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Abstract

The vast majority of human plague cases currently occur in sub-Saharan Africa. The pri-
mary route of transmission of Yersinia pestis, the causative agent of plague, is via flea bites.
Non-pathogenic flea-associated bacteria may interact with Y. pestis within fleas and it is
important to understand what factors govern flea-associated bacterial assemblages. Six
species of fleas were collected from nine rodent species from ten Ugandan villages
between October 2010 and March 2011. A total of 660,345 16S rRNA gene DNA
sequences were used to characterize bacterial communities of 332 individual fleas. The
DNA sequences were binned into 421 Operational Taxonomic Units (OTUs) based on 97%
sequence similarity. We used beta diversity metrics to assess the effects of flea species,
flea sex, rodent host species, site (i.e. village), collection date, elevation, mean annual pre-
cipitation, average monthly precipitation, and average monthly temperature on bacterial
community structure. Flea species had the greatest effect on bacterial community structure
with each flea species harboring unique bacterial lineages. The site (i.e. village), rodent
host, flea sex, elevation, precipitation, and temperature also significantly affected bacterial
community composition. Some bacterial lineages were widespread among flea species
(e.g. Bartonella spp. and Wolbachia spp.), but each flea species also harbored unique bac-
terial lineages. Some of these lineages are not closely related to known bacterial diversity
and likely represent newly discovered lineages of insect symbionts. Our finding that flea
species has the greatest effect on bacterial community composition may help future investi-
gations between Yersinia pestis and non-pathogenic flea-associated bacteria. Characteriz-
ing bacterial communities of fleas during a plague epizootic event in the future would be
helpful.
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Introduction

Since 2000, greater than 95% of reported cases of human plague have occurred in sub-Saharan
Africa [1]. Models incorporating 10-year meteorological data and human plague incidence
data found that, in Uganda, plague risk increases in sites located above 1,300 meters in eleva-
tion and with increased (but not continuous) rains in February, October, and November [2]. In
addition, the number of human plague cases in the West Nile region was negatively associated
with dry season rainfall and positively with rainfall during the interval rainy season that imme-
diately precedes plague transmission season [3]. Increased rainfall may increase primary pro-
duction, which may, in turn, increase rodent and flea abundance [2,4,5]. Increases in flea
abundance are predicted to increase the risk of a plague epizootic event [6].

In addition to flea abundance, flea-associated microbial communities may also contribute to
plague transmission. Yersinia pestis, the causative agent of plague, reduces the abundance of or
completely eliminates specific bacterial lineages within fleas [7], and exposing laboratory-
reared fleas to diverse wild-type microbial communities increases transmission of Y. pestis [8].
Although determining the presence of particular lineages (e.g. Rickettsia spp., Bartonella spp.,
Yersinia pestis) in wild fleas has been routine, the characterization of entire bacterial communi-
ties of wild fleas has been limited [9,10]. The microbial compositions of two closely related
fleas (Oropsylla hirsuta vs. Oropsylla tuberculata cynomuris) and of two more distantly related
fleas (Orchopeas leucopus vs. Ctenophthalmus pseudagyrtes) were not found to differ [9,10].
However, flea-associated bacterial communities shifted drastically over three years in both spe-
cies of flea studied [10]. Shifts in microbial communities over time are often due to concomi-
tant shifts in environmental conditions [11-15], but environmental conditions have not
previously been explored in relation to insect-associated bacterial communities.

Symbionts of disease vectors may mediate the spread of disease through negative or positive
interactions with pathogens. Wolbachia-positive mosquitos have suppressed rates of infection
by dengue virus, Chikungunya virus, West Nile virus, and Plasmodium spp. [16-18], and intro-
ducing Wolbachia-positive mosquitos to a natural population has proven to be an effective
means to decrease the number of potential vectors of human disease [19]. The entire insect-
associated microbiome can also influence pathogen persistence; dengue virus titers in sterile
Aedes aegypti midguts are significantly higher than titers in A. aegypti with wildtype micro-
biomes [20]. These negative effects of vector-associated microbes on pathogens do not seem to
occur between flea-associated bacteria and Y. pestis: exposing ‘germ-free’ fleas to wildtype
microbes increases transmission of Y. pestis [8] and infecting wild fleas (with wild-type micro-
biomes) with Y. pestis eliminates specific bacterial lineages within fleas [7]. Flea-borne viruses
have yet to be studied, but interactions between viruses and Y. pestis may also alter the ability
of fleas to transmit Y. pestis and would be a novel research pursuit in the future.

