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Abstract

TIM-3 (T cell immunoglobulin and mucin-domain containing protein 3) is a member of the
TIM family of proteins that is preferentially expressed on Thy polarized CD4" and CD8* T
cells. Recent studies indicate that TIM-3 serves as a negative regulator of T cell function
(i.e. T cell dependent immune responses, proliferation, tolerance, and exhaustion). Despite
having no recognizable inhibitory signaling motifs, the intracellular tail of TIM-3 is apparently
indispensable for function. Specifically, the conserved residues Y265/Y272 and surround-
ing amino acids appear to be critical for function. Mechanistically, several studies suggest
that TIM-3 can associate with interleukin inducible T cell kinase (ITK), the Src kinases Fyn
and Lck, and the p85 phosphatidylinositol 3-kinase (PI3K) adaptor protein to positively or
negatively regulate IL-2 production via NF-kB/NFAT signaling pathways. To begin to
address this discrepancy, we examined the effect of TIM-3 in two model systems. First, we
generated several Jurkat T cell lines stably expressing human TIM-3 or murine CD28-ECD/
human TIM-3 intracellular tail chimeras and examined the effects that TIM-3 exerts on T cell
Receptor (TCR)-mediated activation, cytokine secretion, promoter activity, and protein
kinase association. In this model, our results demonstrate that TIM-3 inhibits several TCR-
mediated phenotypes: i) NF-kB/NFAT activation, ii) CD69 expression, and iii) suppression
of IL-2 secretion. To confirm our Jurkat cell observations we developed a primary human
CD8" cell system that expresses endogenous levels of TIM-3. Upon TCR ligation, we
observed the loss of NFAT reporter activity and IL-2 secretion, and identified the association
of Src kinase Lck, and PLC-y with TIM-3. Taken together, our results support the conclusion
that TIM-3 is a negative regulator of TCR-function by attenuating activation signals medi-
ated by CD3/CD28 co-stimulation.
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Introduction

Immune check-point receptors expressed on T cells have emerged as important targets for the
development of cancer immunotherapies (rev. in [1, 2]). In response to viral or bacterial anti-
gens, the concerted interplay between effector CD8", antigen-expressing, cytotoxic T-lympho-
cytes, and helper CD4" T cells, ensure clearance of infection. Under physiological conditions,
immune checkpoints proteins serve to attenuate and/or eliminate sustained immune cell acti-
vation, thus regulating normal immune homeostasis. However, during chronic infections and
cancer, a sustained state of T cell dysfunction emerges in which the normal effector functions
of individual T cell subsets are lost. Referred to as T cell exhaustion, this phenotypic change is
characterized by a gradual loss in cytokine secretion, mainly IFN-y, TNF-o,, IL-2, and an
increase in inhibitory receptors, CTLA-4, PD-1, LAG-3, and TIM-3, which eventually results
in a loss of function (rev. in [3]). In the context of cancer, the deregulated expression of check-
point receptors serves as an important mechanism of cancer cell immune resistance. Much
attention has focused on targeting the CTLA-4 and PD-1 pathway, including the receptor and
its cognate ligands PD-L1/L2, as potential immunotherapy due mostly in part to its broad
expression on immune cells, their function within the tumor microenvironment [4, 5] and its
well characterized role in the TCR signaling pathway [6-11].

Several studies have demonstrated that TIM-3 is co-expressed with PD-1, both in the con-
text of virally infected CD8" T cells [12-14] and on tumor-infiltrating lymphocytes in mela-
noma and leukemia [15-17]. TIM-3 was originally identified on mouse Th1 cells [18] and in
humans was shown to be expressed on activated CD4" [19], Th17 [20], CD8" T cells, and other
immune subsets [21]. To date, Galectin-9 has been identified as a ligand for TIM-3. Galectin-9
binding was shown to increase the apoptotic potential on TIM-3", IFN-y-secreting, murine
Th1, but not Th2 cells [22]. However, it is worth noting that in T cells derived from TIM-3
knock-out mice, galectin-9 mediated cell death of Th1 cells was not completely abolished [22].
In other studies involving human T cell lines (Jurkat and MOLT-4), galectin-9 also demon-
strated pleiotropic effects including apoptosis, Ca** flux, and the loss of mitochondrial mem-
brane potential [23]. Although TIM-3 expression was not confirmed in the study by Lu et al,
our internal results, and of others, suggest that TIM-3 is not endogenously expressed on quies-
cent Jurkat or MOLT-4 cells raising the distinct possibility that galectin-9 exerts effects through
alternative mechanism(s). Moreover, Leitner et al [24] showed that the addition of galectin-9
had no effect on apoptosis or proliferation in activated human T cells, which express TIM-3,
consistent with previous findings that galectin-9 induced apoptosis is independent of TIM-3
[25]. Other ligands have been shown to bind TIM-3, mainly phosphotidylserine (PS) and
HMGBI1. When expressed on phagocytic cells, TIM-3 recognizes apoptotic cells expressing PS,
thus supporting a role in phagocytosis [26] and its association with HMGBI has been shown to
interfere with nucleic acid-sensing systems [27], both of which are critical mediators of innate
immunity. Based on the association of TIM-3 with T cell exhaustion in multiple settings [12,
15, 28], and its co-expression with PD-1, TIM-3 has emerged as a potential target worth inves-
tigating for development of an anti-cancer immunotherapy [29, 30] (reviewed in [31, 32]).

In contrast to our understanding of how PD-1 inhibits T cell receptor (TCR) mediated acti-
vation (11), surprisingly very little is known about the role of TIM-3 in this process. The cyto-
plasmic tail of PD-1 contains two structural motifs, an ITIM (immunoreceptor tyrosine-based
inhibition motif) and ITAM (immunoreceptor tyrosine-based activation motif). Upon TCR
ligation, the phosphatases SHP-1 and SHP-2 are recruited within a signaling complex involving
PD-1 which serves as a negative regulator of T cell activation [8]. However, TIM-3 lacks
known structural motifs which could serve a similar function as noted for PD-1. Nonetheless, a
conserved tyrosine residue, Y265, located within the cytoplasmic tail of TIM-3, was shown to
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be phosphorylated by inducible T cell kinase (ITK) upon ligation with galectin-9 when TIM-3
was over-expressed in HEK-293T [33]. Disagreeing studies have emerged as to whether TIM-3
activates or suppresses T cell action. Lee et al, [34], using a transient murine TIM-3 expressing
Jurkat-T cell model system demonstrated that the tyrosine residues Y256/265 (Y265/272 in
humans) were critically important for the coupling of downstream signaling kinases, Fyn and
PI-3K p85a. subunit. The binding of these kinases to TIM-3 served to augment T cell activation
which could be blocked by antagonist antibody. Conversely, Lee et al, [35] contested this find-
ing by demonstrating that the presence of TIM-3 in both primary human CD4" and TIM-3
over-expressing Jurkat T cells was sufficient to attenuate NFAT activity with concomitant
decreased IL-2 secretion. Consistent with both of these findings is the observation that Y265/
272 appears to be required for TIM-3 function.

