounds 4 and 5 showed moderate antimicrobial activity with MICs of 250 μM and
167.45 μM, respectively (Table 2). With an MIC over 2 mM, Compound 6 was determined not
to be appropriate for whole-cell growth inhibition. These results suggest that the compounds
may not be fully permeating the cell membrane or being removed by efflux pumps, preventing
the compound from reaching the target. Testing of the minimum bactericidal concentration
(MBC) following the MIC assay, showed a MBC to MIC ratio of less than 4 for Compound 4

Fig 5. Structure and scoring of top-ranking inhibitors.

doi:10.1371/journal.pone.0141126.g005
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and 5. Compound 6 was not screened for bactericidal activity as the concentration higher than
the MIC would have been effected by the solvent concentration. The compounds demonstrated
select growth inhibition when tested against Gram-positive S. sanguinis which lacked the target
m-Ddh. Compound 4 had the greatest difference with 7× MIC of P. gingivalis and Compound
5 had almost double the MIC (Table 2).

At 5× MIC, Compound 4 reduced the viable P. gingivalis cell count by 2 log10 CFU /ml
within 6 h of exposure. However, Compound 5 rapidly reduced the cell count upon treatment.
After 2 h of exposure there was a 5 log10 CFU/ml reduction, resulting in no viable cell count
(Fig 6). Cells exposed to Compound 6 at the higher concentration treatments were affected by
the DMSO solvent and could not be assessed.

Examination of P. gingivalis cells exposed to either Compound 4 or Compound 5 by scan-
ning electron micrograph (SEM) showed an alteration of the cellular structure (Fig 7). Cells
were misshapen with an altered morphology. This was similar to the ampicillin, a cell-wall tar-
geting antibiotic. There were smaller and rounder compared to the wild-type cellular structure
seen in the untreated cells.

Analysis of the docking model showed hydrophobic stacking interactions occurring
between the aromatic rings of the inhibitors and residues Phe148 and potentially Trp123 of the
active site. There was also potential hydrogen bonding between the ligands’ carboxylic groups
and residues Gly155 and Met154. The molecular docking and subsequent HINT scoring of
Compound 4, 5 and 6 showed favorable interactions with residues in them-DAP binding site
(Fig 8). The sulfonamide group of these compounds showed strong hydrogen-bonding interac-
tions with Arg183 and Thr173, which were shown to be important form-DAP binding. In

Table 1. In vitro analysis of small-molecule inhibitors.

Compound No. HINT IC50 (μM)

Compound 4 3112 157 ± 26

Compound 5 3015 310 ± 23

Compound 6 2876 356 ± 16

Compound 7 2095 1164 ± 175

Compound 8 4380 No inhibition at 3 mM

Compound 9 2570 No inhibition at 3 mM

Compound 10 4274 2% inhibition at 3 mM

Compound 11 2344 13% inhibition at 3 mM

Compound 12 1989 No inhibition at 3 mM

Compound 13 4190 6% inhibition at 3 mM

Compound 14 1693 17% inhibition at 3 mM

doi:10.1371/journal.pone.0141126.t001

Table 2. Minimum Inhibitory Concentration (MIC) and MinimumBactericidal Concentration (MBC).

P. gingivalis S. sanguinis

MIC (μM) MBC (μM) MIC (μM)

Compound 4 250 374 1740

Compound 5 167 254 305

Compound 6 2821 ** 3310

n = 3

**Effected by solvent concentration

doi:10.1371/journal.pone.0141126.t002
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addition, the carboxylate groups formed hydrogen bonds with the backbone amide of Ser153
and Met154. Also observed were favorable hydrophobic interactions with Trp123 and Phe148.
All these interactions followed the proposed pharmacophoric model. Compound 4made addi-
tional hydrogen-bonding interaction with Tyr207 and π-π stacking interactions with Phe148,
which may be one of the many reasons for its better activity.

To verify this interaction, inhibition studies were carried out. The substratem-DAP was var-
ied over several concentrations of each inhibitor. The inhibition pattern was revealed to be
non-competitive, indicating that none of the compounds were directly competing withm-DAP
(Fig 9A–9C). This was unexpected with respect to our hypothesis generated from the modeling
studies. However, as our inhibitors had moderate activity they may only be weakly competitive
againstm-DAP. Nevertheless, due to structural similarities between the compound scaffolds
and the co-substrate, we next examined the possibility that one of more of the inhibitors may
be binding in the NADP+ binding site. This inhibition study showed an uncompetitive inhibi-
tion pattern (Fig 9D–9F).

