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Abstract
Metabolic disorders, like diabetes and obesity, are pathogenic outcomes of imbalance in

glucose metabolism. Nutrient excess and mitochondrial imbalance are implicated in dys-

functional glucose metabolism with age. We used conplastic mouse strains with defined

mitochondrial DNA (mtDNA) mutations on a common nuclear genomic background, and

administered a high-fat diet up to 18 months of age. The conplastic mouse strain B6-mtFVB,

with a mutation in themt-Atp8 gene, conferred β-cell dysfunction and impaired glucose tol-

erance after high-fat diet. To our surprise, despite of this functional deficit, blood glucose

levels adapted to perturbations with age. Blood glucose levels were particularly sensitive to

perturbations at the early age of 3 to 6 months. Overall the dynamics consisted of a peak

between 3–6 months followed by adaptation by 12 months of age. With the help of mathe-

matical modeling we delineate how body weight, insulin and leptin regulate this non-linear

blood glucose dynamics. The model predicted a second rise in glucose between 15 and 21

months, which could be experimentally confirmed as a secondary peak. We therefore

hypothesize that these two peaks correspond to two sensitive periods of life, where pertur-

bations to the basal metabolism can mark the system for vulnerability to pathologies at later

age. Further mathematical modeling may perspectively allow the design of targeted periods

for therapeutic interventions and could predict effects on weight loss and insulin levels

under conditions of pre-diabetic obesity.
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Introduction
Metabolic disorders, like diabetes and obesity, are pathogenic outcomes of metabolic imbalance
in glucose metabolism [1]. Imbalance in glucose metabolism can arise from a complex set of
factors including genetic predisposition, nutrient excess and the ability of the body to deal with
nutrient excess. The body’s ability to deal with excess nutrients involves direct adjustments in
energy intake and expenditure pathways, along with the modulation in mitochondrial capac-
ity/efficiency to generate ATP [2]. Mitochondria house their own genome (mtDNA), which
can accumulate point mutations in an age-dependent manner in humans [3]. Conplastic
mouse strains, with the nuclear genome of one strain and the mitochondrial genome of
another, are valuable models to study the role of mitochondrial mutations [4,5]. To gain better
insights into the impact of nutrient excess on the pathophysiology of disease with age, we
administered a high-fat diet to conplastic mouse strains for 12 months. Conplastic mouse
strains were generated by crossing mitochondrial genomes of common inbred strains on the
popular B6 background. The conplastic mouse strain B6-mtFVB, has a stable mutation inmt-
Atp8 gene, found in mitochondrial ATPsynthase complex. A B6-mtAKR strain was used as a
control strain, which just differs for this Atp8 polymorphism from the B6-mtFVB mtDNA
sequence [6]. Fig 1 illustrates the experimental setup.

High-fat diet administration in the B6-mtFVB strain, with compromised mitochondria, con-
ferred β-cell dysfunction and impaired glucose tolerance in comparison to the B6-mtAKR con-
trol strain [7]. Despite of these functional deficits, the blood glucose levels, unexpectedly,
showed sensitivity to high-fat diet only during early age, followed by an adaptation. In order to
understand this non-linear blood glucose dynamics, we further studied the effect of a 12 month
long high-fat diet (HFD) administration on further key regulators of metabolism and subjected
the data to mathematical modeling.

Fig 2 shows the network of key regulators, operating at several organ levels, in controlling
the glucose homeostasis. Glucose homeostasis induced by high-fat diet, involves various pro-
cesses taking place at different organ levels, including the brain, liver, pancreas and adipose tis-
sues. While liver and pancreas play a central role in glucose metabolism, the adipose tissue is
specialized in storing glucose as fat [8]. Additionally, the brain, is able to observe excessive
energy signals to modulate glucose and energy homeostasis [9]. Over nutrition leads to a meta-
bolic state characterized by a strongly elevated energy intake, which exceeds energy expendi-
ture. This situation results in accelerated fat mass buildup, which induces rise in leptin levels
[10]. Leptin is circulating in blood in proportion to body fat mass [11]. The brain senses the
excess fat mass through changes in leptin levels. The primary role of leptin is as negative feed-
back regulator of diet-induced energy levels. Accumulating evidences have established an anal-
ogous role of insulin in diet-induced energy homeostasis [10]. Also, insulin and leptin have
been found to share several intracellular and neuronal signaling pathways [12] Based on this
knowledge, we model insulin and leptin as redundant pathways, which signal brain to suppress
hunger in response to increased fat, while simultaneously increasing energy expenditure by
other tissues. Serum insulin is induced by increase in fat mass as well as directly regulated by
blood glucose levels [13]. Additionally, we assume a positive feedback between insulin and lep-
tin, based on the studies that insulin positively regulates the leptin levels [14,15,16,17] and that
leptin positively regulates insulin levels [18,16,19] (Fig 2).