In order to gain a better understanding of TIM-3 function, we examined NFAT/NF-xB
reporter activity in both TIM-3 over-expressing, stable Jurkat T cells and MART-1 peptide
differentiated primary human CD8" model systems to address the role that TIM-3 serves in
regulating TCR signaling. Our results suggest that the expression of TIM-3 attenuates TCR-
induced signaling by specifically inhibiting NFAT reporter activity and down-regulation of IL-
2 through a complex signaling network involving Lck and PI-3 kinases, and many other scaf-
fold/adaptor proteins.

Results
TIM-3 suppresses TCR-mediated NFAT/NF-kB reporter activity

A conflicting paradigm has emerged in which TIM-3 expression has been shown to positively
regulate NF-kB [34] and negatively regulate NFAT [35] reporter activity in the Jurkat T cell
system. Given this, we sought to clarify these somewhat paradoxical results and address how
TIM-3 could intersect signaling pathways originating from the TCR following receptor liga-
tion. Moreover, to avoid aberrant activation associated with transfection methods, we chose to
establish a Jurkat-TIM-3 cell line in a stable, lentivirally- transduced, NF-kB-GFP reporter Jur-
kat T cell line. These cells were transfected with a full-length plasmid encoding TIM-3, sorted
for high level of TIM-3 expression, and expanded to obtain a stable Jurkat-NF-xB-GFP-TIM-3
cell line (Fig 1A). Subsequent studies with repeated transfection of siRNA and the removal of
antibiotics failed to ablate TIM-3 expression, indicating that this is a stable pool of cells (data
not shown). We then addressed the phenotype of TCR-mediated NF-«B activity in the pres-
ence of TIM-3. Jurkat-NF-« B-GFP-TIM-3 were stimulated overnight with cell stimulation
cocktail (CSC), a mixture of the phorbol ester, PMA, and the calcium ionophore, ionomycin,
or CD3/CD28 beads and GFP expression was monitored by imaging on the Acumen eX3 Sys-
tem and in real-time using the Incucyte (data not shown). As shown in Fig 1B (left panel),
stimulation with the non-specific activator PMA/Ionomycin was able to induce GFP expres-
sion in both parental and TIM-3 expressing cells. Interestingly, when cells were stimulated
with anti-CD3/CD28 beads, we saw a near complete suppression of NF-«B activity as evi-
denced by the loss of GFP expression in the Jurkat-NF-kB-GFP-TIM-3 cells. Next, we
addressed NFAT reporter activity in the same cells as that used to assess NF-«B activity.
Because the NFAT-luciferase reporter is a sensitive, enzymatic-based assay, we transiently
transfected both parental and the Jurkat-NF-xB-GFP-TIM-3 with the pGL4.3-NFAT-luc plas-
mid and repeated the same stimulation conditions. Optimization of luciferase expression was
previously determined and found to be maximal at ~6h post stimulation (data not shown).
Consistent with the results for NF-kB, we observed inhibition of NFAT reporter activity when
TIM-3 was present (Fig 1B, right panel). Interestingly we saw attenuated NFAT activity in
PMA/Ionomycin treated cells and near complete suppression in anti-CD3/anti-CD28 bead
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Fig 1. Ectopic TIM-3 expression suppresses TCR-induced activation of NF-kB and NFAT. (A) Flow
cytometric analysis of stably transfected, sorted pools shows expression of TIM-3 on the surface of cells. (B)
Cells were stimulated with Cell Stimulation Cocktail or anti-CD3/CD28 beads and NF-kB activity, as
determined by GFP expression, was measured on an Accumen (left panel). NFAT activation was monitored
by transient transfection of cells with NFAT-luciferase reporter plasmid. 72h post-transfection, cells were
stimulated and luciferase activity was monitored after 6h using the One-Glow Assay System (right panel).
Results are presented as fold change over base line. Results shown in panels B are the average + SD for
quadruplicate samples from a single experiment, representative of at least three independent experiments.
(*, P <0.01; ns: not significant as determined by two-way t-test).

doi:10.1371/journal.pone.0140694.g001

stimulated cells. Taken together, our results suggest that TIM-3 interrupts downstream signals
originating from the TCR.

Measurements of Ca2* flux, cytokine changes and T cell activation in
response to TCR stimulation

The release of calcium is required for the activation of both NFAT [36] and NF-xB activation
[37]. Moreover, as previously shown, addition of a known TIM-3 ligand, Galectin-9, to
polarized murine T},1, T cells, induced calcium flux which was substantially reduced in TIM-3
deficient cells [22]. Towards this end, we sought to address whether the attenuation in NFAT/
NF-kB reporter activity caused by TIM-3 was due to a lack of Ca** flux upon TCR ligation. We
measured calcium changes using calcium-sensitive dye, Cal-520 AM in both parental and Jur-
kat-NF-xB-GFP-TIM-3 fluorescent treated with PMA/Ionomycin, or anti-CD3/CD28 beads
(Fig 2, panel A), or combined soluble antibodies to CD3 (clone OKT3) and CD28 (clone
CD28.2) (Fig 2, panel B). As shown, the presence of TIM-3 did not affect Ca®* flux in cells
stimulated with PMA/Ionomycin, anti-CD3/CD28 beads, or anti-CD3 (OKT4). It appears the
major contributor to calcium flux change in this assay system was through CD3 (Fig 2, Panel
C) and not through CD28 (Fig 2, panel D). Nonetheless, whether we added anti-CD3/CD28
beads or soluble antibodies, we saw similar changes in Ca>" levels in either case, and the pres-
ence of TIM-3 did not affect this process as controls were unchanged.