Fig 6. Time-kill analysis of P. gingivalis treated with Compound 4 and 5. P. gingivalis cells were treated with 5x the previously determined MIC for either
Compound 4 (triangle) or Compound 5 (square) and bacterial cell counts were assessed at 0, 0.25, 0.5, 1, 2, 3, 4, 6 and 24 hours. The mean plus the
standard deviation is shown for each time point from a minimum of n = 3 independent experiments. For cell counts equal to 0 CFU/mL, 1 was used for the log
transformation.

doi:10.1371/journal.pone.0141126.g006
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Discussion
In this study, we employed a high-throughput virtual screen of more than 9 million small-mol-
ecules to identify potential inhibitors against P. gingivalis. The significance of our study can be
summarized as follows: First, we identifiedm-Ddh, an essential enzyme for P. gingivalis, as a
potential pathogen-specific target within the oral cavity. Second, to the best of our knowledge,
this is the first computationally motivated target-based drug discovery for this periodontal
pathogen. Third, we show that we can identify through computational means important phar-
macophore features for substrate-protein interactions and identify inhibitors with drug-like
properties that can be further optimized for select in vitro activity. Finally, P. gingivalis and
periodontal disease can be used as the starting model for rational species-selective drug

Fig 7. SEM analysis of P. gingivalis cells treated with Compound 4 and 5. (a) Untreated cells. (b) Compound 4 treated cells at 5x the previously
determined MIC concentration. (c) Compound 5 treated cells at 5x the previously determined MIC concentration. (d) Ampicillin treated cells.

doi:10.1371/journal.pone.0141126.g007

Fig 8. Docking and binding interaction of three active compounds in complex withm-Ddh. (a) Compound 4 (b) Compound 5 and (c) Compound 6. Key
residues are labeled, displayed as ball and sticks and colored corresponding to atom type. Hydrogens were omitted for clarity. Potential hydrogen bonding
interactions betweenm-Ddh residues and inhibitors are shown by yellow dashed lines.

doi:10.1371/journal.pone.0141126.g008
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discovery, combing genomic knowledge of essential genes and computational advances for
small-molecule identification.

We hypothesized that we could selectively target periodontal pathogens in the oral cavity by
excluding genes essential for non-pathogenic early oral colonizers. Essential genes from S. san-
guinis [14] represented a healthy oral cavity and we compared potential essential gene targets
from P. gingivalis, to generate a subset of genes predicted to be essential in the periodontal
pathogen while potentially absent within a healthy cavity. We then identifiedm-Ddh as a
potential pathogen-specific target for the control of periodontitis and we believe it represents a
unique and promising target. First, it is important for bacteria asm-Ddh is found within the
lysine biosynthesis pathway and catalyzes the reversible NADP+-dependent oxidative deami-
nation ofm-DAP.m-DAP is vital as it is a direct precursor to the amino acid L-lysine and a

Fig 9. Inhibition mechanism of active compounds in regards to substrate,m-DAP and co-substrate, NADP+. (a) Compound 4 (b) Compound 5 and (c)
Compound 6 inhibition mechanisms againstm-DAP. (d) Compound 4 (e) Compound 5 and (f) Compound 6 inhibition mechanisms against NADP+.

doi:10.1371/journal.pone.0141126.g009
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key component in peptidoglycan biosynthesis by cross-linking the glycan backbone in the cell
wall of mycobacteria and Gram-negative bacteria, leading to the cellular strength and structure
[39, 52]. Especially interesting is the dual rolem-Ddh plays in lysine and peptidoglycan biosyn-
thesis, making evident its potential for antimicrobial therapy. Second, it is only known to be
present within a small fraction of bacterial species, mostly limited to only a few Bacillus species
[40, 53]. Nevertheless, in the context of periodontal disease,m-Ddh has potential for a broader
application. A BLASTP of completed oral genomes in the Human Oral Microbiome Database
(HOMD) [54] showed out of 315 sequenced genomes, 69 possessed a highly conserved
sequence form-Ddh. Many of those observed were other known oral pathogens such as Prevo-
tella sp., Tannerella sp. and Veillonella species. Third, it presents no human homologue. The
biosynthetic pathway for lysine is completely lacking in mammals, indicating a lower chance of
toxicity. Fourth, the idea of disrupting lysine biosynthesis as a site for antimicrobial and anti-
fungal targets is not new. Numerous studies have been published analyzing enzymes within
lysine pathways as potential targets [39, 53, 55, 56]. Lysine riboswitches were identified as
potential targets in Bacillus, where several lysine analogs were shown to inhibit bacterial growth
in vitro [57]. Studies have also been pursued for antifungals. Deletion of homocitrate synthase,
an essential enzyme in the aminoadipate pathway for Aspergillus fumigatus, showed reduced
virulence in a bronchopulmonary aspergillosis mouse model [56]. Lastly, it possesses key fea-
tures corresponding to that of a protein target.

