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Abstract
A central mechanism participates in sympathetic overdrive during insulin resistance (IR).

Nitric oxide synthase (NOS) and nitric oxide (NO) modulate sympathetic nerve activity

(SNA) in the paraventricular nucleus (PVN), which influences the autonomic regulation of

cardiovascular responses. The aim of this study was to explore whether the NO system in

the PVN is involved in the modulation of SNA in fructose-induced IR rats. Control rats

received ordinary drinking water, whereas IR rats received 12.5% fructose-containing drink-

ing water for 12 wks to induce IR. Basal SNA was assessed based on the changes in renal

sympathetic nerve activity (RSNA) and mean arterial pressure (MAP) in response to chemi-

cals administered to the PVN. We found an increased plasma norepinephrine level but sig-

nificantly reduced NO content and neuronal NOS (nNOS) and endothelial NOS (eNOS)

protein expression levels in the PVN of IR rats compared to Control rats. No difference in

inducible NOS (iNOS) protein expression was observed between the two groups. In anes-

thetized rats, the microinjection of sodium nitroprusside (SNP), an NO donor, or Nω-nitro-L-

arginine methyl ester (L-NAME), a non-selective inhibitor of NOS, into the PVN significantly

decreased and increased basal SNA, respectively, in both normal and IR rats, but these

responses to SNP and L-NAME in IR rats were smaller than those in normal rats. The

administration of selective inhibitors of nNOS or eNOS, but not iNOS, to the PVN signifi-

cantly increased basal SNA in both groups, but these responses were also smaller in IR

rats. Moreover, IR rats exhibited reduced nNOS and eNOS activity in the PVN. In conclu-

sion, these data indicate that the decreased protein expression and activity levels of nNOS

and eNOS in the PVN lead to a reduction in the NO content in the PVN, thereby contributing

to a subsequent enhancement in sympathoexcitation during IR.
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Introduction
Sympathetic abnormalities play an important role in the pathophysiology of cardiovascular
disease associated with metabolic syndrome, diabetes mellitus and obesity [1–4]. In these
diseases, insulin resistance (IR) is a common feature [5–8], and elevated sympathetic nerve
activity (SNA) has been reported to be associated with IR [9,10]. Chronic and sustained
sympathetic overdrive results in hypertension and the development of IR [11–13]. Increas-
ing evidence indicates that central mechanisms are a major cause of the sympathetic
enhancement observed during IR, obesity, diabetes and hypertension [9–13], such as an
increase in excitatory transmitter, angiotension II and superoxide, but a decrease in inhibi-
tory transmitter and NO, which would result in over-activationof the sympathetic nervous
system. However, these complex mechanisms have not been completely elucidated with
respect to IR.

The paraventricular nucleus (PVN) regulates sympathetic outflow and cardiovascular func-
tion under physiological or disease conditions such as hypertension, heart failure (HF), obesity,
obesity-related hypertension and diabetes [14–18]. It has been reported that the PVN is one of
the primary sites containing nitric oxide (NO)-positive neurons, and functional studies have
demonstrated that NO in the PVN exerts inhibitory effects on SNA and participates in the
modulation of cardiovascular activities [19]. A reduced content of the inhibitory neuromodula-
tor NO has been suggested to cause the centrally mediated sympathetic overdrive observed in
HF and hypertension [20,21]. The overexpression of neuronal NO synthase (nNOS) in the
PVN alleviated the enhancement in renal SNA (RSNA) in HF model rats [20]. A previous
study demonstrated that the nNOS level is decreased in HF, particularly in neurons of the PVN
of the hypothalamus [22]. The inhibition of NO synthase (NOS) using the non-selective inhibi-
tor Nω-nitro-L-arginine methyl ester (L-NAME) via microinjection into the PVN or intracer-
ebroventricular injection elevated basal RSNA [23–26]. Furthermore, we found that both
nNOS and endothelial NOS (eNOS) in the PVN were involved in the modulation of sympa-
thetic overdrive in renovascular hypertensive rats [21]. It has been reported that nNOS dys-
function in the PVN participates in the progression of hypertension, HF and diabetes
[21,27,28], and abnormal eNOS activity in the periphery or the PVN has also been implicated
disease progression [29–31]. Moreover, inducible NOS (iNOS) in the PVN is involved in sym-
pathoexcitation caused by restraint stress or corticotropin-releasing factor application [32,33].
Taken together, NO in the PVN is an important factor involved in the regulation of SNA not
only in healthy animals but also in certain animal disease models [20,21,29]. However, whether
the alteration of the NOS system in the PVN mediates the elevation in sympathetic outflow in
the IR state has not been investigated.