An immediate early marker of T cell activation is the rapid expression of CD69. Given that
TIM-3 blocked reporter activity only in the presence of CD3/CD28, we next addressed whether
this resulted in a loss of CD69 expression. Rapid expression of the immediate early T cell
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Fig 2. Ectopic Expression of TIM-3 does not suppress CD3/CD28 induced Ca®* Flux. (A) Cells pre-loaded with the fluorescence, calcium-sensitive dye,
Cal-520 AM were treated with PMA/lonomycin, or anti-CD3/CD28 beads, (B) soluble anti-CD3 (OKT3) and anti-CD28 (CD28.2), (C) OKT3 only or (D)
CD28.2 only. Calcium flux was measured immediately, in real-time, using the FDSS/uCELL kinetic plate reader. Results are presented as the average ratio
of Max-Min for Ex480:Em540, for quadruplicate replicates + SD, representative of at least three independent experiments.

doi:10.1371/journal.pone.0140694.9002

activation antigen gene, CD69, could help delineate the signaling mechanism as this gene con-
tains responsive elements for several transcription factors including NFAT and NF-xB. In both
parental and Jurkat-NF-xB-GFP-TIM-3 cells stimulated with PMA/Ionomycin we observed in
the rapid induction of CD69 expression in both parental and TIM-3" (Fig 3A, right panel),
however, when cells were stimulated with anti-CD3/CD28 beads (Fig 3A, left panel), only the
parental cells were able to induce the expression CD69.

Cytokine expression profile between parental and TIM-3 expressing cells was examined for
anti-CD3/CD28 and PMA/Ionomycin stimulated cells. Consistent with previous findings [35]
we observed inhibition of IL-2, sCD40L, IFN-, and IL-3/GM-CSF in TIM-3" cells (Fig 3B, left
panel). Likewise, we observed equal expression of IL-2, IFN-q, IL-3, and GM-CSF for both
parental and TIM-3 cells with treated with cell stimulation cocktail (Fig 3B, right panel). It is
interesting to note that addition of CSC to TIM-3 expressing Jurkat’s reduced the expression of
sCD40L. Previous reports have shown that Jurkat cells expressing high levels of sCD40L
also showed reduced levels of sCD40L expression following PMA stimulation. The authors
suggest the suppression is dependent on protein kinase C activity [38]. For the other cytokines
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Fig 3. Ectopic Expression of TIM-3 Suppresses CD69 expression and IL-2 secretion. (A) Parental or TIM-3 over-expressing Jurkat T cells were
stimulated over night with anti-CD3/CD28 beads or Cell Stimulation Cocktail. Flow cytometric analysis was performed using a CD69-PE conjugated antibody

test).

doi:10.1371/journal.pone.0140694.9003

as a positive control and IgG-PE isotype for negative control staining. Red: CD69 for Jurkat-parental; Blue: CD69 for Jurkat-TIM3; Black: Isotype. (B) Cells
were stimulated under the same conditions, supernatant was collected and subjected cytokine multiplex analysis. Data represents fold change in observed
cytokines for quadruplicate replicates + SD, representative of at least three independent experiments. (¥, P <0.01; ** P < 0.05 as determined by two-way t-

contained in the multiplex panel we did not observe expression of IFN-y, TNF-o or TNF-f and
saw similar levels of expression for IL-1Ra,, IL-8, MIP-10, and MIP-1 following anti-CD3/

CD28 bead stimulation (data not shown). Taken together, these results indicate that the TIM-3
suppresses down-stream effector functions following TCR engagement.

PLOS ONE | DOI:10.1371/journal.pone.0140694 October 22, 2015

6/21



@’PLOS ‘ ONE

TIM-3 Suppresses TCR-Induced Signaling

The cytoplasmic tail of TIM-3 is sufficient to block TCR-mediated
activation

The use of chimeric receptors to gain an understanding of the importance of specific domains
within TIM-3 proteins that are required for function has been previously shown [34, 35]. The
combined results of these findings indicate that the cytoplasmic tail and more specifically two
conserved tyrosine residues at positions 265 & 272 are required for TIM-3 function. Based on
these observations, we generated 3 chimeric TIM-3 molecules (cTIM-3) that expresses the extra-
cellular and transmembrane domain of murine CD28 (AA 1-177) fused in-frame with the cyto-
plasmic tail of human TIM-3 (AA 225-301), 1) wt cTIM-3, 2) a signaling null Y265A/Y272A
cTIM-3aa, and 3) a phosphomimetic Y265E/Y272E (cTIM-3ee). To generate stable cell lines,

we transfected these plasmids into Jurkat-NF-xB-GFP cells, sorted for high expressors, and
expanded the pool to obtain stable Jurkat-NF-xB-GFP chimeric cell lines. Flow cytometry analy-
sis using an anti-murine CD28 antibody confirmed the expression of all of the chimeras on the
surface of cells (Fig 4A). It is worth noting that comparable expression levels between full-length
TIM-3 (Fig 1A) and the chimeras were achieved. We next addressed whether the presence of the
cytoplasmic domain was sufficient to suppress TCR-mediated activation of the NF-xB/NFAT
reports. As shown in Fig 4B, anti-CD3/CD28 bead stimulation of the TCR resulted in complete
suppression of NF-kB reporter activity for both full-length TIM-3 as well as all of the chimeras.
To assess NFAT activity, we transiently expressed the NFAT-luciferase plasmid into these cells
and repeated the stimulation. Interestingly, we found that cells expressing the cTIM-3aa were
unable to block TCR-induced NFAT activation. All of the receptors expressing either TIM-3,
cTIM-3 or cTIM-3ee completely suppressed TCR-mediated NFAT activation (Fig 4C). Interest-
ingly, we found that cells expressing the TIM-3 signaling null chimera (Y265/272A) were unable
to block TCR-induced NFAT activation. As a positive control, we observed no suppression of
either reporter when cells were treated with PMA/Ionomycin suggesting that the inhibitory prop-
erties of TIM-3 are specific for TCR-mediated signaling. It is worth noting that we consistently
observed lower NFAT activity in Jurkat-TIM-3 cells treated with either stimulus as compared to
NEF-kB, suggesting that the TIM-3 plays an important role in regulating NFAT activity.

