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Abstract

As pharmacodynamic drug-drug interactions (PD DDIs) could lead to severe adverse
effects in patients, it is important to identify potential PD DDlIs in drug development. The sig-
naling starting from drug targets is propagated through protein-protein interaction (PPI) net-
works. PD DDIs could occur by close interference on the same targets or within the same
pathways as well as distant interference through cross-talking pathways. However, most of
the previous approaches have considered only close interference by measuring distances
between drug targets or comparing target neighbors. We have applied a random walk with
restart algorithm to simulate signaling propagation from drug targets in order to capture the
possibility of their distant interference. Cross validation with DrugBank and Kyoto Encyclo-
pedia of Genes and Genomes DRUG shows that the proposed method outperforms the pre-
vious methods significantly. We also provide a web service with which PD DDls for drug
pairs can be analyzed at http://biosoft.kaist.ac.kr/targetrw.

Introduction

According to the Centers for Disease Control and Prevention, National Center for Health Sta-
tistics, from 1999-2000 to 2007-2008, the percentage of the US population taking two or more
prescription drugs increased from 25.4% to 31.2% [1]. In addition, the percentage taking five
or more prescription drugs increased from 6.3% to 10.7% [1]. Interestingly, in 2007-2008, less
than 10% of children under 12 years of age took two or more prescription drugs, and only 1%
took five or more prescription drugs [1]. On the other hand, in the same period more than 76%
of older Americans aged 60 and over took two or more prescription drugs and 37% took five or
more prescription drugs [1]. The survey results illustrate that more people take multiple medi-
cations with passing time and older people take more of them than younger people. One conse-
quence of the growing use of multiple prescription drugs is the potential for interaction
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between drugs, which can lead to serious side effects. In practice, critical drug-drug interactions
(DDIs) have resulted in the withdrawal of drugs from usage [2, 3]. For example, mibefradil and
cerivastatin were withdrawn from the US market due to adverse effects from severe DDIs [3,
4]. In addition to such potential health risks, the pharmaceutical industry invests much time
and money in drug development. Therefore, identifying possible DDIs at an early stage of drug
development is crucial for the safety of patients and the success of a drug.

DDI is defined as a change in efficacy of a drug by the co-administration of two or more
drugs [5]. DDIs are categorized into pharmacodynamic and pharmacokinetic interactions [6].
The pharmacodynamic DDI (PD DDI) occurs when one drug interferes with another drug at a
target site or affects another protein within the same pathway [7, 8]. One drug can alter the
effects of another drug if they have same signaling pathway [8]. It is interference with pharma-
codynamics by affecting mechanism of action of the drug without altering pharmacokinetics.
The pharmacokinetic DDI (PK DDI) occurs when one drug changes the absorption, distribu-
tion, metabolism, or excretion property of another drug [7].

To analyze a large number of DDI candidates, computational approaches have been devel-
oped with methods that can predict possible DDIs using various types of drug information
(e.g., chemical structure, target proteins, and side effects) [6, 9]. Here, we categorize those pre-
vious computational approaches into similarity-based, knowledge-based, and mechanism-
based methods. The similarity-based method assumes that drugs with similar properties will
have similar DDIs. Based on this assumption, Vilar et al. measured drug similarity using the
Tanimoto coefficient between the interaction profile fingerprints of drug pairs [9]. Cheng et al.
integrated chemical, side effect, therapeutic, and genomic properties and constructed a data-
base of adverse drug events [10-13]. Li et al. developed a Bayesian network integrating drug
similarity using drug molecular and pharmacological phenotypes [14]. In addition, Gottlieb
et al. used seven kinds of methods for calculating drug similarity (e.g., chemical-based, ligand-
based, side-effect based, annotation-based, sequence-based, closeness-based in a protein-pro-
tein interaction (PPI) network, and Gene Ontology-based similarity) [6]. The knowledge-
based method uses the literature and the FDA Adverse Event Reporting System (FAERS) to
predict DDIs [15, 16]. Segura-Bedmar et al. predicted the DDIs from text information on
drugs and their interactions in DrugBank using a shallow linguistic kernel [16]. Tatonetti et al.
identified drug effects and interactions using FAERS. The mechanism-based method predicts
the PD DDIs using drug target associations in molecular level. Yildirim et al. constructed a
drug network by connecting drugs if they shared target proteins [17]. Recently, Huang et al.
developed a target-center system for each drug, which consists of drug targets and their first
neighbors in the PPI network and human tissue gene expression [18]. To predict as well as pre-
vent the PD DDIs, it is necessary to identify the mechanism of the interactions. Therefore, this
study focused on the mechanism-based approaches.