The aim of this study was to investigate the role of NO and the NOS system (nNOS, eNOS
and iNOS) in the PVN in sympathetic activation during IR. Our study was designed to explore
the following: 1) the nitrite/nitrate (NOx) concentration (an index of NO) and the protein
expression of nNOS, eNOS and iNOS in the PVN in Control and IR rats; 2) the effect of elevat-
ing the NO level in the PVN using the NO donor sodium nitroprusside (SNP) on basal SNA, as
well as the basal SNA response to decreasing endogenous NO content via inhibition of NOS
activity in the PVN using the non-selective NOS inhibitor L-NAME, in Control and IR rats; 3)
the effect of the individual pharmacological inhibition of nNOS, eNOS and iNOS on basal
SNA in Control and IR rats; and 4) the activity of nNOS and eNOS in the PVN in Control and
IR rats.
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Materials and Methods

Animals
Animals were randomly divided into 2 experimental groups: the Control group and the insu-
lin-resistant (IR) group. All procedures followed the Guide for the Care and Use of Laboratory
Animals (8th Edition, 2011), and the experimental protocols were approved by the Experimen-
tal Animal Care and Use Committee of Nanjing Medical University. Five-week old male Spra-
gue–Dawley rats weighing 130–150 g were used for this experiment. The rats were housed in
clear cages and were allowed free access to normal rodent diet and tap water under standard
and constant conditions (12 h light/dark cycle and a controlled humidity and temperature of
22°C–26°C). The Control group received tap water for 12 wks, whereas IR was induced in the
IR group by adding fructose (12.5%, AMRESCO, Solon, OH, USA) to the standard drinking
water for 12 wks. IR is evidenced by an increase in both insulin and glucose levels, and it can be
evaluated by HOMA-IR (the homeostasis model assessment of insulin resistance), namely IR
index. HOMA-IR was calculated using the fasting plasma glucose and insulin levels according
to the equation: HOMA-IR = glucose(mmol/L) × insulin (μU/L)/22.5.

Systolic blood pressure (SBP) measurement
From the beginning of the 11th week to the end of the 12th week, SBP was measured in each
conscious rat using a non-invasive computerized tail-cuff system (NIBP; ADI, Bella Vista,
NSW, Australia) as previously reported [21]. Each rat was monitored daily via an SBP mea-
surement of the tail artery for at least 10 days before the initiation of the IR or Control model
to minimize stress-induced fluctuations in SBP [34].

Blood and PVN sample preparation
Briefly, blood was withdrawn from the tail tip of non-fasting rats for NE examination and fast-
ing rats for detecting the levels of glucose, insulin and triglycerides using heparinized tubes,
then plasma was obtained after centrifuging the blood at low speed centrifugation (3000 x g, 15
min) and stored at -80°C for biochemical analysis. The brain of the rat was rapidly removed,
frozen in liquid nitrogen, and stored in a -80°C refrigerator [34]. Coronal sections of the brain
were sliced using a cryostat microtome (CM1900, Wetzlar, Hessen, Germany) while referring
to the rat brain atlas (Paxinos G andWatson C, 2005). Briefly, the region from 1.5 mm to 2.0
mm caudal to Bregma was considered as the region containing the PVN, and the brain tissue
was sliced into a 450 μm coronal section that included the PVN area [34]. The PVN region was
removed using a 15-gauge needle (inner diameter 1.5 mm) for all further measurements [35].

Evaluation of basal sympathetic activity
For the evaluation of basal SNA, the plasma norepinephrine (NE) level was determined as an
indirect index of sympathetic activity. The plasma NE level was examined using commercial
ELISA kits (R&D Systems, Minneapolis, MN, USA) according to the manufacturer’s instruc-
tions as previously reported [17]. Briefly, the 96-well plates were incubated in an antibody spe-
cific for rat NE. The samples and standard diluent buffer were applied to the 96-well plates,
incubated and washed. Then, a horseradish peroxidase-conjugated secondary antibody solu-
tion was administered, and the reaction was terminated using stop solution. The final solution
was read at a λ of 450 nm using a microplate reader (ELX800, BioTek., Winooski, VT,USA)
[17].
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Measurement of the plasma glucose, insulin and triglyceride levels
Blood was collected from the tail tip of Control and IR rats at the end of 12 wks. Using the glu-
cose oxidase method, fasting plasma glucose was measured using a kit (Jiancheng Bioengineer-
ing, Nanjing, Jiangsu, China); the fasting plasma insulin level was determined via enzyme-
linked immunosorbent assay (ELISA) using a kit (RayBiotech, Inc., Norcross, GA, USA); the
plasma triglyceride level was detected via a colorimetric assay using a commercial kit (Jian-
cheng Bioengineering, Nanjing, Jiangsu, China). The manufacturer’s instructions were fol-
lowed for each measurement process [35].

Measurement of the NOmetabolite (NOx) levels in the PVN
The nitric oxide metabolite (NOx) content is widely used as an index of the NO level. NO pro-
duction in the PVN was evaluated based on the detection of the concentration of its stable
metabolites nitrate and nitrite using a Nitrate/Nitrite Colorimetric Assay Kit (Cayman Chemi-
cal Co., Ann Arbor, MI, USA) [21]. Total protein was extracted from the PVN homogenate
according to the manufacturer’s instructions [21]. The results are expressed as nmol/mg of
protein.