In this study, we characterized the bacterial communities of six flea species collected from
nine species of rodents in March 2011 from ten sites in a plague-endemic area of Uganda. For
the two most abundant flea species, we analyzed additional samples collected in October and
December 2010. Due to our sampling strategy, we can test for the effects of rodent host, flea
species, site, environmental conditions, and time on flea-associated bacterial communities.

Materials and Methods
Flea Samples

Field collection permits are not required in Uganda, but all protocols for this work were
reviewed and approved by the Uganda Virus Research Institute Science and Ethics Committee,
the Uganda National Council of Science and Technology, and the Uganda President’s Office.
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Table 1. Number of individual fleas analyzed from each flea species across three collection periods.

Site Ccc DI St Xb Xc Xn
Mar Mar Mar Oct Nov/Dec Mar Oct Nov/Dec Ma Mar
1 - - - - - - 2 4 7 -
2 - - - - - - 9 15 16 -
3 - - - - - - 13 10 14 -
4 - - - - - - 11 6 13 -
5 - - - - - - 8 8 17 7
6 - - - - - - 3 7 14 9
7 - - - - - 4 - - 1 -
8 - - - 9 7 12 - - - -
9 13 12 16 9 10 14 - - - -
10 - 4 - 2 9 16 - - - -
Total 13 16 16 20 26 46 46 50 82 16

Ccc: Ctenophthalmus calceatus cabirus, DI: Dinopsyllus lypusus, St: Stivalius torvus, Xb: Xenopsylla brasiliensis, Xc: Xenopsylla cheopis, Xn: Xenopsylla
nubica.
Oct: October, 2010; Nov/Dec: November/December, 2010; Mar: March, 2011.

doi:10.1371/journal.pone.0141057.t001

All research protocols involving animals (e.g. trapping animals to capture fleas) was also
approved by the Animal Care and Use Committee of the Division of Vector-Borne Disease at the
United States Centers for Disease Control and Prevention. Fleas were collected at three times
across ten sites in Uganda [21]. Briefly, Tomahawk and Sherman live traps were used, traps were
set at dusk and and retrieved the next morning, animals were released after sampling, and no ani-
mals died during trapping; for full details, please see the original publication that details flea and
rodent diversity across these sites [21]. The three collection times correspond to the peak of the
primary rainy season (October 2010), the dry season (November/December 2010), and the
beginning of the secondary rainy season (March 2011). We used a subset of these fleas to investi-
gate flea-associated bacterial communities. Xenopsylla brasiliensis and Xenopsylla cheopis were
examined from the three different collection periods; Ctenophthalmus calceatus cabirus, Dinop-
syllus lypusus, Stivalius torvus, and Xenopsylla nubica were examined from the March 2011 col-
lection (Table 1). Fleas analyzed in this study were collected from nine taxa of rodents: Aethomys
hindei, Arvicanthis niloticus, Crocidura spp., Lophuromys flavopunctatus, Lemniscomys striatus,
Mastomys spp., Rattus rattus, Taterillus emini, and Tatera valida (Table 2).

Fleas were stored in 70% ethanol upon collection. Prior to DNA extraction, individual fleas
were surface-sterilized by soaking in 10% bleach for 30 seconds and then washed twice with
100% ethanol. Surface-sterilized fleas were subjected to 20 minutes of mechanical lysis using a
Retsch MM301 homogenizer, and then DNA was extracted using the MO BIO PowerSoil-htp
96 Well Soil DNA Isolation Kit (Carlsbad, CA) with the standard protocol.