Signaling starting from drug targets would propagate through the PPI network because the
PPI network transfers the biological function through the assembly of a protein signal cascade
[19, 20]. Therefore, PD DDIs could occur by affecting the close interference as well as distant
interference between drug effects. However, most of the previous mechanism-based
approaches have considered only the close interference. The aim of this study is to predict PD
DDIs by considering both close and distant interferences of signaling propagation through the
PPI network.

Materials and Methods

Our research framework can be categorized into three parts (S1 Fig). First, in the data prepro-
cessing part, we prepared the DDIs, drug-target associations, and PPI network from various
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databases [21-27]. Second, in the algorithm part, we applied our method and the shortest path
length average (SPA) method using drug-target associations and the PPI network. Last, in the
validation and analysis part, we compared the area under a receiver operating characteristic
curve (AUC) and fold enrichment of our method with those of the previous methods. In addi-
tion, the PD DDI candidates were analyzed by drug side effects and significant PD DDI-associ-
ated genes were analyzed by functional annotation analysis.

Overview of an algorithm for predicting PD DDIs

A random walk with restart (RWR) algorithm can simulate that the random walker from its
nodes (proteins) randomly transits to the neighbor nodes on the PPI network starting from
drug targets (Fig 1) [28]. The probability of being at each protein was calculated by the RWR
algorithm. We took the probability of proteins to represent the influence initiated by drug tar-
gets on the PPI network. The RWR algorithm simulates the random walker until the satura-
tion of probability for all of the proteins on the PPI network. Next, we calculated the
ProteinScore, which represents the overlapping influence on the same proteins from two
drugs. In addition, we calculated the DDIScore by summation of the ProteinScore of all pro-
teins. We used the DDIScore as the possibility measurement for the occurrence of PD DDIs
between the drugs.

Drug, Drug,
g g

P (Drug, target) 0
S
[0 | P (Drug, target)

PPI network

Signaling propagation starting from drug targets
using a random walk with restart algorithm

P,

L

Calculate the ProteinScore

¥

[0:14] Protein profile
[ o | P (Protein 1)

1P,
]

P (Drug target)
@
8 B
Calculate the DDIScore

Fig 1. Overview of the algorithm for predicting PD DDIs. The signaling propagation starting from drug
targets (Druga: Protein 2 and Drugg: Protein 4) through the PPI network is simulated by RWR algorithm. The
ProteinScore is defined as the values of the protein profile of drug pairs after finishing the simulation of RWR
algorithm. The DDIScore is calculated by the summation of the ProteinScore of all proteins. The DDIScore
represents the interference of signaling propagation through PPI network between drugs.

doi:10.1371/journal.pone.0140816.g001
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Data sets