When selecting a drug target, it must one, be essential for the survival of the pathogen or
disease virulence; two, possess certain sequence and structural features and three, have assay-
able activity. We first confirmed the essential nature ofm-Ddh through allelic replacement
mutagenesis. This method allowed us to rapidly evaluate the effect of a single gene knock-out
in P. gingivalis while minimizing possible polar effects. Additionally, the essential nature of a
gene can be determined with a distinct phenotype corresponding to colony growth or lack
thereof. We observed no growth form-Ddh. This was compared to a hypothetical membrane
protein that was not essential for P. gingivalis survival [58, 59]. We previously used this method
to systematically knock-out over 2000 genes in S. sanguinis for the genome-wide identification
of essential genes [14]. It has also been applied to several other essential gene studies, including
E. coli, B. subtilis and S. pneumoniae [60–62]. Previous studies comparing sequence and struc-
tural data between targets and non-targets showed druggable proteins are more likely to be of
certain enzyme classes, contain more non-polar amino acids and have a lower pI, indicating
molecules more acidic in nature [46]. Based on these factors,m-Ddh is a “druggable” enzyme
with a sequence and structural motif that has the ability to be targeted by small-molecules. Pre-
vious studies ofm-Ddh and its role in lysine biosynthesis have focused on the enzyme from
Corynebacterium [31], Bacillus [41], and Ureibacillus [52]. However, there is no data onm-
Ddh in P. gingivialis and while the crystal structure was published in PDB, prior to our study,
data concerning the physiochemical and kinetic properties ofm-Ddh for P. gingivalis was
unknown. The apparent Km appears to vary betweenm-Ddh of different species; however, the
values for P. gingivalis were consistent with C. thermocellum which was reported Km values of
230 μM and 90 μM for NADP+ [40].

Historically, traditional antimicrobial drug studies focused on screening large numbers of
compounds for whole-cell activity, flushing out the mechanism of action and verifying the fea-
sibility of the target later. With the crystal structure available for our target, we decided to uti-
lize a structure-based drug design approach. A subset of compounds with the most favorable
docking interactions determined through HINT interaction scores were selected for our initial
screening. From 11 compounds identified and screened in vitro, compound 4, 5, 6 and 7
showed target-specific inhibition. Three of the four (4, 5 and 6) displayed IC50 values in the
mid micromolar range (Table 1). This high hit rate of around 30%, is impressive for an initial
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screen. While the HINT and docking analysis did predict several molecules to have better inter-
actions, these did not have in vitro activity. However, HINT assess binding affinity which does
not always correlate with activity. A re-evaluation of the virtual screening query could signifi-
cantly lead to more compound hits. The compounds with inhibitory activity showed limited
structural similarity, but possessed similar functional groups and were predicted to share basic
pharmacophore features. They all possessed sulfonamide core attached to large aromatic struc-
tures with carboxylate functional groups. The importance of the sulfonamide has precedence
in the search for antimicrobials targeting lysine biosynthesis. Compounds structurally similar
to our hits that possessed sulfonamides and sulfones were identified as fairly good inhibitors of
dihydrodipicolinate reductase, another enzyme in the lysine biosynthesis pathway [53, 63].
Based on docking studies, the sulfonamide groups were predicted to favorably interact with
Arg183 and Thr173 forming hydrogen bonds. The aromatic moieties would create hydropho-
bic interactions and the carboxylic groups would form hydrogen bonds with residues at the
other end of the binding pocket. It should be noted that previous studies have reported more
potent inhibitors againstm-Ddh [47, 53, 64]. However, these compounds are typically small
analogous structures, derived from the substratem-DAP that possess few ‘drug-like’ features,
making optimization difficult [53] and suggesting little hope for selectivity. Our compounds
allow for the development of more active compounds. This is similar to the in silico screening
against thymidylate synthase, an enzyme is essential for DNA replication, by DesJarlais et al.
[65]. The initial computational study yielded several compounds with activity in the high
micromolar range, but following further analysis and optimization resulted in an increase in
potency as well as verification of the binding mode.

Previous initial-velocity data [28] inm-Ddh show the reaction to proceed through a sequen-
tial ordered ternary-binary mechanism with NADP+ binding first, followed by the substratem-
DAP. The product is then released, followed by NADPH. Our studies into the mechanism of
inhibition (Fig 9) showed the molecules to be non-competitive with respect tom-DAP, but
uncompetitive with respect to NADP+. In concordance with the binding order, this would indi-
cate that the inhibitors bind to either the Enzyme-NADP+ complex or the Enzyme-NADPH
complex, thus potentially preventing a necessary conformational change and/or reducing the
affinity ofm-DAP for the protein. This type of mechanism of inhibition could be beneficial for
future therapeutics. Treatment with an optimized inhibitor competing withm-DAP, would
result in the accumulation of the substrate within the cytosol. An increase in the localized sub-
strate would then need to be balance by high concentrations of the inhibitor. A non-competi-
tive inhibitor, however would not be affected by the increased concentration of substrate
compared to a competitive inhibitor, making it more effective at lower concentrations.