Identification of proteins associated with TIM-3 cytoplasmic tail

In an effort to understand and map out the mechanism of TIM-3 mediated signal inhibition,
several strategies were employed to identify proteins that interact with the TIM-3 cytoplasmic
tail. Previous reports have suggested roles for the p85a phosphatidylinositol 3-kinase (PI-3K)
adaptor, the Src kinases Fyn [34] and Lyn [39, 40] and the interleukin inducible T cell kinase
(ITK) [33] in mediating TIM-3 function. Similar to the approach taken by Lee, et al [34], we
generated both biotinylated; tyrosine phosphorylated or unphosphorylated peptides, corre-
sponding to the amino acid sequences surrounding Y265/Y272. These peptides were submitted
for Small Molecule-Protein Interaction (SMI), a profiling service that identifies interactions
between the peptides and 9,000 human proteins spotted on Life Technologies ProtoArray®).
Of the many hits identified by this method, a strong interaction between the phosphorylated
TIM-3 peptide and the p85c. PI-3K subunit was observed (data not shown). In parallel, we per-
formed an ELISA-based SH2 domain profiling assay that measures the interaction of peptides
against an array of 46 SH2 domain-containing proteins spotted on a 96-well plate (Signosis,
Santa Clara, CA). Interestingly, this method again identified a positive interaction with the
p850. PI-3K subunit as well as other intriguing candidate proteins: the adaptor proteins lym-
phocyte-specific Adapter Protein (LNK), 3BP2 (SH3BP2) and SH2D2A, the Src kinase Lck,
and Phospholipase C (PLCy1) (data not shown). Even though the SH2 domain of Fyn was con-
tained within this array, we did not observe a positive interaction, this could possibly be due to
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Fig 4. The cytoplasmic domain of human TIM-3 suppresses TCR-induced NF-kB and NFAT Activity.
(A) Flow cytometric analysis demonstrating the relative cell surface expression of chimeric protein using an
anti-murine CD28 antibody for detection. (B) Cells were stimulated overnight with anti-CD3/CD29 beads or
Cell Stimulation Cocktail, NF-kB activity was measured by monitoring GFP expression. (C) Using similar
stimulation conditions, NFAT activity was measured 6 hours post-stimulation. Data represents fold change in
reporter activity for quadruplicate replicates + SD, representative of at least three independent experiments.
(*, P <0.01 as determined by two-way t-test).

doi:10.1371/journal.pone.0140694.g004
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the fact that we used human TIM-3 peptide sequences vs murine peptide sequences used previ-
ously [34].

To confirm that these proteins do in fact interact with TIM-3, we performed co-immuno-
precipitation (IP) analyses. TIM-3 peptides were mixed with Jurkat T cell lysate, peptide com-
plexes were pulled down using magnetic streptavidin-beads and subjected to western blot anal-
ysis using capillary electrophoresis on the Peggy system (Protein Simple, San Jose, CA). The
analyses were expanded to include not only the putative hits identified through Proto- and
SH2- array profiling, but kinases that were known to signal through the TCR. As shown in (S1
Fig), we identified a very large complex of proteins that was found to be associated with TIM-3
peptides. We confirmed the association of p85c. PI-3K subunit, 3BP2, SH2D2A, Fyn, Lck, Syk,
Akt, ZAP-70, and the MAP kinases p38 and JNK. A weak association was noted for PLCy1 and
LNK. No association was observed for the p85f PI-3K subunit, ERK, or IxB.

Given that the identification of these kinases was performed using peptides, we sought to
confirm if these candidate proteins could also be co-immunoprecipitated from primary human
CDS8*/TIM-3" T cells. Moreover, we also wished to assess what effect activation of the TCR
with CD3/CD28 beads would cause on the association of these kinases. To generate these cells,
CD8" T cells were antigen expanded with melanoma antigen recognized by T cells (MART-1)
peptide loaded onto artificial Antigen Presenting Cells aAPCs at a 1:10 ratio of aAPCs: T cells.
Following the conclusion of MART-1 stimulation, these cells were analyzed by flow cytometry
which indicated that approximately half of the cells were TIM-3", while all of the cells lacked
PD-1 expression (data not shown). MART-1" T cells expressing TIM-3 were stimulated for 15
minutes with anti-CD3/CD28 beads and both unstimulated and stimulated cell lysates were
collected. TIM-3 complexes were pulled down using a biotinylated, anti-TIM-3 polyclonal
antibody coupled to magnetic streptavidin beads and once again subjected to western blot anal-
ysis using capillary electrophoresis. Our results identified a very interesting, yet complicated,
signaling complex involving TIM-3 and several kinases previously shown to be involved in
TCR signaling [41]. In the basal state, we confirmed our results from peptide co-immunopre-
cipitation and identified the association of Vav-1, Akt, SLP-76, ZAP-70, Syk, P85a-PI-3K, Fyn,
and the adaptor proteins 3-BP2 and SH2D2A (T cell specific adaptor protein) with TIM-3 (Fig
5). Conversely, analysis of lysates from T cells that were activated through ligation of the TCR
with anti-CD3/CD28 beads exhibited a much different association pattern. First, the kinases
associated with TIM-3 under basal conditions (Vav-1, Akt, SLP-76, ZAP-70, Syk, P85c-PI-3K,
Fyn), no longer interacted with TIM-3. Second, activation resulted in the recruitment of the
Src family kinase, Lck, as well as enhanced association of PLC-y1 with TIM-3. As noted previ-
ously [34], we also did not see association of TIM-3 with P853-PI-3K subunit. Taken together,
these findings are intriguing. Thus, it appears, the primary step involved in the activation of the
TCR is Lck-induced phosphorylation of ITAM motifs within the CD3 subunits of the TCR
complex. The extent of ITAM phosphorylation is dependent upon Lck availability, which is
tightly regulated by several proteins, including SH2D2A [41]. Following phosphorylation of
CD3, recruitment of PLC-y1 mediates Ca** and diacylglyercol-induced responses resulting in
secondary messenger formation required for NFAT and AP-1 activity [42]. Therefore the
sequestration of both Lck and PLC-y1 by TIM-3 could serve as an inhibitory mechanism in
which TIM-3 negatively regulates critically important mediators following TCR activation.