Several models dealing with glucose homeostasis at the molecular level have been discussed
in reviews [20,21,22,23,8]. There are several theoretical models at the physiological level on the
effect of diet on energy balance and body weight dynamics [24,25,26,27,28,29]. Few models of
body weight dynamics are calibrated from experimental data [30,31] and clinical data [32].
There is also a theoretical model dissecting the oscillatory property of weight loss and regain
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during dieting [33]. Despite of glucose homeostasis being so crucial in regulating long-term
changes like body weight dynamics and insulin dynamics at the similar timescale, there are no
extensive experimental studies focusing on long-term changes in glucose homeostasis within
the scale of months available, nor are there models focusing on the mechanism underlying fat-
induced glucose homeostasis. We here develop such a model of glucose homeostasis at the
whole-body level, predicting the response to high-fat diet administration.

Materials and Methods

Conplastic mice
Conplastic C57BL/6N-mtFVB/NJ (B6-mtFVB) and C57BL/6N-mtAKR/J (B6-mtAKR) were gen-
erated as described previously [4,6]. All mouse strains were housed at the central animal care

Fig 1. Experimental setup. The conplastic mouse strains B6-mtFVB (Atp8mutation) and B6-mtAKR (control) received high-fat diet (60% calories from fat)
(HFD) or control diet (CD) (10% calories from fat) for up to 18 months months after weaning. Body weight and blood glucose levels were measured monthly.
Serum leptin and serum insulin levels were monitored till 18 months in an interval of 3 months.

doi:10.1371/journal.pone.0140858.g001
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facility of the Medical Faculty, University of Rostock, receiving conventional rodent chow
(SSNIFF, Soest, Germany) and water ad libitum. The colonies were regularly monitored for
murine pathogens according to The Federation of European Laboratory Animal Science Asso-
ciations (FELASA) recommendations. All procedures of this study were performed according
to the guidelines for the care and use of laboratory animals, and were approved and supervised
by the Landesamt für Landwirtschaft, Lebensmittelsicherheit und Fischerei Mecklenburg-Vor-
pommern (LALLF) (Approval No. 7221.3–1.1-059/12).

High-fat diet feeding
Metabolic stress was induced feeding high-fat diet (HFD) (60% of the kcal as fat, Altromin,
Lage, Germany) or control diet (10% of the kcal as fat, Altromin, Lage, Germany) for up to 18
months starting after weaning [34]. For HFD protein content was 21.3%, carbohydrate content
was: monosaccharide 8.7%, disaccharides 18.94%, and polysaccharides 6.23%. Crude fat was
34% and metabolic energy content was 5017.105 kcal/kg. For control diet protein content was
21.1% and carbohydrate content was: monosaccharaides 2.6%, disaccharides 13% and polysac-
charides 14.3%. Crude fat was 4% and metabolic energy content was 3493.98 kcal/kg. The ani-
mals were kept in cohorts of 4 animals/cage and had access to food and water ad libitum. 16–
20 animals per strain and diet were continuously monitored for body weight and blood glucose.
8–11 animals per strain and diet were used for the leptin and insulin measurement.