Measurement of eNOS, nNOS and iNOS protein expression
Western blot was used to determine the nNOS, eNOS and iNOS protein expression levels. The
protein expression levels of eNOS, nNOS and iNOS in the PVN were measured as previously
reported [21]. Briefly, PVN tissue samples were collected and homogenized. The concentration
of total protein that was extracted from PVN homogenates, was determined by the method
described by Bradford [36] using a total protein quantitative assay kit from Nanjing Jiancheng
Biotechnology Co. (A045-2, Nanjing, Jiangsu, China). Western blot analysis was performed
using rabbit polyclonal antibodies against eNOS (1:2000, Cell Signaling Technology, Danvers,
MA, USA), nNOS (1:2000, Cell Signaling Technology, Danvers, MA, USA), iNOS (1:1000,
Santa Cruz, CA, USA) and GAPDH (1:2000, Bioworld Technology, Louis Park, MN, USA) as
the primary antibodies. The secondary antibody was peroxidase-conjugated goat anti-rabbit
IgG (Santa Cruz, CA, USA). GAPDH was used as a loading control, and the protein expression
levels of eNOS, nNOS and iNOS were normalized to the GAPDH protein level.

Assessment of the dimer-monomer ratio of nNOS and eNOS in the PVN
To quantify active nNOS and eNOS dimers and inactive monomers (nNOS and eNOS) in the
PVN, we performed low-temperature polyacrylamide gel electrophoresis (LT-PAGE) as
described previously [28,37]. Before fractionation in a 5% separating gel, standard Laemmli
buffer was applied to 60 μg of PVN protein at 4°C for 30 min. For the analysis of dimeric and
monomeric nNOS and eNOS, the samples were not heated, and the buffers and gels used were
pre-equilibrated to the same temperature (4°C). Both the electrophoresis and transfer processes
were performed on ice.

General procedures of the acute experiment
At the end of the 12th week, each rat was anesthetized via intraperitoneal injection of urethane
(800 mg/kg) and α-chloralose (40 mg/kg). A supplemental dose of anesthesia was needed to
maintain a suitable level of anesthesia during the experiment [34,35]. The rat was ventilated
with room air using a rodent ventilator (model 683, Harvard Apparatus Co. Inc., South Natick,
MA, USA). To continuously record arterial blood pressure (ABP) and mean arterial pressure
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(MAP), the right carotid artery of the rat was cannulated and connected to a pressure trans-
ducer (MLT0380, AD Instruments, Bella Vista, NSW, Australia) [34,35].

RSNA recordings
The left renal sympathetic nerve was isolated via a retroperitoneal incision. The renal nerve
was cut distally to eliminate afferent activity and was placed on a pair of silver electrodes
[34,35]. To amplify the nerve signals, a four-channel AC/DC differential amplifier (DP-304,
Warner Instruments, Hamden, CT, USA) was used. The data were collected using a high pass
filter at 10 Hz and a low pass filter at 3,000 Hz, and RSNA was integrated at a time constant of
100 ms [34,35]. At the end of each experiment, background noise was detected after section of
the central end of the renal nerve at the end of the experiment and was subtracted from the
integrated values of the recorded RSNA [21,34,35]. The change in RSNA was expressed as the
percent change from baseline [21]. Baseline RSNA and MAP were determined by averaging 2
min of the maximal RSNA responses after microinjection into the PVN.

PVNmicroinjection
The stereotaxic coordinates of the PVN location were set as 1.8 mm caudal to Bregma, 0.4 mm
lateral to the midline and 7.9 mm ventral to the dorsal surface of the brain according to the
Paxinos &Watson rat atlas [21]. The microinjection volume was 50 nL for each side of the
PVN, and the bilateral PVNmicroinjections were completed within 1 min [34]. At the end of
the experiment, 2% Evans Blue dye (50 nL) was injected into each site to identify the PVN
injection sites under a microscope [34]. If the microinjection site was outside the PVN or was
at the margin of the PVN, the rat was excluded from data analysis [35]. A schematic represen-
tation of the microinjection sites in the PVN region is shown in Fig 1.

Chemicals
L-NAME, SNP and the selective iNOS inhibitor S-methylisothioureahemisulfate salt (SMT)
were obtained from Sigma Chemical (St. Louis, MO, USA). The selective nNOS inhibitor N-
propyl-L-arginine (N-Propyl) and the eNOS inhibitor N5-(1-iminoethyl)-L-ornithine (L-NIO)
were obtained from Tocris Bioscience (Bristol, UK). These chemicals were dissolved in normal
saline. The doses of L-NAME (50, 100 nmol), SNP (25, 50 nmol), SMT (250, 500 pmol),
N-Propyl (0.5 nmol, 5 nmol) and L-NIO (5 nmol, 50 nmol) applied in this experiment were
selected based on our preliminary studies and published reports [21,28,32].