4,085 drugs in DrugBank were used in this study [27]. 14,516 drug-target associations were
used in DrugBank [27]. We used 281 pathways from Kyoto Encyclopedia of Genes and
Genomes (KEGG) [25]. Previous studies used non- cytochrome P450 (CYP)-related DDIs that
are not metabolized by the same CYP between drugs in known DDIs and DDIs from a semi-
automatic text mining method as PD DDIs [6, 18]. We thought that their PD DDIs would
include many false-positive PD DDIs. The PD DDI occurs when one drug interferes with
another drug at a target site or affects another protein within the same pathways [7, 8]. To
make more precise PD DDIs, we used known DDIs as PD DDIs when their targets were same
or within the same pathway. The known DDIs were downloaded from DrugBank and KEGG
DRUG [25, 27]. We used two sources of PD DDIs, namely, 2,348 PD DDIs and 13,357 PD
DDIs from DrugBank and KEGG DRUG, respectively [25, 27]. The KEGG identifier (ID) was
converted to DrugBank ID using their data (ftp://ftp.genome.jp/pub/kegg/medicus/drug/drug).
We used three human protein interaction networks, Human Protein Reference Database
(HPRD) (9,117 proteins and 36,248 interactions), Interologous Interaction Database (I2D)
(9,478 proteins and 43,593 interactions), and IntAct (10,942 proteins and 58,303 interactions)
from Human Integrated Protein-Protein Interaction rEference (HIPPIE) [21-24, 26]. In addi-
tion, we used the integrated PPI network (12,492 proteins and 82,694 interactions) by HPRD,
12D, and IntAct from HIPPIE [21-24, 26]. A rule format based on our previous work was used
to describe the PPI network [29]. The DDI side effects were downloaded from TWOSIDES
(http://www.pharmgkb.org/downloads/) [15]. In addition, the drug side effects were down-
loaded from SIDER (http://sideeffects.embl.de/download/) [30]. To identify associations
between drugs, we used STITCH that provides the interactions of chemicals from various data
sources such as the result of text mining and the knowledge of the other associated databases
[31]. The STITCH drug ID in TWOSIDES and SIDER was converted to the DrugBank ID
using the STITCH file (chemical.sources.tsv.gz) [31].

An algorithm for predicting PD DDlIs

The RWR algorithm could simulate the signaling propagation starting from drug targets
through the PPI network. We assumed that the probability of being at each protein according
to the RWR algorithm is the value of the influence starting from drug targets on the PPI net-
work. The probability vector of being each node at time step #+1 by RWR algorithm was
defined as

p(t+1) = (1L =)W' p(t) + rp(0) (1)

where r represents the restarting probability of the random walker at each time step, W repre-
sents the normalized adjacency matrix of the PPI network, p(t) is the probability vector of
being each node at time step #, and p(0) represents initial probability vector [32-34].

The initial probability of drug targets among proteins on the PPI network is 1 and the others
are 0. In addition, the RWR algorithm was simulated until the sum of the absolute differences
of each protein probability between the previous step and current step was less than 1.0E-5
with the restarting probability of 0.7. The ProteinScore and DDIScore are defined as

ProteinScore,(Drug,, Drug,) = \/V,(Drug,) x V,(Drug,) (2)

N
DDIScore(Drug,, Drug,) = ZProteinScorei(DrugA, Drug,) (3)

i=1
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where i represents the index of proteins, v;(Drug,) represents the probability of being at the
protein i of Drug, after the finishing simulation of RWR algorithm, and N represents the num-
ber of proteins on the PPI network.

The ProteinScore represents the overlapping influence on the same proteins between drugs.
In addition, the DDIScore represents the interference score between drugs as determined by the
summation of the ProteinScore of all proteins.

Comparison with previous methods

In this study, we evaluated performance using two DDI databases, DrugBank and KEGG
DRUG (25, 27], and three PPI network databases, HPRD, 12D, and IntAct in HIPPIE [21-24,
26]. For evaluation, our method was compared with the SPA method used in the Gottlieb et al.
study and the target-center system in the Huang et al. study [6, 18].

Gottlieb ef al. used SPA among the targets of drugs on the PPI network, one of various simi-
larity methods [6]. The SPA measured how close drug targets were on the PPI network. Con-
sidering this, we thought that the SPA method does not exploit the distant interference of
signaling propagation through the PPI network between drugs. Therefore, the comparison
between our method and the SPA method could identify the importance of distant interference
of signaling propagation for predicting PD DDIs. The SPA was defined as

Y. > Swp)
SPA(D D __ #€T(Druga) BET (Drugp) \
(Drug,, Drug;) |T(Drug,)| x |T(Drug)| (4)

T(Drug) = {x|x is target protein of Drug} (5)

1 if p is equal to p'
S(p.p) = { (6)

A-e ) otherwise

where A is assigned a value of 0.9 ¢, p and p/ are two proteins on the PPI network, and D(p, p')

is the shortest path length between p and p’ on the PPI network.

In addition, our study was compared with Huang et al.’s method [18]. They used the local
topology of the PPI network and gene expression profiles across human tissues. We down-
loaded the S-score from the study, which describes the connection between the target-centered
system of two drugs, from their website (http://www.picb.ac.cn/hanlab/DDI) [18]. To fairly
compare our method with Huang et al.’s method, we used the same PD DDI candidates
(217,743 PD DDIs) in both of them.