Fig 2. Model for diet-induced long-term glucosemetabolism. Blood glucose levels (G) and body weight
(BW) are regulated by overall energy balance of the body, which is defined by energy intake (Ein) (a) and
-expenditure (Eout) (b). Ein depends on diet and demand for food intake (FI) (c1). FI is negatively regulated by
elevated insulin (Is) and leptin (Ls) levels. Eout is determined by BW (d) and increased energy expenditure, via
Is and Ls, forming a delayed-negative-feedback loop (c2). When Ein is in excess, BW and fat mass (FM)
increase. Increased fat mass induces the secretion of both Is and Ls (e). Is levels are also linearly regulated by
G (h). Ls and Is also coregulate each other in a positive-feedback loop manner (f), (g).

doi:10.1371/journal.pone.0140858.g002
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Measurements
Blood glucose concentrations and body weight were examined every second week and
monthly. Blood glucose was determined by glucose oxidase method (Freestyle™, Abbott, Wies-
baden, Germany). Serum samples were taken from 4–6 hours fasted animals for analysis of
insulin and leptin concentrations at the age of 3–18 months. Serum insulin levels were quanti-
fied using an ultra sensitive mouse insulin ELISA kit following the manufacturer´s instructions
(Mercodia, Uppsala, Sweden).

Leptin ELISA Serum leptin levels were quantified using the Quantikine Mouse Leptin
ELISA kit following the manufacturer´s guidelines (R&D Systems, Abingdon, UK).

Statistical analyses
All quantitative data are presented as mean values ±SEM (standard error of the mean). Com-
parisons between multiple groups were analyzed using one-way ANOVA and Sidak post-test.
Comparisons between two different groups were analyzed using Student´s t-test. If p<0.05 the
differences were considered statistically significant. All calculations were done using the
GraphPad Prism program (GraphPad Inc., San Diego, CA).

Mathematical model
A phenomenological model was generated (Fig 2) using the whole-body data at the physiologi-
cal level (Fig 1). The phenomenological modeling approach allows merging of various pro-
cesses taking place at different organ levels, including brain, liver, pancreas and adipose tissues.
The model is based on overall energy balance of the body, which is regulated by neurocentric
sensing of fat-mass accumulation via insulin and leptin.

Major model assumptions:

• The model only considers time-scales of weeks and months to monitor the metabolic changes
related to weight gain during ageing. Events that occur on shorter time scales like food intake,
absorption and corresponding changes in glucose levels, insulin levels, leptin levels, pulsatile
insulin release from pancreas and gene expression changes are assumed to be instantaneous
and continuous as demonstrated by other models at the similar level of abstraction [35].

• Mode of induction of insulin is similar to fat-mass-dependent mode of induction of leptin,
based on several findings suggesting insulin to be an adiposity signal, reviewed in [12]. Also,
mode of action of insulin in the brain and in other peripheral tissues regulating energy intake
and energy expenditure is assumed to be similar to mode of action of leptin for the sake of
simplicity.

• Peripheral anabolic effect of insulin is ignored, since the concerning data did not add any
explanatory power to the adapting blood-glucose dynamics.

• Clearance of insulin by liver and periphery is assumed to be linear for the sake of simplicity.

• Energy spent in physical activity is negligible, since animals are kept under constant environ-
mental condition without any physical challenge.

• Since serum leptin and insulin concentrations are typically much higher than leptin and
insulin concentrations in the brain, loss of leptin and insulin, which is taken up into the
brain, is not accounted for in the leptin and insulin levels in the serum.

• Any increase in β-cell size is ignored, such that increased β-cell mass only corresponds to
increased β-cell numbers. Thus, an increase in β-cell mass is proportional to increase in β-
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cell numbers via proliferation. We assume a logistic increase of β-cell population, since logis-
tic models are biologically reasonable in representing population growth [36].

• Low-grade inflammation is marked by an increase in adipose tissue macrophage population.
We assume that the increase in macrophage population is proportional to changes in IL-6
levels, based on the evidence that, adipose tissue macrophages participate in pro-inflamma-
tory pathways accounting for significant amount of IL-6 expression [37]. We model the
dynamics of macrophage population by assuming logistic increase in the population.