DNA Sequencing

We amplified the V1 and V2 hypervariable regions of the 16S rRNA gene using previously
described primers: the forward primer (5°-GCCTTGCCAGCCCGCTCAGTCAGAGTTTGA
TCCTGGCTCAG-3’) contains the 16S rRNA gene 27f primer, the 454 Life Sciences primer B
sequence, and a two-base “TC’ linker; the reverse primer (5'-GCCTCCCTCGCGCCATCAG
NNNNNNNNNNNNCATGC TGCCTCCCGTAGGAGT-3') contains a 12 bp error-correct-
ing barcode, the 16S rRNA gene 338r primer, the Life Sciences primer A sequence, and a
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Table 2. Distribution of fleas across mammalian hosts.

Host Ccc
A. hindei
A. niloticus 9

Crocidura spp.

L. flavopunctatus

L. striatus

Mastomys spp. 4
R. rattus

T. emini

T. valida

Total 13

DI St Xb Xc Xn
8
12 37 72
1 15 3 8

1
3
8 15
44 75
2
14
16 16 92 178 16

Fleas: Ccc: Ctenophthalmus calceatus cabirus, DI: Dinopsyllus lypusus, St: Stivalius torvus, Xb: Xenopsylla brasiliensis, Xc: Xenopsylla cheopis, Xn:

Xenopsylla nubica.

Hosts: A. hindei: Aethomys hindei; A. niloticus: Arvicanthis niloticus; Crocidura spp.: Crocidura species; L. flavopunctatus: Lophuromys flavopunctatus; L.
striatus: Lemniscomys striatus; M. natalensis: Mastomys species; R. rattus: Rattus rattus; T. emini: Taterillus emini; T. valida: Tatera valida.

DNA Extractions.

doi:10.1371/journal.pone.0141057.t002

two-base ‘CA’ linker [22]. We amplified the DNA samples using the following conditions: Ini-
tial denaturation at 94°C for 5 min; then 35 cycles of 94°C for 45s, 50°C for 30s, 72°C for 90s;
with a final extension at 72°C for 10 min. Each amplification was performed in triplicate and
PCR products from the three independent reactions were combined and cleaned using the MO
BIO UltraClean-htp 96 Well PCR Clean-Up Kit (Carlsbad, CA). The concentration of each
sample was estimated using the Quant-iT PicoGreen dsDNA Assay Kit (Life Technologies,
Carlsbad, CA). Normalized and cleaned bar-tagged PCR products were combined into a single
sample and sent to EnGenCore (Columbia, SC) for DNA sequencing on a Roche Genome
Sequencer FLX using Titanium reagents.

Sequence Analysis

We analyzed DNA sequence data using QIIME v1.8 [23]. Sequences were assigned to their flea
sample based on unique barcodes and were filtered using QIIME’s default quality settings.
Sequences were truncated to 280 basepairs and Operational Taxonomic Units (OTUs) were
selected using the uclust algorithm and a 97% sequence similarity threshold [24]. The most
abundant sequence within an OTU was chosen as its representative sequence, and representa-
tive sequences were aligned using PyNAST [25]. Aligned sequences were filtered against the
greengenes core set alignment and screened for chimeras using ChimeraSlayer and chimeric
sequences were removed from the dataset. DNA sequences representing less than 0.005% of all
sequences were removed from the dataset. Flea samples with less than 300 DNA sequences
were removed from the dataset. The final dataset included 660,345 DNA sequences from 332
fleas (range: 305-4279 DNA sequences per flea). These DNA sequences were binned into 421
OTUs (Accession #’s: KI'589425 -KT589833). We assigned taxonomic classifications to the
OTUs based on the RDP database, as implemented within QIIME. We estimated a phylogeny
of the OTUs using FastTree [26].

Alpha Diversity

Alpha diversity is a measure of diversity at a local scale [27]; here it refers to the amount of bac-
terial diversity found within an individual flea. We used flea samples represented by at least
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1,000 DNA sequences (n = 282) to estimate alpha diversity. We rarefied the dataset to 1,000
(i.e. 1000 DNA sequences were randomly chosen from each flea sample). From this rarefied
dataset, alpha diversity was estimated in two ways using QIIME v1.8: observed species and
phylodiversity. Observed species is simply the number of unique OTUs represented in each
sample. Phylodiversity is a phylogenetic alpha diversity metric and represents the sum of
branch lengths represented by a single community given a phylogenetic tree constructed using
all potential community members [28].