Protocols
Experiment 1. Blood samples were collected to measure the plasma NE levels, and the

brains were removed to determine the nNOS, eNOS and iNOS protein expression levels in the
PVN in a subset of Control rats and a subset of IR rats (n = 8 for each subset: 4 rats from each
group for the measurement of nNOS and eNOS protein expression in the PVN, and the
remaining 4 rats from each group for the detection of the iNOS protein levels in the PVN).

Experiment 2. The effects of the microinjection of saline, L-NAME (50, 100 nmol), SNP
(25, 50 nmol), N-Propyl (0.5 nmol, 5 nmol), L-NIO (5 nmol, 50 nmol) and SMT (250, 500
pmol) into the PVN on baseline RSNA and MAP were determined in the Control and IR rats
(n = 6 for each dosage.). Each rat only received two injections on either side of the PVN in this
experiment. The interval between the two injections was approximately 2 hrs, and the microin-
jection volume for each side of the PVN was 50 nL for each chemical [35].
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Experiment 3. The brains were removed to determine the NOx levels (n = 6 for each
group) and the dimer-monomer ratios of nNOS and eNOS (n = 4 for each group) in the PVN
in the Control and IR rats.

Fig 1. A schematic representation of the microinjection sites in the PVN region from the rostral (1.6) to
the caudal (2.1) extent. The black or red dots represent the termination sites of microinjection into the PVN.
The black dots were considered to be within the PVN, and the red dots were considered to be at the margin of
the PVN or outside the PVN; the rats injected at such sites were excluded from data analysis. The distance, in
millimeters, posterior to Bregma is shown in each section according to the Paxinos &Watson rat atlas. AH,
anterior hypothalamic nucleus; PVN: paraventricular nucleus; 3V: third ventricle.

doi:10.1371/journal.pone.0140762.g001
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Statistical analysis
According to the experimental design, we needed at least 84 Control rats and 84 IR rats in the
experiment. Finally, a few of the rats were excluded due to surgical failure, failure to meet the
criteria for IR after fructose feeding in IR group based on homoeostasis model assessment of
insulin resistance (HOMA-IR), or misplacement of the microinjection sites relative to the PVN
location [34,35]. A total of 92 normally fed rats and 123 fructose-fed rats (to induce IR) were
used to meet the requirements for this experiment. Among the Control rats, a total of 8 rats
were excluded due to surgical failure of the acute experiment (4 rats) or missing the PVN (4
rats). Additionally, 39 IR rats were excluded; among them, 32 rats did not meet the criteria for
IR, 4 rats were not microinjected at the PVN location, and 3 rats experienced surgical failure of
the acute experiment performed 12 wks after fructose feeding. Experimental data were success-
fully obtained from 84 Control rats and 84 IR rats that met the criteria for IR following fructose
feeding in this experiment. For all rats in the IR group, the glucose, insulin and triglycerides
levels were measured (at the end of the 12th week; the rats were fasted overnight but were pro-
vided with free access to water, and the blood from tail tip was used to examine the levels of
glucose, insulin and triglycerides) [34,35]. All data were expressed as the means±SE. Student's
t-test was used for comparisons between the control and IR rats. One-way ANOVA followed
by the Bonferroni test for post hoc analysis was used for multiple comparisons. P<0.05 was
considered to be statistically significant.

Results

Metabolic data
It has been reported that the fructose-fed rat model develops hyperinsulinemia, IR, hypertrigly-
ceridemia, and mild hypertension [38]. The analyses of the effect of fructose feeding on the
plasma glucose, insulin, and triglyceride levels and HOMA-IR in the two groups are shown in
Table 1. At the end of the 12th week, the HOMA-IR was significantly increased in the IR
group compared with the Control group (P<0.05). The rats in the IR group met the HOMA-IR
threshold for IR [6.78±0.47 (IR) vs. 2.48±0.19 (Control), p<0.05]. For the present study, exper-
iments were performed on IR rats that met the criteria for IR based on the HOMA-IR. The
plasma glucose, insulin and triglyceride levels also significantly elevated in the IR group [glu-
cose: 6.21±0.49(mmol/l), insulin: 24.57±2.95 (μU/mL) and triglyceride: 131.7±9.12 (mg/dl)]
compared with Control rats [glucose: 4.99±0.21 (mmol/l), insulin: 11.20±1.23 (μU/mL) and
triglyceride: 52.02±3.45 (mg/dl); P<0.05 for each, Table 1].

Table 1. Metabolic characteristics of the Control and IR rats at the end of the 12th week.

Control IR

Plasma glucose (mmol/l) 4.99±0.21 6.21±0.49*

Plasma insulin (μU/ml) 11.20±1.23 24.57±2.95*

HOMA-IR 2.48±0.19 6.78±0.47*

Plasma triglyceride (mg/dl) 52.02±3.45 131.7±9.12*

The values are presented as the means±SE.