The changes in blood glucose levels in the time scale of body weight change can be deter-
mined from changes in overall energy balance. The model is composed of the following four
differential equations:

Model Equations

d½G�
dt

¼ sdiet � kins � ð½Ein� � ½Eout�Þ � k16 � ½G� ð1Þ

d½FM�
dt

¼ sdiet �
½Ein� � ½Eout�

rfat

ð2Þ

d½Ls�
dt

¼ k8 � ½FM� þ k9 � ½Is� � k10 � ½Ls� ð3Þ

d½Is�
dt

¼ k11 � ½G�2 þ k12½FM� þ k13 � ½Ls� � k14 � ½Is� ð4Þ

where,

½Ein� ¼ sfood � ½FI�

½FI� ¼ k4 � 1� ½Lbrain�
k5ml þ ½Lbrain�

� �
þ 1� ½Ibrain�

k5mi þ ½Ibrain�
� �� �

½Eout� ¼ k6 � ½BW� � 1þ k7l � ½Lbrain�
k7m þ ½Lbrain�

þ k7i � ½Ibrain�
k7m þ ½Ibrain�

� �

½Lbrain� ¼ k1 �
Ls

k2 þ Ls

þ k3 � Ls

½Ibrain� ¼ k1 �
Is

k2 þ Is
þ k3 � Is

FI is food intake. σdiet scales the satiety coefficient based on the type of diet administered
(CD or HFD), where, kins is the parameter for fat mass-independent regulation of glucose by
insulin, σfat is the energy density of fat, σfood is the metabolizable energy content of food and k4
is the parameter for maximum food intake value. Values for each parameter used in this model
are listed in Table 1. Detailed derivations of model equations and parameters are available in
Supplemental Data (S1 File).
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Results

Blood glucose response and its key regulators
Blood glucose levels responded strongly to HFD administration in the early-age till 6 months, fol-
lowed by adaptation, in both B6-mtFVB and B6-mtAKR strains (Fig 3A). Serum insulin levels were
drastically reduced in B6-mtFVB strains under control diet (CD), suggesting impairment of insulin
secretion due to mutation in themt-Atp8 gene, which encodes a protein exhibiting ATPase activ-
ity. High-fat diet administration to B6-mtFVB mice, induced compensatory increase in insulin
secretion (Fig 3B), by increasing the proliferation of insulin secreting β-cells, as suggested by our
previous work [7]. Leptin levels in HFD fed B6-mtFVB and B6-mtAKR strains had a considerably
earlier onset and sustained higher levels in the late age (Fig 3C). Body weight increased with age
in HFD fed mice over 12 months (Fig 3D). Model simulations were in agreement with strong
effects of HFD during the early period of diet administration (Fig 3E). Leptin and insulin simula-
tions were also in accordance with experiments and showed considerably elevated levels in the
late age under high-fat diet scenario (Fig 3F and 3G). Simulation of body weight also agreed with
significantly increasing body weight for high-fat diet in comparison to control diet (Fig 3H). In
the following section we elaborate howmathematical modeling can help in explaining the essen-
tial role of fat-induced insulin and leptin, determining the observed early age strong response to
HFD, and revealing a second peak in glucose levels between 15 and 21 months.

Table 1. Model parameters.

Parameter Value Source

k1 1.42 [35]

k2 15.6 [35]

k3 0.00272 [35]

k4 0.275 Fitted

k5ml 1.1 Fitted

k5mi 1.1 Fitted

k6 0.0018 Fitted

k7l 0.6 Fitted

k7i 0.4 Fitted

k7m 0.22 Fitted

σdiet for CD 18.72 Fitted

σdiet for HFD 18.72*1.4 Fitted

σfat 9 [43]

kins 0.778 Fitted

k8 0.195 Fitted

k9 0.02 Fitted

k10 0.213 Fitted

k11 for B6-mtAKR 0.132 Fitted

k11 for B6-mtFVB 0.132*0.1 Fitted

k12 0.0001 Fitted

k13 0.0011 Fitted

k14 0.066 Fitted

k15 0.045 Fitted

rhf 10 Fitted

rcd 0.1 Fitted

a 0.31 Fitted

doi:10.1371/journal.pone.0140858.t001

Long-Term Glucose Homeostasis and Metabolic Dysfunction

PLOS ONE | DOI:10.1371/journal.pone.0140858 November 5, 2015 7 / 16



Insulin and leptin have strong regulatory effects on the blood glucose
response
In order to delineate the regulatory effects of insulin, leptin and body weight on the blood glu-
cose dynamics, we performed a sensitivity analysis by systematically varying the model