TIM-3 Mediated Suppression of NF-kB and NFAT activity in
differentiated, primary human T cells

Previous studies indicated that tumor infiltrating lymphocytes (TILs) from mice bearing solid
tumors expressed TIM-3 within the CD8" fraction. Moreover, all of these TILs expressed PD-1
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Fig 5. TIM-3 Association with Intracellular Kinases in CD8"/MART-1* T cells. TIM-3 co-immunoprecipitation
analysis of unactivated and 15 min. stimulation with anti-CD3/CD28 beads (activated). Equivalent amounts of
protein (~2mg) were co-immunoprecipitated with pAb anti-TIM-3 antibody and western blot was performed using
capillary electrophoresis. Cleared lysate served as a loading control for individual antibody reactivity.

doi:10.1371/journal.pone.0140694.g005

and had an impaired ability to proliferate and produce IL-2, TNF-a and IFN-y [43]. These
findings were also confirmed in a mouse model of acute myelogenous leukemia [15]. Given the
importance of the NFAT and NF-«B transcription factors in TCR-induced signaling and the
combined observations that TIM-3 expressing cells have decreased IL-2 expression and NFAT
activity in PMA stimulated primary and Jurkat T cells [35], we evaluated whether TIM-3 sup-
presses transcriptional reporter activity in TIM-3", primary human CD8" T cells. To test this
hypothesis, we assessed the activity of NFAT/NF-«xB promoters and downstream IL-2, TNF-a,
and IFN-y secretion in TIM-3" cells as compared to naive, TIM-3" T cells. To assess reporter
activation we utilized chemiluminesence transcription factor assays to measure activity of both
the NF-xB p50/p65 subunits and NFAT-1. Briefly, naive donor CD8" and cognate MART-1
cells were stimulated with PMA/Ionomycin or anti-CD3/CD28 beads, lysates were collected,
and reporter activity was assessed. We examined the activity of both the p50 (Fig 6A) and p65
(Fig 6B) subunits of NF-kB and observed a significant decrease in NF-kB activity in the
MART-1 cells, consistent with our observations in the Jurkat-TIM-3 reporter system. Next we
examined the activity of NFAT in a similar type of reporter assay. The results demonstrated
that TIM-3 completely suppressed all NFAT activity to near unstimulated control levels in
both PMA/Ionomycin- and anti-CD3/CD28 bead-stimulated MART-1 cells (Fig 6C).

NFAT activation is mediated predominantly through cytokine signaling [36]. The promoter
for IL-2 harbors two high affinity NFAT-binding sites [44]. Given the lack of NFAT activation
in TCR activated, TIM-3" cells, we next addressed if this resulted in the downstream suppres-
sion of cytokine secretion. Supernatants from anti-CD3/CD28 bead stimulated cells were
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Fig 6. TCR-induced NF-kB/NFAT promoters and cytokine secretion in CD8*/MART-1* T cells. Cells
were stimulated overnight with cell stimulation cocktail (CSC) or anti-CD3/CD28 beads. Cell supernatents
and protein lysates were collected. To evaluate promoter activity, lysates were subjected to (A) NF-kB (left
panel: p50 sub-unit; right panel: p65 sub-unit) or (B) NFAT analysis. Data represents fold change in reporter
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doi:10.1371/journal.pone.0140694.g006

collected and subjected to Multiplex Cytokine Analysis (Millipore, Billerica, MA). As shown in
Fig 7, naive T cells exhibited robust induction of IL-2 in contrast to TIM-3" cells where very lit-
tle IL-2 secretion was observed. Since the T cell culture system requires supplemental IL-2
addition, a potential caveat is that we could be artificially measuring exogenous IL-2. However,
this is unlikely to be the case as the basal level of IL-2 in both naive and MART-1 cells were
similar. It is interesting to note that while we saw suppression of IFN-y in the Jurkat cell sys-
tem, we observed similar induction, irrespective of stimulus, between naive and MART-1 cells.
Moreover, we observed TNF-o produced by naive cells as compared to a loss in expression in
the MART-1 TIM-3" cells. These results confirm those previously noted on polarized Th1 cells
whereby it was demonstrated that human CD4" cells secreted higher levels of IFN-y and IL-2
when stimulated with anti-CD3/anti-CD28 beads but not TNF-a when TIM-3 was present
[19]. Taken together, our results suggest that the expression of TIM-3 serves to attenuate sig-
nals emanating from the TCR, specifically TIM-3 blocks NF-kB/NFAT promoter activities
resulting in the loss of downstream IL-2 secretion.

Discussion

The results presented herein demonstrate that TIM-3 serves a negative regulatory role in miti-
gating activation signals derived from the T cell receptor complex. In two model systems, i) Jur-
kat T cells over-expressing TIM-3 and ii) primary human T cells endogenously expressing
TIM-3, we show that TIM-3 attenuates NFAT reporter activity resulting in the loss of IL-2
secretion. Furthermore, these results suggest that mechanistically, upon stimulation with anti-
CD3 and anti-CD28 antibodies, TIM-3 is able to sequester the available pools of Lck and PLC-
v making them unavailable to carry out the necessary activation steps required for full TCR sig-
naling. Given that treatment of cells with anti-CD3 or anti-CD28 resulted in measurable
changes in calcium, irrespective of TIM-3 expression, our data are consistent with the model
that TIM-3 does not interact directly with CD3 or CD28 but rather regulates TCR function
through interactions involving intracellular kinases. This was further supported by our results
showing that the TIM-3 intracellular tail is the minimal requirement to exert these inhibitory
effects. In Jurkat T cells over-expressing a murine CD28 ECD fused in-frame with the human
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Fig 7. (C) Supernatents from stimulated cells were subject to multiplex analysis for evaluation of
cytokine secretion. Data shown for fold change in TNF-a, IFN-y, and IL-2 secretion, relative to unstimulated
control cells, for quadruplicate replicates, + SD. (¥, P < 0.01 as determined by two-way t-test).

doi:10.1371/journal.pone.0140694.g007

TIM-3 tail, the overall phenotype is similar to cells over-expressing full-length human TIM-3.
More importantly, we demonstrate that the introduction of specific point mutations within the
tail at Y265/273 A were able to restore NFAT activity, suggesting that these tyrosine residues
are critically important determinants for negative regulation by TIM-3. Lastly, our observa-
tions that TIM-3 only specifically inhibited anti-CD3/anti-CD28-, and not PMA/Ionomycin-
induced activation, lend further support to our conclusion that the expression of TIM-3 on the
surface of cells serves a basic function as a negative regulator of TCR signaling.