*P<0.05 compared with the Control group.

n = 6 for each group. IR: insulin resistance; HOMA-IR: homoeostasis model assessment of insulin

resistance. HOMA-IR = Fasting plasma insulin (μU/ml) x Fasting plasma glucose (mmol/l)/22.5.

doi:10.1371/journal.pone.0140762.t001

NO Synthases Mediate Sympathetic Activity

PLOS ONE | DOI:10.1371/journal.pone.0140762 October 20, 2015 7 / 18



General anatomical and haemodynamic characteristics
Hypertension can be induced by feeding a fructose-rich diet, demonstrating a link between
fructose ingestion and increased blood pressure (BP) [38]. In this study, the rats that consumed
fructose for 12 wks gradually developed mild hypertension (SBP: 142±8 mmHg) compared to
the Control rats (109±5 mmHg) (p<0.05). This hypertension was accompanied by an elevation
in MAP in the IR rats [123±9 (IR) vs. 97±6 mmHg (Control), p<0.05]. Heart weight and the
heart-to-body weight ratio, but not the body weight or the heart rate, of the fructose-fed rats
were significantly increased compared to the normally fed rats, as shown in Table 2. These
data agree with the characteristics of fructose intake in rats [34,35,39,40].

The levels of NE in plasma and of NOx in the PVN
The plasma NE level (Fig 1A), which was used to evaluate basal SNA, was increased in the IR
group compared to the Control group [45.2±5.7 (IR) vs. 27.6±4.3 (Control) ng/L, p<0.05, Fig
2A]. The NOx level is widely used as an index of the NO level [21]. The level of NOx in the
PVN in the Control and IR rats is presented in Fig 2B. The basal NOx content in the PVN was
significantly reduced in IR rats compared with Control rats (0.67±0.12 vs. 1.15±0.13 nmol/mg
protein, P<0.05).

The levels of nNOS, eNOS and iNOS protein expression in the PVN
Representative Western blot analysis of total endogenous nNOS, eNOS and iNOS protein
expression in the PVN from Control and IR rats is shown in Fig 3. Compared with the Control
group, the levels of nNOS and eNOS protein expression in the PVN were significantly
decreased in the IR group [relative to GAPDH protein expression; nNOS: 0.93±0.15 (IR) vs.
1.45±0.10 (Control); eNOS: 1.40±0.13 (IR) vs. 1.95±0.17 (Control); P<0.05 for each, Fig 3A
and 3B], but the iNOS protein expression level was not significantly different between the two
groups [iNOS: 0.29±0.04 (IR) vs. 0.28±0.05 (Control), P>0.05, Fig 3C].

Effects of L-NAME and SNP on basal SNA in the PVN and MAP
The peak pressor and sympathoexcitatory responses to the microinjection of L-NAME into the
PVN occurred approximately 5–15 min after the injection, and the peak depressor and sym-
pathoinhibitory responses to the microinjection of SNP into the PVN occurred approximately
5–10 min after the injection. The microinjection of the non-selective NOS inhibitor L-NAME

Table 2. Anatomic and hemodynamic characteristics of the Control and IR rats at the end of the 12th
week.

Control IR

BW (g) 515±26 532±29

HW (mg) 1201±43 1679±71*

HW/BW (mg/g) 2.33±0.09 3.15±0.20*

Heart rate (beats/min) 345±21 364±25

SBP (mmHg) 109±5 142±8*

MAP (mmHg) 97±6 123±9*

IR: insulin resistance; HW: heart weight; BW: body weight; SBP: systolic blood pressure; MAP: mean

arterial pressure. n = 6 for each group. The values are presented as the means±SE.

*P<0.05 compared with the Control group.

SBP was measured in the conscious state, and MAP and HR were determined under anesthesia.

doi:10.1371/journal.pone.0140762.t002
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into the PVN significantly elevated baseline RSNA and MAP in the Control and IR rats (Fig 4,
lower panel). The microinjection of the NO donor SNP into the PVN significantly lowered

Fig 2. The plasma NE and NOx levels in the PVN at the end of the 12th week in the Control and IR rats. The values are presented as the means±SE;
n = 8 for the plasma NE level and n = 6 for the PVN NOx level for each group. *P<0.05 vs. the Control group. PVN: paraventricular nucleus; IR: insulin
resistance.

doi:10.1371/journal.pone.0140762.g002

Fig 3. Relative levels of nNOS, eNOS, and iNOS protein expression in the PVN at the end of the 12th week in the Control and IR rats. The values are
presented as the means±SE. *P<0.05 vs. the Control group. n = 4 for each group. PVN: paraventricular nucleus; IR: insulin resistance.

doi:10.1371/journal.pone.0140762.g003
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baseline RSNA and MAP in the Control and IR groups (Fig 5, lower panel). However, these
responses to LAME and SNP in the IR rats were smaller than those in the Control rats. All val-
ues for the changes in baseline RSNA and MAP in response to saline and high-dose L-NAME
and SNP in the Control and IR rats are shown in Table 3, and representative traces of the
RSNA and MAP responses to LAME or SNP injection into the PVN in the Control and IR
group are presented (Figs 4 and 5, upper panel).