Beta Diversity

For beta diversity measurements, we rarefied the dataset to 300 (i.e. 300 DNA sequences were
randomly chosen from each flea sample). Pairwise dissimilarity matrices were created in three
ways using QIIME v1.8: Bray-Curtis, UniFrac, and Weighted UniFrac [29-31]. These metrics
differ in how they assess community membership: the Bray-Curtis distance uses bacterial OTU
presence and abundance to compare communities, but does not account for phylogenetic relat-
edness of the OTUs; UniFrac is a measure of shared phylogenetic diversity, as assessed by
shared branch lengths between the communities; Weighted UniFrac is similar to UniFrac but
also accounts for the relative abundance of OTUs. Each of these metrics provides dissimilarity
values between individual communities with the value ranging from 0 (exact same communi-
ties in both samples) to 1 (no overlap in community membership). The effects of flea species,
site, host, and elevation on bacterial community composition across all samples were tested
using an Analysis of Similarity as implemented in QIIME v1.8. Likewise, we used an Analysis
of Similarity to test the effects of host, site, collection date, and flea sex on bacterial community
composition within flea species. We also tested the effects of environmental conditions

on bacterial community composition. We used Euclidean distances to create pairwise dissimi-
larity matrices of elevation, mean annual precipitation, average monthly precipitation, and
average monthly temperature for each sample. Each pairwise dissimilarity matrix for each
environmental variable was compared individually to the bacterial community dissimilarity
matrices using a Mantel test implemented in QIIME v1.8. Environmental conditions were pre-
viously described [21]. Finally, principal coordinates of the bacterial community dissimilarity
matrices were created and used to generate 2-dimensional plots based on flea species.

Results

A total of 660,345 DNA sequences were grouped into 421 OTUs based on 97% sequence simi-
larity. The vast majority of bacteria within the six flea species belonged to four bacterial phyla:
Actinobacteria, Bacteroidetes, Firmicutes, and Proteobacteria (Fig 1). Within C. calceatus
cabirus, a Spiroplasma species was also common (Table 3).

Of the 421 OTUs detected, only 12 represented at least 1% of bacteria detected across all flea
species, on average (Table 3). The most common and widespread OTU was a lineage within
the Bartonella genus, and the next four most common lineages were those related to known
endosymbionts (e.g. Wolbachia, Cardinium). Besides the most common Bartonella lineage and
the most common Wolbachia lineage, most of the common lineages tended to be dominant
community members within one flea species but rare community members in other flea spe-
cies. Three lineages within the Pasteurellaceae were abundant in one species, but rare or absent
in other species (Table 3).

The observed number of OTUs within fleas ranged from 8.1, on average, in S. torvus females
to 36.9, on average, in X. cheopis males (Fig 2A). Females had significantly less observed OTUs
than males in D. lypusus, S. torvus, and X. cheopis. The phylodiversity ranged from 1.36%, on
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Fig 1. Average relative abundances of bacterial phyla within flea species. Proteobacteria were further divided based on Class: Alphaproteobacteria,
Betaproteobacteria, and Gammaproteobacteria. Ccc: Ctenophthalmus calceatus cabirus, DI: Dinopsyllus lypusus, St: Stivalius torvus, Xb: Xenopsylla
brasiliensis, Xc: Xenopsylla cheopis, Xn: Xenopsylla nubica. Xenopsylla nubica were not sexed.

doi:10.1371/journal.pone.0141057.g001

average, in female S. forvus to 4.65%, on average, in male X. cheopis (Fig 2B). Females had sig-
nificantly less phylodiversity than males in D. lypusus, S. torvus, X. brasiliensis, and X. cheopis.

Table 3. Average relative abundances of most common bacterial OTUs detected in Ugandan fleas.