Fig 3. Time-courses of blood glucose, insulin, leptin and body weight in vivo and simulated. Blood glucose levels exhibited a characteristic two-peak
response irrespective of diet and strain. There was a significant effect of high-fat diet (solid lines) on blood glucose response at early time points (3, 6 months
of diet) in both control (B6-mtAKR in blue) and mutated (B6-mtFVB in red) strain, however with age the blood glucose levels adapted in all cases (A). Serum
insulin levels were significantly lower in mutated strain under control diet (B6-mtAKR, red dashed line), while high-fat diet administration compensated for this
lack of insulin by 6 months of age, which then remained elevated over 12 months of diet (red solid line) (B). Serum leptin levels were also significantly higher
for mice fed high-fat diet, which further remained elevated over 12 months of diet (solid lines) (C). Mice fed with a high-fat diet had a pronounced increase in
body weight (solid lines) throughout the 12 months of feeding compared to mice fed control diet (dashed lines) (D). Model simulations of respective blood
glucose levels (E), serum insulin levels (F), serum leptin levels (G) and body weight (H). Shown are means + SEM from n = 8–12 mice per strain and diet.

doi:10.1371/journal.pone.0140858.g003
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parameters over a 100-fold range (Figure C in S1 File). Both leptin (Fig 4A1) and insulin (Fig
4B1) were equally crucial in determining the overall blood glucose dynamics, when demand for
food intake (k5ml, k5mi) (Fig 4A2 and 4B2) was varied. Timing of the early age blood glucose
peak was strongly controlled by both leptin and insulin (Fig 4A3 and 4B3). However, leptin had
a stronger impact on blood glucose dynamics at a later age (Fig 5A1), compared to insulin (Fig
5B1), when energy expenditure via leptin and insulin (k7l, k7i) (Fig 5A2 and 5B2) was varied in
the same range. Amplitude of the blood glucose tail decreased more for leptin mediated energy
expenditure with the fold change in respective parameter (Fig 5A3), compared to insulin medi-
ated energy expenditure (Fig 5B3). Note that the simulations are performed for longer than 12
months of age.

Adaptation of blood glucose response with age
The conplastic mouse strain B6-mtFVB, carrying the mt-Atp8 mutation, confers β-cell dysfunc-
tion and impaired glucose tolerance after high-fat diet [7]. Despite such a functional deficit, the
glucose homeostasis to our surprise, started to adapt with age irrespective of strain and diet
(Fig 3). Mechanistic insights gained through the sensitivity analysis of the model suggest that
leptin and insulin together are important regulators not only in the determining the early age
peak of blood glucose levels but also influencing their later age dynamics (Figs 4 and 5). We
further asked how crosstalk between insulin and leptin plays a role towards adaptation of

Fig 4. Insulin and leptin strongly regulate the timing of blood glucose peak. Leptin (k5ml) and insulin (k5mi) mediated control of demand for food-intake
via Ein (A2, B2). Blood glucose response to 100-fold change in k5ml and k5mi (dashed lines) compared to default blood glucose response (bold line). Arrow
depicts the direction of fold-change increase in k5ml and k5mi (A1, B1,). Timing of the blood glucose peak is equally sensitive to fold change in respective leptin
and insulin parameters that determine demand for food intake (A3, B3).

doi:10.1371/journal.pone.0140858.g004
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blood glucose dynamics in the later age. We broke the redundancy of insulin and leptin path-
ways in the model by downregulating them alternatively, such that either insulin predominates
or leptin predominates the regulation at a time. Insulin and leptin downregulation was simu-
lated by putting their respective derivatives to zero. The blood glucose levels remained signifi-
cantly elevated at 12 months, compared to the default time-course (Fig 3A), for both insulin
downregulation (Fig 6A) and leptin downregulation (Fig 6B), implicating that the later age
adaptation of blood glucose levels is compromised (Fig 6). Thus, modeling results suggest that
redundancy of insulin and leptin pathways serves a survival advantage by ensuring that the
blood glucose levels adapt better with age to challenges like high-fat diet administration and
mitochondrial mt-Atp8 mutation.