Evaluation methods of predicted PD DDls

For performance evaluation, the AUC of our method was compared with that of previous
methods. We identified the performance of our method for single-target drugs and multi-target
drugs. In 14 Anatomical Therapeutic Chemical (ATC) codes, we identified whether our meth-
od’s performance was consistent with their acting therapeutic and chemical characteristic
organs or systems. To additionally analyze our result, we used known DDIs in DrugBank and
KEGG DRUG and DDI side effects in TWOSIDES. We measured the fold enrichment of the
top 5% of PD DDI candidates using known DDIs. In addition, we identified the fold enrich-
ment of the top 5% of PD DDI candidates using the DDIs with the highest confidence score of
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DDI side effects in TWOSIDES [15]. The fold enrichment was defined as

m/n
M/N

(7)

Fold enrichment =

where m is the number of known DDIs (or DDIs with the highest confidence score in TWO-
SIDES) in the top 5% of PD DDI candidates, n is the number of the top 5% of PD DDI candi-
dates, M is the number of known DDIs (or DDIs with the highest confidence score in
TWOSIDES) of all PD DDI candidates, and N is the number of all PD DDI candidates.

The PD DDIs with the highest scores in our method were analyzed by TWOSIDES, SIDER,
and STITCH [15, 30, 31]. The Jaccard index of side effects of a drug pair was defined as below.

_ |SE(Drug,) N SE(Drugy)|
o |SE(Drug,) U SE(Drug,)|

(8)

SEsim(Drug,, Drug,)

SE(Drug) = {x|x is no placebo and frequent effects of Drug in SIDER} 9)

We identified the significant PD DDI-associated genes and PD DDI candidates using the
empirical p-value. For estimating the empirical p-value, we determined the empirical distribu-
tion of ProteinScore from randomly selected proteins and randomly selected drug pairs, repeat-
ing 100,000 times. In addition, to make the empirical distribution of the DDIScore as well, we
also measured the DDIScore from randomly selected drugs for each protein, repeating 100,000
times. The selected significant genes (empirical p-value<1.0E-4) were analyzed by functional
annotation analysis using DAVID [35].

Results
Performance evaluation

Our method and SPA method are evaluated by the same candidate drug pairs in each PPI net-
work (HPRD: 739,936 PD DDIs; 12D: 735,078 PD DDIs; IntAct: 591,328 PD DDIs; integrated
PPI network (HPRD, 12D, and IntAct): 779,376 PD DDIs). The AUC of our method is 0.86
and 0.807 and that of the SPA method is 0.766 and 0.696 using the integrated PPI network in
DrugBank and KEGG DRUG, respectively (Fig 2A and 2B). The fold enrichment of the top 5%
of the PD DDI candidates of our method and the SPA method is 11.573 and 4.492 in DrugBank
and 7.946 and 3.082 in KEGG DRUG, respectively. In addition, in DrugBank and KEGG
DRUG, our method has also higher accuracy than the SPA method using HPRD, 12D, and
IntAct, respectively (S2-5S4 Figs).

For fair comparison with the target-center system in the Huang et al. study [18], we used
the same PD DDI candidates (1,127 drugs and 217,743 PD DDIs) because different PD DDI
candidates would cause a bias of performance. The AUC of our method using the integrated
PPI network was compared with that of the S-score of the Huang et al. study. The AUC of our
method and Huang et al.’s method is 0.842 and 0.786 in DrugBank and 0.803 and 0.702 in
KEGG DRUG, respectively (Fig 3A and 3B). In addition, the fold enrichment of the top 5% of
the PD DDI candidates of our method and Huang et al.’s method is 7.291 and 6.583 in Drug-
Bank and 6.339 and 4.6 in KEGG DRUG, respectively. From these results, we concluded that
our method outperforms the SPA method and Huang et al.’s method.
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Fig 2. A receiver operating characteristic (ROC) curve with AUC in DrugBank and KEGG DRUG for comparison with the SPA method using
integrated PPI network. The red and blue lines represent our method and the SPA method, respectively. (A) The ROC curve with the AUC of our method
and the SPA method in DrugBank. (B) The ROC curve with the AUC of our method and the SPA method in KEGG DRUG. The AUC of our method and the
SPA method in each DDI database are 0.86 and 0.766 in DrugBank, 0.807 and 0.696 in KEGG DRUG.