Taxonomic Classification = BLAST Ccc(f) Ccc(m) DI (f) DI (m) St (f) St(m) Xb(f) Xb(m) Xc(f) Xc(m) Xn

(# individuals) % (5) (8) (8) (8) (7) 9) (40) (35) (89) (84) (16)

Bartonella sp. 99 7.4% 23.8% 35.6% 19.7% 83% 58.7% 1.2% 1.0% 3.0% 3.6% 49.5%
Wolbachia sp. 98 1.7% 1.1% 23.7% 13.0%  9.3% 1.1%  35.8% 5.9% 69.4% 16.1% 4.0%
Wolbachia sp. 98 24.8% 10.5% 0.0% 04% 714%  0.3% 0.0% 0.5% 0.0% 0.0% 0.0%
Lariskella sp.* 100 3.6% 4.2% 35.9% 54.0% 0.0% 1.4% 0.0% 0.0% 0.8% 0.0% 0.0%
Cardinium sp. 99 0.1% 0.2% 0.0% 0.0% 0.0% 04%  34.8% 36.8% 1.0% 0.1% 0.0%
Spiroplasma sp.* 99 26.3% 29.7% 0.0% 0.1% 0.0% 0.2% 0.0% 0.0% 0.0% 0.0% 0.0%
Bartonella sp.* 100 0.5% 7.3% 0.0% 0.0% 34% 221%  0.0% 0.0% 0.8% 0.0% 0.0%
Pasteurellaceae (family) 90 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 101% 21.1% 0.0% 0.0% 0.0%
Pasteurellaceae (family) 96 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.8% 0.5% 4.9% 21.1% 1.7%
Betaproteobacteria (class) 93 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 1.7% 0.3% 1.0% 21.3% 4.5%
Propionibacterium acnes 100 3.8% 0.8% 0.1% 0.5% 0.1% 0.4% 3.3% 5.0% 1.8% 3.1% 1.7%
Pasteurellaceae (family) 95 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.1% 0.2% 15.4%

Ccc: Ctenophthalmus calceatus cabirus, DI: Dinopsyllus lypusus, St: Stivalius torvus, Xb: Xenopsylla brasiliensis, Xc: Xenopsylla cheopis, Xn: Xenopsylla
nubica. Taxonomy of bacterial DNA sequences was determined using the Ribosomal Database Project classification scheme.
*: The taxonomy of DNA sequence was further classified using BLAST against GenBank’s nucleotide database.

doi:10.1371/journal.pone.0141057.1003
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Fig 2. Estimates of alpha diversity for flea-associated bacterial communities. Alpha diversity was
measured as the total number of observed OTUs detected in a subset of 1000 randomly chosen sequences
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from a sample (A) and as phylodiversity of bacteria within a sample (B). Diversity did not significantly differ
between males and females of C. c. cabirus and sex was not determined for X. nubica. The number of
observed species did not significantly differ in X. brasiliensis. In all other comparisons, male fleas harbored
significantly more diversity based on student’s t-tests. Ccc: Ctenophthalmus calceatus cabirus, DI:
Dinopsyllus lypusus, St: Stivalius torvus, Xb: Xenopsylla brasiliensis, Xc: Xenopsylla cheopis, Xn: Xenopsylla
nubica.

doi:10.1371/journal.pone.0141057.g002

The flea species had a large and significant effect on the bacterial community (Fig 3;

Table 4); site, rodent host, and elevation (above 1,300m vs. below 1,300m) also varied signifi-
cantly with community composition when all samples were analyzed simultaneously (Table 4).
The effects of host, site, collection date, and sex on bacterial communities within flea species
varied depending on the flea species, the factor analyzed, and the metric used to compare com-
munities (Table 5). The effect of sex was widespread across different flea species with males
and females having different bacterial communities in D. lypusus (UniFrac only), S. torvus, X.
brasiliensis, and X. cheopis. Host, site, and collection date also significantly affected bacterial
communities in Xenopsylla species, depending on the metric used to compare communities
(Table 5).

Elevation, mean annual precipitation, and average monthly temperature significantly co-
varied with bacterial community composition across all samples (Table 6). Within X. cheopis,
bacterial communities co-varied with elevation, mean annual precipitation, and average
monthly temperature; within X. brasiliensis, bacterial communities co-varied with average
monthly precipitation (Table 6).