Fig 4. Effects of the microinjection of saline or the non-selective NOS inhibitor L-NAME (50 nmol, 100 nmol) into the PVN on baseline RSNA and
MAP in the Control and IR rats.Upper panel: Representative traces demonstrating the effects of saline and L-NAME injection into the PVN on baseline
RSNA and MAP in the Control and IR rats. Lower panel: Percent change in RSNA and MAP after the administration of saline or L-NAME to the PVN of the
Control and IR rats. The values are presented as the means±SE. *P<0.05 vs. saline. #P<0.05 vs. the Control group. n = 6 for each dosage. Each rat only
received two injections namely saline and L-NAME infusion on either side of the PVN, and 18 Control rats and 18 IR rats were used in this experiment. PVN:
paraventricular nucleus; RSNA: renal sympathetic nerve activity; MAP: mean arterial pressure.

doi:10.1371/journal.pone.0140762.g004
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Effects of injecting the selective nNOS inhibitor N-Propyl, the selective
eNOS inhibitor L-NIO or the selective iNOS inhibitor SMT into the PVN
on baseline SNA and MAP
The peak pressor and sympathoexcitatory responses to the microinjection of N-propyl or
L-NIO into the PVN occurred approximately 5–10 min after the injection. The microinjection
of either the selective nNOS inhibitor N-Propyl or the selective eNOS inhibitor L-NIO into the
PVN markedly elevated baseline RSNA and MAP in both groups, but these responses were
smaller in IR rats than in Control rats (Figs 6 and 7). However, no significant alteration in
baseline RSNA or MAP was observed between the two groups following the microinjection of
the selective iNOS inhibitor SMT into the PVN (Fig 8). All values for the baseline RSNA and

Fig 5. Effects of the microinjection of saline or the NO donor SNP (25 nmol, 50 nmol) into the PVN on baseline RSNA andMAP in the Control and IR
rats.Upper panel: Representative traces demonstrating the effects of saline and SNP injection into the PVN on baseline RSNA and MAP in the Control and
IR rats. Lower panel: Percent change in RSNA and MAP after the administration of saline or SNP to the PVN in the Control and IR rats. The values are
presented as the means±SE. *P<0.05 vs. saline. #P<0.05 vs. the Control group. n = 6 for each dosage. Each rat only received two injections namely saline
and SNP infusion on either side of the PVN, and 12 Control rats and 12 IR rats were used in this experiment. PVN: paraventricular nucleus; RSNA: renal
sympathetic nerve activity; MAP: mean arterial pressure.

doi:10.1371/journal.pone.0140762.g005
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MAP responses to high-dose N-propyl, L-NIO and SMT in the Control and IR rats are shown
in Table 3. The microinjection of L-NAME, SNP, Nω-propyl, SNP, L-NIO or SMT outside the
PVN did not change basal SNA (data not shown).

Table 3. Changes in baseline RSNA (%) andMAP (mmHg) in response to the microinjection of saline,
L-NAME (100 nmol), SNP (50 nmol), Nω-propyl (5 nmol), L-NIO (50 nmol) or SMT (500 pmol) into the
PVN of the Control and IR rats.

Control IR

Saline; L-NAME (ΔRSNA) 0.62±0.94; 21.3±2.7* 0.58±1.11; 10.0±2.1*,#

Saline; L-NAME (ΔMAP) 0.50±1.06; 11.7±1.0* -0.31±1.24; 5.8±1.0*

Saline; SNP (ΔRSNA) 0.62±0.94; -19.2±1.9* 0.58±1.11; -8.9±1.3*, #

Saline; SNP (ΔMAP) 0.50±1.06;–12.2±2.0* -0.31±1.24; -8.5±1.8*

Saline; Nω-propyl (ΔRSNA) 0.62±0.94; 16.0±2.4* 0.58±1.11; 8.1±1.3*, #

Saline; Nω-propyl (ΔMAP) 0.50±1.06; 9.3±1.5* -0.31±1.24; 4.7±1.3*, #

Saline; L-NIO (ΔRSNA) 0.62±0.94; 9.8±1.4* 0.58±1.11; 3.7±0.8*, #

Saline; L-NIO (ΔMAP) 0.50±1.06; 4.8±0.9* -0.31±1.24; 1.3±0.9#

Saline; SMT (ΔRSNA) 0.62±0.94; 0.95±1.03 0.58±1.11; 0.05±1.30

Saline; SMT (ΔMAP) 0.50±1.06; 0.36±1.31 -0.31±1.24; 0.13±1.00

The values are expressed as the means±SE. n = 6 for each group.

*P<0.05 vs. saline.
#P<0.05 vs. the Control group.