doi:10.1371/journal.pone.0140816.g002
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Fig 3. ROC curve with AUC in DrugBank and KEGG DRUG for comparison with Huang et al.’s method using the integrated PPI network. The red
and blue lines represent our method and Huang et al.’s method, respectively. (A) The ROC curve with the AUC of our method and Huang et al.’s method in
DrugBank. (B) The ROC curve with the AUC of our method and Huang et al.’s method in KEGG DRUG. The AUC of our method and Huang et al.’s method in
each DDI database are 0.842 and 0.786 in DrugBank and 0.803 and 0.702 in KEGG DRUG. The performance of our method generally outperforms that of
Huang et al.’s method.

doi:10.1371/journal.pone.0140816.9003
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Evaluation of predicted PD DDIs using the number of drug targets and
ATC codes

Recently, the paradigm in drug discovery has shifted from single-target drugs to multi-target
drugs [36]. Therefore, it becomes necessary to identify the performance of PD DDIs for multi-
target drugs. To evaluate the performance of our method for this purpose, the drugs were first
categorized into single-target drugs and multi-target drugs by the number of drug targets. Fig 4
shows that our method has more accurate predictions than the SPA method for both of the sin-
gle-target drug and multi-target drug categories using the integrated PPI network. For single-
target drugs, the AUC of our method and SPA method is 0.831 and 0.763. For multi-target
drugs, the AUC of our method and SPA method is 0.850 and 0.768. In addition, to evaluate
performance robustness, the drugs were categorized into 14 ATC codes. We also identified the
performance of our method and the SPA method for these 14 ATC codes using the integrated
PPI network. The result shows that our method has higher accuracy than the SPA in overall
ATC codes (Fig 5). The “B” code (the first part of the ATC code) represents blood and blood
forming organs. Our method and the SPA method have a similar performance. In this case, PD
DDIs could occur by the close interference between drugs because the drug might directly bind
to disease-associated proteins. For example, lepirudin (BO1AE02) is used for the treatment of
heparin-induced thrombocytopenia. The drug binds directly to thrombin to prevent thrombus
[27]. The “P” code represents antiparasitic products, insecticides and repellents. It should be
noted that the comparison between our method and the SPA method might not be appropriate
for non-human of drug target organisms because human protein interactions in HIPPIE were
only used in this study [22]. For example, the target organisms of metronidazole (P01ABO1)
are bacteria and protozoa in DrugBank [27]. Nonetheless, from these results, we propose that
our method would be an effective approach for predicting PD DDIs in both single-target drugs
and multi-target drugs as well as various ATC codes.

1.0
0.831 0.850

0.8F 0.763 0.768

0.6F

041 SPA Method
Our Method

02l [ ]

1

Single-target drug  Multi-target drug

Fig 4. The AUC of our method and the SPA method for single-target drug and multi-target drug
categories. The AUC of our method outperforms that of the SPA method in both single-target drug and multi-
target drug categories.

doi:10.1371/journal.pone.0140816.g004
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blood forming organs), and P (antiparasitic products, insecticides and repellents) codes, our method outperforms the SPA method.

doi:10.1371/journal.pone.0140816.g005

Evaluation of predicted PD DDIs using known DDIs and DDI side effects

We measured fold enrichment with our method and the SPA method using both types of
known DDIs including both PD and PK DDIs in DrugBank and KEGG DRUG as a positive
gold standard because using the selected PD DDIs as the positive gold standard could cause a
bias of performance. The fold enrichment of the top 5% of the PD DDI candidates of our
method and the SPA method is 3.522 and 1.918 in DrugBank and 3.913 and 1.703 in KEGG
DRUG, respectively. In addition, we also calculated the fold enrichment of DDI side effects
with the highest confidence score in TWOSIDES because unreported DDIs could cause DDI
side effects [15]. The fold enrichments of the top 5% of the PD DDI candidates of our method
and the SPA method are 2.252 and 0.827, respectively. From these results, we note that the
known DDIs and DDI side effects in the top 5% of the PD DDI candidates of our method are
more enriched than those of the SPA method.