Discussion

Bacterial lineages within Actinobacteria, Bacteroidetes, Firmicutes, and Proteobacteria domi-
nated community membership of the six flea species examined in this study (Fig 1). These

A) Bray-Curtis Dissimilarity B) Weighted UniFrac Dissimilarity
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Fig 3. Principal coordinate analysis (PCoA) of flea-associated bacterial communities based on flea species. PCoA was performed based on Bray-
Curtis dissimilarities (A) and on weighted UniFrac distances (B). The percentage of variation explained by axes one and two are presented in parentheses.
Green: Ctenophthalmus calceatus cabirus, Purple: Dinopsyllus lypusus, Yellow: Stivalius torvus, Blue: Xenopsylla brasiliensis, Red: Xenopsylla cheopis,
Orange: Xenopsylla nubica.

doi:10.1371/journal.pone.0141057.9003
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Table 4. Analysis of Similarity of bacterial communities (All Samples).

Bray-Curtis
UniFrac
Weighted UniFrac

R

0.601
0.343
0.458

p-value

0.001
0.001
0.001

R

0.237
0.151
0.105

Site

p-value
0.001
0.001
0.001

R

0.110
0.106
0.110

Host

p-value
0.001
0.001
0.001

*: Elevation was categorized as above 1300 meters (plague positive) and below 1300 meters (plague negative).

doi:10.1371/journal.pone.0141057.1004

Elevation*

R p-value
0.420 0.001
0.245 0.001
0.278 0.001

same bacterial phyla have repeatedly been shown to dominate bacterial communities in previ-
ous studies of fleas [9,10], other disease vectors [9,32-35], a wide diversity of insects [36-38],
and animals in general [39-41]. It is worth nothing that no primer pair will detect all bacteria

and that primer choice will always affect detection of bacterial lineages, but the region analyzed
here has low non-coverage rates for most phyla (exceptions include Aquificae, Armatimona-

detes, Chlamydiae, Planctomycetes, and Verrucomicrobia; these lineages are not common

members of insect-associated bacterial communities) [42].
Many of the most common lineages detected are related to known symbionts previously
detected in fleas (e.g. Bartonella spp. [43-45], Cardinium sp. [46], Wolbachia spp. [44,47-49],
Spiroplasma spp. [46,50,51], Lariskella sp. [52]). However, some lineages commonly detected

in this study are not related to known insect symbionts. Three of the most common lineages
were within the Pasteurellaceae family and were abundant within a single flea species but rare

Table 5. Analysis of Similarity of bacterial communities (Within Flea Species).

Bray-Curtis
C. cabirus
D. lypusus
S. torvus
X. brasiliensis
X. cheopis
X. nubica

UniFrac

C. cabirus
D. lypusus
S. torvus
X. brasiliensis
X. cheopis
X. nubica
Weighted UniFrac
C. cabirus
D. lypusus
S. torvus
X. brasiliensis
X. cheopis
X. nubica

-0.25
-0.12
0.07
0.05
0.28

-0.09
-0.21
0.17
0.08
0.30

-0.11
-0.06
0.11

0.08
0.10

doi:10.1371/journal.pone.0141057.1005

p-value

0.985
0.799
0.039
0.021
0.182

0.742
0.911
0.001
0.004
0.086

0.805
0.612
0.002
0.009
0.209

-0.06

0.10
0.12
0.09

-0.06

0.05

0.06

0.28

-0.09

0.11

0.10
0.00

Site

p-value

0.632

0.002
0.001
0.232

0.618

0.23

0.001

0.019

0.774

0.002

0.001
0.428

0.19
0.00

0.09
0.05

0.20
-0.02

Date

p-value

0.001
0.388

0.017
0.004

0.001
0.821

Sex
R p-value
-0.17 0.918
0.04 0.253
0.75 0.001
0.15 0.001
0.44 0.001
0.02 0.309
0.16 0.038
0.39 0.007
0.08 0.003
0.21 0.001
-0.10 0.818
0.03 0.263
0.74 0.001
0.06 0.012
0.28 0.001
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Table 6. Mantel Tests comparing bacterial community structure to environmental parameters.