One of the most difficult aspects of target-based drug discovery is identifying small-mole-
cules that show effective whole-cell activity while maintaining the key pharmacokinetics.
While the inhibitors identified showed potential againstm-Ddh, they exhibited moderate anti-
microbial activity in P. gingivalis (Table 2). Nevertheless, the potential for antimicrobial activity
should not ignored as analogous structures and optimization of the scaffold could improve
whole cell inhibition. Several reasons could contribute to the high MIC values. For one, bacte-
rial inhibitors must be able to penetrate the cell membrane while maintaining enough soluble
and free fractions to inhibit the target at sufficient concentrations. The compound also must
avoid being expelled from the cell through efflux pumps. Another reason could be due to the
sulfonamide group present on compound 4, 5 and 6. Sulfonamide derivatives are well known
antimicrobials that target folate biosynthesis, and bacterial cells may show a degree of drug
resistance similar to others studies in lysine inhibition [53]. There is also the potential for non-
specific inhibition or off-target interactions. This would result in what appears to be a change
in activity during whole-cell inhibition compared to the target inhibition. This was observed
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for compound 5 which displayed a lower MIC than the IC50. While a detailed structure-activity
relationship for the antimicrobial properties cannot be determined from these studies, it may
be speculated that the more favorable whole-cell activity seen in Compound 5 compared to
compound 4 and 6 is due to lipophilicity. The relatively low lipophilic nature of compound 6
(cLogP = 1.70) compared to 5 (cLogP = 3.68) may have decreased permeability through the cel-
lular membrane of P. gingivalis. While compound 4 displayed the more potent target-based
screening, the high lipophilic nature (cLogP = 5.26) may have had a significant effect on the
solubility, reducing the efficacy during cell-based screening [66].

We were able to show differential activity indicating potential specificity. Testing in S. san-
guinis, which lacks the targetm-Ddh, showed almost no antimicrobial activity with MICs more
than double that of those seen in P. gingivalis. For Compound 5, complete elimination of P.
gingivalis cell viability was achieved after two hours of exposure at 5x the MIC concentration,
while Compound 4maintained a low cell count after six hours of treatment. Therefore, the
activity of these compounds is time and dose dependent, with higher concentration and longer
exposure times leading to an increase loss of cell viability. This would indicate that these com-
pounds would most likely be killing the cell at working concentrations in agreement with other
cell well targeting antibiotics. This corresponds with the MBC being less than 4x the MIC as
antimicrobials with MBC in close range of the MIC are typically classified as bactericidal. The
changes observed in the cell wall morphology for the compound treated P. gingivalis cells cor-
responded to targeting of the cell wall as well as disruption in protein synthesis. Similar cell
wall alterations were in seen in E. coli when treated with ribosome targeting antibiotics [67].
This would be consistent withm-Ddh inhibition, as it plays a dual role in peptidoglycan and
lysine biosynthesis.

In conclusion, our results demonstrate the possibility of identifying inhibitors that can tar-
get P. gingivalis m-Ddh. We show that these inhibitors bindm-Ddh and prevent the enzymatic
reaction from occurring. Continued studies into the protein-inhibitor binding interaction
could help to discern which features are key, allowing for the development of improved inhibi-
tors. The current overuse and misuse of broad-spectrum antibiotics has led to a steady increase
in bacterial resistance and contributes to adverse health effects such as gastrointestinal infec-
tions [7, 8]. Yet, there has been a surprising lack of antimicrobial drug development especially
among Gram-negative bacteria, which have seen rises in multi- and pan-drug resistant strains.
Pathogen-specific antimicrobial therapy could help generate novel leads in drug discovery, ease
resistance commonly seen in broad-spectrum antibiotics and reduce the time for the discovery
as targets won’t have to be verified across multiple species. Sincem-Ddh is a unique target
found within a limited number of species, we believe that our current effort could serve as a
proof-of-concept and lead to the development of novel narrow-spectrum therapy for the treat-
ment of periodontal disease.

Supporting Information
S1 Fig. SDS PAGE analysis of purified protein.M1, Precision Plus Protein Dual Color Mark-
ers (Bio-Rad); M2, Precision Plus Protein Dual Xtra Prestained Protein Markers (Bio-Rad);
TCP, total cell protein; S, soluble fraction; FT, flow-thru; E, empty lane; P, purified protein via
His-tag. Arrow represents target protein.
(TIF)

S2 Fig. Dose-dependent analysis of unsaturated analogs ofm-DAP against P. gingivalis m-
Ddh.
(TIF)
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S3 Fig. Characterization of kinetic properties of P. gingivalis m-Ddh.
(TIF)
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