Evidence supporting the role of TIM-3 as a negative regulator of T cell function was also
provided by Sakuishi et al [45]. Their results demonstrated that a large majority of murine
intra-tumoral FOXP3" regulatory T cells (Tregs) are highly suppressive and co-express TIM3-
and PD-1. Those that are mostly TIM-3" were shown to support the development of exhausted
CD8" T cells and limit the expansion of effector T cells secreting IFN-y and TNF-o within the
tumor microenvironment. The synergistic effects of Treg depletion plus TIM-3 blockade
resulted in significant and sustained tumor regression with concomitant emergence of CD4"
and CD8" effector T cells that played a major role in mediating tumor regression. Moreover, in
other experimental murine model systems, it was shown that TIM-3 is co-expressed with PD-1
on CD8" tumor-infiltrating lymphocytes (TILs) in mice bearing solid tumors. Dual positive
TILs exhibited the most severe exhausted phenotype as defined by a failure to proliferate and
an inability to produce IL-2, TNF, and IEN-y. Furthermore, combined targeting of PD-1 and
TIM-3 with mAbs effectively controlled tumor progression than targeting either pathway indi-
vidually [43]. Furthermore, T cells derived from the cerebrospinal fluid of human patients with
multiple sclerosis secreted more IFN-y than T cells from normal controls. This coincided with
lower expression of TIM-3. The use of siRNA to ablate the expression of TIM-3 on CD4" cells,
ex vivo, resulted in enhanced cell proliferation and IFN-vy secretion [46]. Intracellular staining
of CD4™ T cells, derived ex vivo, stimulated with PMA/Ionomycin, demonstrated that the
TIM-3" fraction failed to produce IFN-y. Moreover, CD4"TIM-3" stimulated in vitro with
anti-CD3/anti-CD28 were found to be unresponsive, as measured by their inability to prolifer-
ate or to produce cytokines, mainly IL-2, IFN-vy, or IL-4 [19].

In order to understand how TIM-3 is able to negatively regulate T cell function, several
studies have investigated signaling pathways involved in TIM-3-mediated function. The first
mechanistic link provided by van de Weyer, et al., [33] demonstrated in a HEK 293T dual
expression system, the association of TIM-3 with the inducible T cell kinase (ITK) and that
ITK was able to specifically phosphorylate TIM-3 at Y265 upon engagement with the TIM-3
ligand, galectin-9. However, the significance of this finding is not yet completely understood,
solely because the association between TIM-3 and ITK and the potential functional role of this
interaction in T cell model systems has not been demonstrated. Lee et al. [35] showed that
CD4"TIM-3"8" ys TIM-3'" primary human T cells showed reduced IL-2 expression and in
stably TIM-3 transfected Jurkat T cells, observed reduced NFAT/AP-1 transcriptional activity
which was dependent on regions within the TIM-3 cytoplasmic tail, suggesting that the pres-
ence of TIM-3 on the surface of cells negatively regulates activation signals.

A conflicting report supporting the notion that TIM-3 acts as a positive regulator of T cell
function was provided by Lee, et al. [34]. Using Jurkat T cells expressing murine TIM-3 stably
or under the control of a tetracylcine-inducible system, the authors demonstrated that the
expression of TIM-3 upregulated NFAT/AP-1 and NF-xB reporter activity upon anti-TCR/
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CD28 antibody stimulation. Moreover, they suggest that the determinants of reporter activity
were dependent on tyrosine residues (Y256/263 in murine TIM-3) and the T cell adaptor pro-
teins ZAP-70 and SLP-76. However, it is worth mentioning that this model system employed
the use of almost exclusively murine protein: murine TIM-3 over-expressed in human T cells
and the murine T cell clone D10, and retroviral infection of primary murine T cells. Although
their results are in conflict with many other published observations suggesting that TIM-3
function as a negative regulator of T cell function, nonetheless, Lee et al does provide valuable
insight into a potential mechanism through which TIM-3 signals. Their results clearly demon-
strate the importance of several critically important kinases required for TCR signaling, mainly
the Src kinases Fyn and Lck, the adaptor proteins SLP-76 and ZAP-70, and PLC-y. In addition,
Lee et al [34] also showed that TIM-3 expression increases NF-kB-dependent transcription fol-
lowing TCR and CD28 stimulation. In our primary CD8" T cell model, we noticed that TIM-3
was able to inhibit NF-xB-dependent transcription. Even though we observed complete sup-
pression of NF-«xB in an over-expressing Jurkat T-TIM-3 model and not in primary human T
cells, one possible explanation for this discrepancy is that Jurkat cells lack PTEN (phosphatase
and tensin homologue) and SHIP (SH2-domain-containing inositol polyphosphate 5’ phos-
phatase) expression (rev. in [47]). Loss of PTEN expression results in activation of the PI-3K
pathway and ITK, hence, given the combined observations that these pathways appear to be
critically important for TIM-3 signaling one can suffice that studying TIM-3 function in a Jur-
kat model system has limitations.

Fyn and Lck Src kinases have emerged as important mediators of TIM-3 function. Lee et al.
[34] demonstrated the importance of these kinases in regulating TIM-3 function. The expres-
sion of TIM-3 resulted in the constitutive recruitment of Fyn, and when Lck was co-expressed
with TIM-3, stimulation of cells with anti-TCR/anti-CD28 mAbs resulted in more robust and
sustained phosphorylation of TIM-3. Moreover, the presence of TIM-3 enhanced the phos-
phorylation of PLC-y1 and MAP kinase ERK activation. In our primary human CD8*TIM-3
+ model system we demonstrate that upon treatment of cells with anti-CD3/anti-CD28 beads,
we were able to co-immunoprecipate a complex containing TIM-3, Lck, and PLC-y1 suggest-
ing that during TCR activation, TIM-3 is recruiting these kinases. This would suggest the abil-
ity of TIM-3 to deplete the available intracellular pool of Lck and PLC-y1 would result in
incomplete activation of the TCR by prohibiting the phosphorylation of ITAM motifs on the
TCR chains. The inability of TIM-3 to associate with Fyn, in our model system, might provide
clues as to how TIM-3 is intersecting TCR signaling. Both Fyn and Lck are critical for TCR sig-
naling, however, each kinase localizes to distinct subcellular compartments. Lck is predomi-
nantly associated with the plasma membrane and CD4/CD8, while Fyn is associated with
microtubules and the cytoplasmic membrane [48]. Thus it is plausible to assume that mem-
brane proximal signaling events support the association between TIM-3 with Lck.