Elevation MAP Precipitation Temp (avg)
R p-value R p-value R p-value R p-value
Bray-Curtis
All samples 0.28 0.001 0.20 0.001 -0.02 0.337 0.16 0.001
X. brasiliensis 0.01 0.842 0.05 0.087 0.14 0.001 0.08 0.021
X. cheopis 0.12 0.001 0.15 0.001 0.00 0.978 0.08 0.001
UniFrac
All samples 0.19 0.001 0.12 0.001 -0.01 0.712 0.07 0.001
X. brasiliensis -0.01 0.750 0.04 0.273 0.06 0.191 0.10 0.003
X. cheopis 0.00 0.965 -0.04 0.104 0.00 0.968 -0.02 0.503
Weighted UniFrac
All samples 0.17 0.001 0.11 0.001 -0.04 0.123 0.11 0.001
X. brasiliensis 0.01 0.759 0.05 0.096 0.15 0.003 0.10 0.009
X. cheopis 0.12 0.002 0.15 0.001 -0.01 0.784 0.07 0.036

MAP: Mean Annual Precipitation, Precipitation: Average monthly precipitation.

doi:10.1371/journal.pone.0141057.1006

or non-existent in other flea species (Table 3). This pattern suggests species-specific symbiosis
between the flea species and its corresponding Pasteurellaceae lineage. While this is common
with certain groups of bacteria (e.g. Rickettsiales, Bacteroidetes), this species-specific relation-
ship has not been seen previously within the Pasteurellaceae. The Pasteurellaceae lineages dis-
covered here share only 90-95% sequence similarity with other previously sequenced bacteria,
suggesting that the lineages discovered here represent new lineages of insect-associated bacte-
rial symbionts.

Flea species had the greatest effect on bacterial community composition (Table 4; Fig 3).
This supports previous work that demonstrated a substantial effect of insect host taxonomy on
bacterial community composition [36,37]. However, our results differ from previous research
on flea-associated bacterial communities that found no differences in bacterial communities
between flea species [9,10]. Here, Wolbachia spp. and Bartonella spp. were commonly found in
different flea species, but each flea species also harbored a unique bacterial lineage (Table 3).
These lineages unique to specific flea species are likely responsible for the effect of flea species
on community composition (Table 4).

To our knowledge, this is the first study to assess environmental effects on insect-associated
bacterial communities. We were able to compare flea-associated bacterial communities to envi-
ronmental variables such as temperature, precipitation, and elevation (Table 6). Elevation,
mean annual precipitation, and mean monthly temperature all co-varied significantly with bac-
terial community composition when using all flea samples (Table 6). This is result is somewhat
driven by non-random distribution of flea species across sites (Table 1) and the strong effect of
flea species on bacterial community composition (Table 4). Nevertheless, significant effects of
elevation, mean annual precipitation, and temperature are also found within X. cheopis, sug-
gesting that environmental effects may contribute to bacterial community composition. The
environmental effects are rather weak, however, and this is somewhat surprising because out-
breaks of Y. pestis are often attributed to environmental change [3,5,53-55].

Bacterial communities of X. brasiliensis and X. cheopis changed slightly across the collection
periods. A previous study of flea-associated bacteria found communities to vary substantially
across time [10], but that study compared bacterial communities collected three years apart
whereas this study spans only six months. It is becoming increasingly clear that although insect
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species harbor unique symbionts within an insect population, the dominant symbionts within
a population shift across time and among populations. For example, here a common symbiont
of D. lypusus was a Lariskella sp. (Table 3), which has previously been detected in X. cheopis
and a variety of stinkbugs [52]; here it was rarely detected in X. cheopis, demonstrating both its
ability to colonize different insect hosts and its variability of prevalence across populations.
This pattern is seen across many insect-associated bacteria and is likely due to a combination
of stochastic effects and fitness benefits for the insect of particular insect-bacteria associations.
If these symbionts interact with pathogens such as Y. pestis, their presence or absence may
alter the likelihood of successful plague transmission and their variable prevalence across flea-
subpopulations may contribute to the patchy distribution in both time and space of plague
epizootics.
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