Two sensitive periods in long-term glucose homeostasis
Simulations in Fig 5 suggest a second rise in blood glucose levels after 12 months of age when
both the leptin- and insulin-mediated delayed-negative-feedback parameters (k7l, k7i) are
increased 50-fold (Fig 5A1 and 5B1). We performed further experiments till later time points of
18 months and indeed observed a second minor peak of glucose at the later age between 15 and
21 months for both control as well as high-fat diet scenario (Fig 7A). This peak around 16.5
month could be statistically verified from experimental data (n = 8–12, p< 0.05 ANOVA plus
Sidak post test, comparing blood glucose levels between 12 and 18 months) (Fig 7A).

Fig 5. Leptin- and insulin-mediated negative-feedbacks control the blood glucose response. Insulin (k7i) and leptin (k7l) mediated negative-feedback
regulating energy expenditure via Eout (A2, B2). At the later age, leptin has a stronger impact on the blood glucose dynamics. Arrow depicts the direction of
fold-change increase in k7i and k7l (A1, B1,). Amplitude of the blood glucose tail is more strongly affected by leptin-mediated negative-feedback (k7l) compared
to insulin-mediated negative-feedback (k7i) (B3, A3). Sufficiently strong negative-feedback (e.g. 50 fold increase in k7l, and k7i) leads to a second rise in blood
glucose levels (A1 and B1).

doi:10.1371/journal.pone.0140858.g005
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We asked whether this second minor peak could be explained by the feedback loop architec-
ture of the model. Increase in energy expenditure comprises a negative feedback on fat-mass
accumulation, and can only be activated after sufficient levels of respective insulin and leptin
are present. This causes a delay in activating the negative feedback. Delayed-negative feedbacks
are the regulatory motifs, which are known to induce oscillations [38]. Oscillations in glucose
metabolism are well known at different timescales, like, pulsatile, dietary, ultradian. The model
topology involving a delayed negative feedback, suggested that secondary peak in blood glucose
levels could be an inherent oscillatory property at a longer timescale of body-weight induced
dynamics during aging. When the strength of both leptin and insulin mediated negative feed-
back (k7l, k7i) was increased (20 times for CD and 50 times for HFD), the model simulations
showed a second minor rise in blood glucose levels under control as well as high-fat diet sce-
nario (Fig 7B). However, at its present level of abstraction, the model does not represent the
timing and amplitude of the peaks exactly, but qualitatively explains the characteristic two
peak dynamics of the blood glucose response. In case of B6-mtFVB, insulin levels are greatly
influenced by increased β-cell mass proliferation. Since our focus is on body weight-induced
insulin and leptin, we do not discuss the B6-mtFVB strain for secondary peak in this work.
Taken together, the modeling insights suggested a two-peak blood glucose response, which was
confirmed by the experiments. The model explains this response to be an inherent oscillatory
character of the system, enabled by insulin- and leptin mediated delayed-negative-feedback
loop.

Discussion
An early age responsiveness of blood glucose levels to experimental perturbations followed
by an unexpected adaptation at the later age, had motivated us to perform mathematical
modeling to delineate the regulatory effects of insulin and leptin. Modeling provided insights
into how feedback regulations and cross talk among these pathways could shape the non-

Fig 6. Redundancy of insulin and leptin pathways allowsmore effective adaptation of blood glucose
response with age.Redundancy of insulin pathway and leptin pathway was removed by alternately
downregulating the insulin and leptin derivatives to zero. The blood glucose levels remained elevated at the
later age, indicating compromised adaptation, in all cases for both insulin downregulation (A) and leptin
downregulation (B).

doi:10.1371/journal.pone.0140858.g006
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linear blood glucose response. Model predictions led to further experiments, which con-
firmed the occurrence of a second minor peak, where again insulin- and leptin-mediated neg-
ative feedback was important. Insulin and leptin are the signals that directly restore the
energy balance through long-term glucose homeostasis. Both have been successfully used in