The first linkage between TIM-3 and the TCR CD3( chain in controlling T cell activation
was demonstrated by Cho, et al [49]. Their findings indicated that tyrosine residues within the
cytoplasmic tail of TIM-3 served a critical role in regulating phosphorylation of CD3( chain of
the TCR, proliferation, and cytotoxicity, thus providing further support for the role of TIM-3
in TCR-mediated signaling events. Further evidence supporting the notion that TIM-3 plays
an important role in membrane proximal signaling events within the immunological synapse
was shown in primary human TIM-3" T cells [39, 40]. Their results indicated that TIM-3
directly interacts with Lck, however, not the phosho-active form of the kinase required for
TCR-induced signaling. Moreover, they suggest that TIM-3 may be recruiting a phosphatase to
dampen Lck phosphorylation and that the ratio of inactive vs active Lck within the synapses
attenuates TCR-induced signals, thus providing a form of regulatory control over Lck and TCR
function [40]. In a retroviral system in which human leukocyte antigen B (HLA-B)-associated
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transcript 3 (Bat3) was over-expressed in activated primary human Th1 cells, Bat3 was able to
bind and recruit active Lck to the TIM-3 tail. Treatment of cells with a TIM-3-specific antibody
abrogated the interaction between Bat3 and Lck. Interestingly, when cells were treated with
anti-CD3 and-CD28 antibodies, a substantial amount of catalytically inactive Lck accumulated
with TIM-3 in Bat3-deficient cells. Interestingly, Bat3 mRNA expression was found to be
reduced in TIM-3"PD-1" exhausted CD4" T cells from HIV-1 infected individuals. Taken
together the authors conclude that TIM-3 forms an intramolecular complex with Bat3 and the
active form of Lck to promote T cell signaling with a loss of Bat3 resulting in the accumulation
of inactive Lck, defective IL-2 production, and consequentially impaired TCR function [39].

Our results and those of others describe a mechanism suggesting that TIM-3 is recruited to
the immunological synapse of T cells. Once there, the intracellular tail of TIM-3 is able to
sequester Lck which results in preventing its association with the TCR or blocking its conver-
sion to a catalytically active state. Either outcome ensures that the critically important initial
step required for phosphorylation of ITAMs on the TCR sub-unit is not completed. Further
studies using TIM-3 tail mutants to identify residues that are required for Lck and PLC-y1
interaction that functionally rescue this inhibitory phenotype are warranted and currently in
progress.

Materials and Methods
Cells and antibodies

NF-kB/Jurkat/GFP Transcriptional Reporter Cell Line was obtained from System Biosciences
(Mountain View, CA). Leukocytes from normal healthy blood donors were obtained by Biolog-
ical Specialty Corporation (Colmar, PA) through automated leukapheresis. All healthy volun-
teers are required to provide informed consent prior to donation. CD8" T cells were isolated
through negative selection using a CD8" T Cell isolation kit (Miltenyi Biotech, San Diego, CA).
The following antibodies were used for western analysis: total forms of PTEN, P85c.- and
P85B-PI3K, TIM-3, ERK, AKT, SH2D2A, LCK, Syk, PLC-y1, JNK, ZAP70, p38, LNK, BMX,
IxBo, and donkey-anti-goat IgG HRP-conjugated (R&D Systems, Minneapolis, MN), SH3BP2
(Bethyl Laboratories, Montgomery, TX), LAT, Fyn, SLP76, GRB10, 3-Actin (Cell Signaling,
Beverly, MA), goat anti-mouse IgG HRP-conjugated, donkey-anti-sheep-F(ab')2-horseradish
peroxidase secondary antibody (Jackson ImmunoResearch Laboratories, West Grove, PA),
goat-anti-rabbit HRP-conjugated (Protein Simple, San Jose, CA).

Co-Immunoprecipitation/Western Blotting

Cells were stimulated in micro-centrifuge tubes at 37°C. Cells were pelleted at 12,000 rpm for
30s. Pellets were lysed with ice-cold 1.1% OBG buffer lysis buffer (1.1% n-Octyl-beta-D-gluco-
side, 20mM Tris-HCI, pH 7.5, 15 mM NaCl) supplemented with Roche Complete Mini Tab
Protease Inhibitor Cocktail (Nutley, NJ) and phenylmethanesulfonylfluoride (PMSF) (10uM)
(Sigma). Lysates were then incubated on ice for 1h and clarified by centrifugation. Equivalent
amounts of lysate (approximately 2mg total protein) were subjected to immunoprecipitation.
Briefly, anti-human TIM-3 polyclonal antibody (R&D Systems) was added to the lysate (C¢=
lug/mL) and incubated overnight at 4°C with continuous rocking. Mixture was then added to
pre-wash MagnaBind Streptavidin Magnetic Beads (Life Technologies, Grand Island, NY) and
incubated for 45min at room temperature. Sample was then washed 5x with lysis buffer. To sol-
ubilize protein, immune-complexes were boiled for 7 min with 50uL of Buffer Z (Protein Sim-
ple) and subjected to capillary electrophoretic western blotting using the Peggy system (Protein
Simple) according to manufacturer’s instructions for size separation. For studies involving
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peptides, biotinylated peptides (1 uM) were premixed with 2mg of cell lysates and immuno-
precipitation procedure was followed as stated above.

SH2 domain and ProtoArray Profiling

SH2 Domain-based RTK Profiling was obtained from Signosis (Santa Clara, CA) and pro-
cessed according to the manufacturer’s instructions. Biotinylated TIM-3 peptide, both native
and tyrosine phosphorylated used to probe the array was generated by Bachem (Torrance, CA)
and used at 0.2-10 uM. Small Molecule Profiling against 9000 human proteins printed on the
ProtoArray was performed by Life Technologies. Both peptides were used at 2.5 and 25 uM.

Plasmid Constructs

NCBI reference sequence, NP_116171.3 was used to generate full-length hepatitis A virus cellu-
lar receptor 2 (TIM-3). Protein sequence was human codon optimized and submitted for clon-
ing into the pUNDER expression vector (Invitrogen). To generate chimeric murineCD28 and
human TIM-3, NCBI reference sequence, NP_031668.3, for murine CD28 was used. Codon
optimized sequences corresponding to amino acids 1-177 of the murine CD28 ECD was fused
in in-frame with amino acids 225-301 of human TIM-3 tail. Point mutations corresponding to
Y265/272A or Y265/272E, were introduced. Synthesis of constructs, validation of sequences,
and maxiprep was performed by genewiz (South Plainfield, NJ).