Case study

For a case study, we selected ziprasidone-quetiapine, olanzapine-quetiapine, and aripiprazole-
quetiapine interactions, which had the highest PD DDIs scores. Their scores are the same
because ziprasidone, olanzapine, and aripiprazole have identical target proteins in DrugBank
[27]. Ziprasidone, olanzapine, aripiprazole, and quetiapine are used for the treatment of schizo-
phrenia in DrugBank [27]. Ziprasidone-quetiapine interaction is reported in DrugBank and
KEGG DRUG and olanzapine-quetiapine and aripiprazole-quetiapine interactions are
reported in KEGG DRUG [25, 27]. We analyzed these interactions by using TWOSIDES,
SIDER, and STITCH [15, 30, 31]. Olanzapine-quetiapine and aripiprazole-quetiapine interac-
tions have significant DDI side effects (p-value: 1.08E-249 and 9.65E-123) in TWOSIDES.
Campillos et al. suggested that drug targets could be identified by similarity of side effects [37].
Therefore, we identified whether drugs that have similar side effects would have also the same
target proteins, which is one of the mechanisms causing PD DDIs. The Jaccard index of ziprasi-
done-quetiapine, olanzapine-quetiapine, and aripiprazole-quetiapine interactions using the
side effects of each drug in SIDER is 0.288 (p-value: 1.25E-27), 0.390 (p-value: 1.04E-41), and
0.317 (p-value: 9.46E-35). In practice, 25 of 26 targets of quetiapine are the same targets as
those of ziprasidone, olanzapine, and aripiprazole in DrugBank (S1 Table) [27]. In STITCH, a
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Table 1. The significant KEGG pathway lists (FDR<5.00E-03) from 305 PD DDI-associated genes
(except 075970 protein) using DAVID.

KEGG pathways p-value FDR

Neuroactive ligand-receptor interaction 4.19E-42 4.68E-39
Calcium signaling pathway 6.66E-28 7.43E-25
Gap junction 1.39E-12 1.56E-09
Long-term depression 6.39E-12 7.14E-09
Long-term potentiation 4.05E-09 4.52E-06
Vascular smooth muscle contraction 7.57E-09 8.44E-06
Chemokine signaling pathway 4.38E-08 4.89E-05
Glioma 8.62E-08 9.62E-05
Neurotrophin signaling pathway 2.36E-07 2.64E-04

We suggest that these significant pathways affected the drug effects through signaling propagation
interference between drugs.

doi:10.1371/journal.pone.0140816.t001

score greater than 0.7 is considered to be a high confidence score based on their criteria [31].
The confidence scores of ziprasidone-quetiapine, olanzapine-quetiapine, and aripiprazole-que-
tiapine interactions are 0.798, 0.83, and 0.77, respectively [31]. In addition, we identified 306
PD DDI-associated genes (empirical p-value<1.0E-4) from a permutation test (52 Table).
Table 1 shows the significant KEGG pathways (False Discovery Rate (FDR) <5.0E-3) based on
a functional annotation analysis using the Database for Annotation, Visualization and Inte-
grated Discovery (DAVID), except for the 075970 protein, which had no mapped identifier in
DAVID [35]. From these results, we suggest that the interfered pathways could change the effi-
cacy of the drugs.

Discussion

Signaling transduction starting from the drug targets propagates to their neighbor nodes
through the PPI network [19, 20]. Therefore, PD DDIs could occur by both close and distant
interferences of signaling propagation through the PPI network. However, previous methods
for predicting PD DDIs have only the close interference. The SPA method measured the short-
est path length between the targets of drugs on the PPI network [6]. The shortest path length
only considers how close drug targets are on the PPI network. In addition, the target-centered
system in Huang et al. study used the PPI sub-network consisting of drug targets and their first
neighbors and human tissue gene expression [18]. They calculated a system connection score
(S-score) between drugs for predicting PD DDIs. It also considers close interference by reflect-
ing tightness of connections between two target-centered systems. In this study, we propose
that both close and distant interferences of signaling propagation through the PPI network are
important features for predicting potential PD DDIs.