Fig 7. Two-peak blood glucose response. Prolonged feeding of HFD and CD till 18 months of age
confirmed the second minor peak in blood glucose levels between 15 to 21 months (A), which was predicted
by the second minor rise in the blood glucose simulations after 15 months. Simulations were performed by
50-fold increasing the insulin- and leptin-mediated delayed-negative-feedback (k7l, k7i) (B). Note that the
simulations depict normalized glucose values. Shown are means ±SEM from n = 8–12 mice per diet.
*p < 0.05 ANOVA plus Sidak’s post test comparing blood glucose levels frommonth 12–18.5 months (A).

doi:10.1371/journal.pone.0140858.g007
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therapeutic research for diabetes and obesity for decades [39,40]. Dissecting the regulation of
long-term glucose homeostasis via pathways involving both insulin and leptin would be criti-
cal to understanding progression of metabolic diseases. Only then can an effective therapeu-
tic intervention be designed. So far, both insulin and leptin therapies have their limitations,
especially when it comes to long-term administration [41,42]. However, there is a long way
before therapeutic interventions using both insulin and leptin can be designed. Meanwhile,
knowledge on combined leptin- and insulin-mediated regulation of glucose metabolism and
body weight should be refined through focused experiments. Easy monitoring and adminis-
tration of both insulin and leptin already reduces some experimental burden. Furthermore,
modeling methodologies should be improved to handle data in such a way that parameter
values can be estimated directly from experimental data to ensure a better physiological
interpretation.

The blood glucose response is sensitive to perturbation only in early age followed by an
adaptation. Despite this adaptation, high-fat diet administration in B6-mtFVB strain conferred
β-cell dysfunction and impaired glucose tolerance at the later age [7]. Mitochondrial dysfunc-
tion induced by mutation of the Atp8 protein within the ATP synthase resulted in a reduced
glucose responsiveness of insulin secretion and impaired glucose tolererance [7]. Concomi-
tantly, metabolic stress resulted in an adaptive increase of beta cell mass. B6-mtFVB mice were
prone to development of hepatosteatosis, continuous glucose intolerance ultimately shortening
the life span of the animals (F.K. manuscript in preparation). Interestingly, all mouse strains
showed insulin resistance after feeding a high fat diet. Thus, impaired insulin action appeared
not to be predictive for development of hepatosteatosis, beta cell mass regulation at the age> 6
months and ultimately also life span under conditions of obesity (F.K. manuscript in prepara-
tion). Overall our data and models support the accumulating evidence that metabolic changes
during early age can have marked modulating effects on health in later life. This concept
termed as metabolic programming, introduces limited, sensitive periods of early development
that could provide the initial trigger for increased susceptibility to the range of adverse symp-
toms that we associate with the metabolic syndrome [24]. Our experiments with extended life
period show two periods of sensitivity. One at the early age, complying with the known early
age sensitivity period, second one at a much later age of 15–18 months, which has not yet been
reported so far. A better understanding about regulation of the two sensitive periods of life
through insulin and leptin, could in future, support a better planning for a programmed thera-
peutic intervention towards healthy living. Despite of their limitations, such physiological
models could be an important first step, because diseases are manifested and diagnosed at the
physiological level where the whole body is involved.

Conclusion
The current study was conducted within the context of a much broader research to gain
insights into the dynamics of age related metabolic diseases like obesity and diabetes. We pre-
sented a whole-body model of long-term glucose homeostasis at physiological level. Modeling
provided insights into the insulin and leptin mediated regulation of two sensitive periods of
glucose homeostasis. The sensitive periods, where experimental perturbations have maximum
effects, can provide the initial trigger for increased susceptibility to metabolic diseases in the
later age. Further experiments using programmed insulin and leptin administration and moni-
toring, combined with planned diet regimes, can improve our understanding about progression
of metabolic diseases like obesity and diabetes. This could further help in designing therapeutic
interventions to assess weight-loss and insulin control regimes.
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