Transfection

The NF-xB/Jurkat/GFP™ Transcriptional Reporter cell line (System Biosciences, Mountain
View, CA) was cultured in RPMI 1640 media (Life Technologies) supplemented with 10%
heat- inactivated FBS (Gibco/Life Technologies, Grand Island, NY). Cells were transfected with
a plasmid containing TIM-3 using the Amaxa Cell Line Nucleofector Kit V (Lonza, Cologne,
Germany). After 48h, the cells were put under selection with Geneticin (600pg/ml) (Life Tech-
nologies). Expression was determined by labeling the cells with anti-human TIM-3 pAb (R&D
Systems) or anti-murine CD28 (BioLegend, San Diego, CA) followed by a PE-conjugated Don-
key-anti-Goat IgG (Jackson ImmunoResearch) and sorted for TIM-3 positive expression on
the BD FACSJazz (BD Biosciences, San Jose, CA) cell sorter using BD FACS Software version
1.1.0.84 (BD Biosciences, San Jose, CA). Live cells and singlets were gated on and then sorted
based on anti-TIM-3-PE fluorescence for high signal intensity to generate a Jurkat line
enriched for high level of TIM-3 expression. The cells were maintained under selection in
media containing 600pg/ml Geneticin. Following the expansion of the culture, cells were once
again analyzed to validate receptor expression.

Reporter Assays

NEF-kB/Jurkat/GFP and stably transfected NF-kB/Jurkat/GFP/TIM-3 cells were plated at 2.5e4
cells/well in 96-well Microtest plates (BD Falcon) in RPMI +Glutamax Phenol Red -Free media
(Life Technologies). Cells were stimulated overnight at 37°C with either Cell Stimulation Cock-
tail (CSC) containing phorbol myristate acetate (PMA) and ionomycin (eBioscience, San
Diego, CA) or Human T-Activator CD3/CD28 Dynabeads at a ratio of 10:1 (beads:cells) (Life
Technologies) and NF-«xB reporter activity was assessed by imaging on the Acumen eX3 (TTP
Labtech, Cambridge MA). To determine NFAT activity, cells were transiently transfected with
2ug of pGL4.30 (Luc2P/NFAT-RE/Hygro) (Promega, Madison, WI) per 10° cells and allowed
to recover for 72h. Cells were stimulated as described and luciferase activity was assessed using
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the One-Glo luciferase assay system (Promega) and measured on an Envision (Perkin Elmer,
Waltham, MA).

Immunofluorescence Analysis

Staining was performed on an aliquot of cells (2 x 10°) from the GFP Reporter Assay. The cells
were incubated for 1hr with PerCP/Cy5.5 anti-human CD69 Clone FN50 (BioLegend) at a
lug/ml concentration. PerCP/Cy5.5 Mouse IgGlkappa Isotype Ctrl Clone MOPC-21 (BioLe-
gend) was used as the control antibody. The cells were analyzed on the BD LSRFortessa (BD
Biosciences).

Cytokine Determination

Supernatants from stimulated Jurkat cells were evaluated for cytokine concentrations using the
MILLIPLEX MAP Human Cytokine/Chemokine Magnetic Bead Panel pre-mixed 41-plex
Immunology and ssupernatants from primary human CD8+ and MART-1+ T cells were evalu-
ated using the MILLIPLEX MAP Human High Sensitivity T Cell Panel pre-mixed 13-plex
Immunology Multiplex assay according to the manufacturers’ instructions (MerckMillipore,
MA). Both were analyzed on a BioPlex Multiplex System (Bio-Rad, Hercules, CA)

NF-kB/NFAT Transcription Factor Analysis

Naive Human CD8" cells from normal healthy blood donors (Biological Specialty Corp) and
MART-1 expanded cells were stimulated overnight at 37°C with either Cell Stimulation Cock-
tail (CSC) (eBioscience) or Human T-Activator CD3/CD28 Dynabeads (Life Technologies).
The cells were harvested and lysed with RIPA buffer (Pierce). The protein concentration was
determined by a BCA assay (Life Technologies). 1 pg of the samples were assayed using the
Transcription Factor Kits for NF-xB subunits (Life Technologies) and NFAT (Active Motif,
Carlsbad, CA).

Generation of CD8" MART-1 peptide differentiated T cells aAPC
Induction

Artificial antigen presenting Drosophila cells (aAPC) were cultured in Express Five Medium
(Invitrogen) supplemented with 2mM L-glutamine (Invitrogen) and 200ug/ml Geneticin (Invi-
trogen) with shaking (100rpm). The cells were cultured every 2-3 days until the viability was
>85%. Cells were then washed with PBS, re-suspended in media +5ug/ml UVADEX (Johnson
& Johnson) and subjected to cross-linking for 10 minutes at 7.7 Joules/ cm? in a Vuelife bag
(American Fluoroseal Corporation). An ILT72 UVA Radiometer (Life Technologies) was used
for the cross-linking. aAPC cells were loaded with a melanoma antigen recognized by T cells
(MART-1) peptide (CS Bio, Menlo Park, CA) by incubating 20 x 10° cells (1 x 107 cells/ml) in
Express Five media + 5ug/ml Beta-2M (Janssen in-house) and 0.1ug/ml MART-1 peptide for 4
h at room temperature with mixing every 30 minutes. CD8" T cells were incubated at 37°C for
6 days with Mart-1 peptide loaded aAPCs (1:10 ratio of aAPCs: T cells) and 25ng/ml IL-21
(PeproTech, Rocky Hill, NJ). On day 6, 20 U/ml of IL-2 and 30U/ml IL-7 (PeproTech, Rocky
Hill, NJ) were added to the cells and incubated for an additional 2 days. On day 8, re-stimula-
tion was restarted following the procedure stated above and continued until day 14. Flow cyto-
metric analysis was performed to determine viability and TIM-3 receptor expression.
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Statistical analysis

Data were analysed using the unpaired two-tailed Student's t-test. P-values <0.05 or <0.01
were considered to be statistically significant.

Supporting Information

S1 Fig. Association of Intracellular Kinases with TIM-3 intracellular tail peptides. Co-
immunoprecipitation analysis of Jurkat cell lysate was examined using biotinylated peptides
corresponding to the intracellular tail of human TIM-3 (sequence: biotin-SEENIYTIEENVYE
VEEP). Where indicated, the tyrosine residues were phosphorylated within the peptide. Pro-
tein (~2mg) was co-immunoprecipitated with peptide (1uM) western blot was performed
using capillary electrophoresis on the Peggy System. Cleared lysate served as a loading control
for individual antibody reactivity.
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