PVN: paraventricular nucleus; RSNA: renal sympathetic nerve activity; MAP: meanarterial pressure; IR:

insulin resistance. For each side of the PVN, the microinjection volume was 50 nL for each chemical used

in this study. Baseline RSNA and MAP were determined based on a 2-min average of their maximal

response after PVN microinjection.

doi:10.1371/journal.pone.0140762.t003

Fig 6. Effects of the microinjection of saline or the selective nNOS inhibitor N-Propyl (0.5 nmol, 5 nmol) into the PVN on baseline RSNA andMAP in
the Control and IR rats. PVN: paraventricular nucleus; RSNA: renal sympathetic nerve activity; MAP: mean arterial pressure; IR: insulin resistance. n = 6 for
each dosage. Each rat only received two injections namely saline and N-Propyl infusion on either side of the PVN, and 12 Control rats and 12 IR rats were
used in this experiment. The values are presented as the means±SE. *P<0.05 vs. saline. #P<0.05 vs. the Control group.

doi:10.1371/journal.pone.0140762.g006
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The dimeric to monomeric nNOS and eNOS expression ratios in the
PVN
The decrease in the NO level in the PVN of IR rats may be related to the reduced nNOS and
eNOS activity levels in the PVN. Thus, we examined the expression ratios of dimeric to mono-
meric nNOS and eNOS, which reflect the nNOS and eNOS activity levels, in the PVN of Con-
trol and IR rats. The active homodimeric form of nNOS and eNOS is necessary for NO
synthesis, and the activity levels of nNOS and eNOS can be determined by evaluating dimeric/

Fig 7. Effects of the microinjection of saline or the selective eNOS inhibitor L-NIO (5 nmol, 50 nmol) into the PVN on baseline RSNA and MAP in the
Control and IR rats. PVN: paraventricular nucleus; RSNA: renal sympathetic nerve activity; MAP: mean arterial pressure; IR: insulin resistance. n = 6 for
each dosage. Each rat only received two injections namely saline and L-NIO infusion on either side of the PVN, and 12 Control rats and 12 IR rats were used
in this experiment. The values are presented as the means±SE. *P<0.05 vs. saline. #P<0.05 vs. the Control group.

doi:10.1371/journal.pone.0140762.g007

Fig 8. Effects of the microinjection of saline or the selective iNOS inhibitor SMT (250 pmol, 500 pmol) into the PVN on baseline RSNA and MAP in
the Control and IR rats. PVN: paraventricular nucleus; RSNA: renal sympathetic nerve activity; MAP: mean arterial pressure; IR: insulin resistance. n = 6 for
each dosage. Each rat only received two injections namely saline and SMT infusion on either side of the PVN, and 12 Control rats and 12 IR rats were used in
this experiment. The values are presented as the means±SE.

doi:10.1371/journal.pone.0140762.g008
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monomeric expression ratio [36]. We found that the dimeric/monomeric expression ratios
were significantly lower in IR rats than in Control rats (nNOS: 1.10±0.18 vs. 2.15±0.24; eNOS:
1.03±0.11 vs. 1.63±0.15; P<0.05 for each, Fig 9).

Discussion
The findings in this study indicate that in IR rats, we observed 1) a decreased level of NO in the
PVN that can be represented by the reduced NOx level (Fig 2B), 2) a reduced protein level of
nNOS and eNOS in the PVN, 3) an increase in basal SNA in response to the microinjection of
the non-selective NOS inhibitor L-NAME into the PVN, 4) a decrease in basal SNA in response
to the microinjection of the NO donor SNP, and 5) an increase in RSNA and MAP in response
to the microinjection of either the selective nNOS inhibitor N-Propylor the selective eNOS
inhibitor L-NIO into the PVN. The basal SNA responses to L-NAME, SNP, N-Propyl and
L-NIO were smaller in IR rats than in Control rats. Moreover, IR rats displayed a lower
dimeric/monomeric expression ratio of nNOS and eNOS. These data suggest that endogenous
nNOS and eNOS are involved in the modulation of SNA and that the decreased protein expres-
sion and activity levels of nNOS and eNOS may be a major cause of NO deficiency in the PVN,
resulting in elevated SNA during IR.