Our method exploited the global topology of the PPI network [28]. The score of drug pairs
was calculated by the amount of overlapped signaling propagation starting from the drug tar-
gets through the PPI network. For evaluation, the performance of our method was compared
with that of the SPA method and a recent PD DDI prediction method [6, 18]. We identified
that the AUC and fold enrichment of our method outperformed those of the SPA method and
the recent method.

Developing multi-target drugs is a new paradigm in drug discovery [36]. Recently, Zheng
et al. proposed a weighted ensemble similarity algorithm to predict the drug-target direct
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interactions [38]. Therefore, we evaluated the performance of our method for multi-target
drugs. Drugs were categorized into single-target drugs and multi-target drugs by the number of
drug targets. The AUC of our method outperformed the SPA method in each category. In addi-
tion, we showed that the top 5% of the PD DDI candidates of our method had a higher fold
enrichment of DDI side effects than did the SPA method. DDI side effects can occur by an
unknown DDI. Therefore, the results indicated that our method could predict novel PD DDIs
in the new paradigm in drug discovery.

DDIs are conventionally categorized into PD DDIs and PK DDIs [6]. As DDIs are predicted
by the pharmacodynamic properties, it is hard to predict PK DDIs. In addition, PD DDIs
could have antagonistic, synergistic, or additive effects [8, 18]. However, in this study, our
method could not classify the effect of PD DDIs. In the future, we are going to solve these limi-
tations and improve our method.

Our method more accurately predicts PD DDIs than previous methods. In addition, PD
DDI-associated genes from our method can be used to interpret the causes of PD DDIs and
prevent them. Therefore, we expect that our method will be helpful in predicting and prevent-
ing PD DDIs at an early stage of drug development.

Supporting Information

S1 Fig. Research framework. Our research framework can be categorized into three parts such
as data preprocessing part, algorithm part, and validation and analysis part.
(EPS)

S2 Fig. ROC curve with AUC in DrugBank and KEGG DRUG for comparison with the
SPA method using HPRD. The red and blue line represents our method and SPA method. (A)
The ROC curve with the AUC of our method and SPA method in DrugBank. (B) The ROC
curve with the AUC of our method and SPA method in KEGG DRUG. The AUC of our
method and SPA method in each PD DDI database: 0.863 and 0.783 in DrugBank, 0.812 and
0.719 in KEGG DRUG. The result showed that our method outperformed the SPA method.
(EPS)

$3 Fig. ROC curve with AUC in DrugBank and KEGG DRUG for comparison with the
SPA method using I2D. The red and blue line represents our method and SPA method. (A)
The ROC curve with the AUC of our method and SPA method in DrugBank. (B) The ROC
curve with the AUC of our method and SPA method in KEGG DRUG. The AUC of our
method and SPA method in each PD DDI database: 0.856 and 0.773 in DrugBank, 0.81 and
0.714 in KEGG DRUG. The result showed that our method outperformed the SPA method.
(EPS)

$4 Fig. ROC curve with AUC in DrugBank and KEGG DRUG for comparison with the
SPA method using IntAct. The red and blue line represents our method and SPA method. (A)
The ROC curve with the AUC of our method and SPA method in DrugBank. (B) The ROC
curve with the AUC of our method and SPA method in KEGG DRUG. The AUC of our
method and SPA method in each PD DDI database: 0.832 and 0.721 in DrugBank, 0.748 and
0.616 in KEGG DRUG. The result showed that our method outperformed the SPA method.
(EPS)

S1 Table. Target proteins of ziprasidone, olanzapine, aripiprazole, and quetiapine. 25 of 26
targets of quetiapine are the same targets as those of ziprasidone, olanzapine, and aripiprazole
in DrugBank.

(XLS)
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S2 Table. 306 PD DDI-associated genes of ziprasidone-quetiapine, olanzapine-quetiapine
and aripiprazole-quetiapine. Three PD DDIs have same PD DDI-associated genes because
ziprasidone, olanzapine, and aripiprazole have same target proteins.

(XLS)
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