NO not only acts as a neuronal messenger but also performs various physiological func-
tions, including acting as a nonconventional neurotransmitter to modulate SNA [19,24,25,41–
43]. Recent findings have suggested that endogenous NO in the PVN participates in the modu-
lation of SNA based on the direct detection of RSNA [21,25,24]. For instance, decreased NO
content in the PVN results in sympathetic activation during hypertension and diabetes
[21,23,29]. Therefore, it can be speculated that the decreased or increased production of NO in
the PVN promotes or inhibits sympathetic overdrive, respectively, during IR. In this study,
there was a decreased NO content in the PVN in IR rats, but the plasma NE level was increased,

Fig 9. The dimeric/monomeric expression ratio of nNOS (A) and eNOS (B) in the PVN in the Control and IR rats. The values are presented as the
means±SE. *P<0.05 vs. the Control group. n = 4 for each group. PVN: paraventricular nucleus; IR: insulin resistance.

doi:10.1371/journal.pone.0140762.g009
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and high dosage of L-NAME in the PVN did not cause stronger effect on SNA, which indicate
that NO decrease in the PVN does not suppress the sympathetic overdrive sufficiently in IR.
To elucidate the role of PVN NO in the regulation of SNA, we administered L-NAME or SNP
to the PVN. Although L-NAME and SNP can cause a significant increase and decrease in SNA
in IR rats, respectively, we found that their effects on IR rats were smaller than those on normal
rats by comparison andthis effect was not strengthened by using larger dosage of L-NAME or
SNP in the PVN. These blunted responses in IR rats are probably due to reduced NO or
depressed neuronal response to NO that may be affected by oxidative stress or inflammation.
However, the precise downstream mechanisms remain to be determined.

At present, more attention has been paid to the role of PVN nNOS than to eNOS or iNOS
in sympathetic modulation [20,22,26,27]. To demonstrate the roles of PVN nNOS, eNOS and
iNOS in the regulation of sympathetic tone, we applied selective inhibitors of nNOS, eNOS and
iNOS into PVN. The identical inhibitory phenomenon observed for L-NAME was observed
for nNOS inhibitor (N-Propyl) and eNOS inhibitor (L-NIO) microinjection into the PVN in
IR rats. However, regarding iNOS inhibition using an iNOS inhibitor (SMT), we did not
observe any significant change in basal SNA in the Control or IR rats. These findings suggest
that nNOS and eNOS, but not iNOS, are involved in sympathetic modulation in the PVN but
that their abilities to inhibit sympathetic activation were weakened in the IR state. In addition,
we detected significant decreases in nNOS and eNOS protein expression in the PVN of IR rats,
whereas no significant change in iNOS protein expression was observed between the IR and
Control rats. Moreover, lower nNOS and eNOS protein levels were accompanied by corre-
sponding changes in nNOS and eNOS activity (the dimeric/monomeric expression ratio of
nNOS and eNOS was examined as an indicator of their activity). Therefore, the decrease in
nNOS and eNOS protein expression and activity may be a major cause of the reduction in NO
content in the PVN of IR rats.

The NOSs are homodimeric enzymes that generate NO, but under certain conditions,
nNOS and eNOS may dissociate into their monomeric form, which causes the production of
superoxide [44,45]. We recently found that superoxide anions in the PVN can cause sympa-
thetic activation and they can react with and inactivate NO in the PVN, thereby regulating
SNA, in obese rats (data not published). Furthermore, the excessive superoxide anion levels in
the PVN participated in enhanced SNA in IR rats [34]. Thus, it is possible that the reduced
generation of NO in the PVN partly promotes superoxide anion-induced sympathoexcitation
during IR. Based on this study, it can be postulated that decreased protein expression and low
activity levels of nNOS and eNOS in the PVN result in decreased NO content, which further
facilitates the elevation of SNA in IR rats. NO may act indirectly in the PVN by affecting the
release of other neurotransmitters such as GABA and glutamic acid [24,25,46]. Therefore, it is
possible that a reduction in the NO content diminishes neuronal activity, resulting in a
decrease in the release of inhibitory neurotransmitters such as GABA in the PVN in the IR
state. Alternatively, the responsiveness of neurons to NOmay be reduced in the IR state. There-
fore, these unresolved issues need to be investigated in future studies.

Many disease states related to sympathetic overdrive, such as hypertension, HF, diabetes
and obesity, may be associated with altered NO system function in the central nervous system
[14–17,29]. The present study demonstrated that an altered NO system in the PVN is involved
in sympathetic activation in the IR state. The overexpression of the nNOS gene in the PVN sig-
nificantly alleviated the elevation in SNA in HF model rats [20]. The genetic deletion of eNOS
in diabetic mice resulted in advanced and progressive nephropathy [47]. Furthermore, the
knockout of both the eNOS and nNOS genes in mice caused spontaneous IR based on hyperin-
sulinemic-euglycemic clamp studies [48]. These findings indicated that nNOS and eNOS in the
PVN may represent potent targets for inhibiting sympathetic activation during IR.
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In summary, the present study provides evidence indicating that a specific central malfunc-
tion (the NO system in the PVN) results in altered SNA during IR. The reduction of NO gener-
ation in the PVN caused weakened sympathoinhibition in IR rats, and this alteration may
contribute to the elevation of SNA observed in metabolic syndrome, diabetes mellitus and obe-
sity. Therefore, our findings support the possibility of an intervention such as scavenging
superoxide with tempol (superoxide dismutase mimetic), then gene transfer of nNOS or eNOS
for increasing NO content to inhibit sympathetic activation and prevent the progression of
complications related to the diseases mentioned above.
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