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Abstract

Pteropid bats or flying-foxes (Chiroptera: Pteropodidae) are the natural host of Hendra virus
(HeV) which sporadically causes fatal disease in horses and humans in eastern Australia.
While there is strong evidence that urine is an important infectious medium that likely drives
bat to bat transmission and bat to horse transmission, there is uncertainty about the relative
importance of alternative routes of excretion such as nasal and oral secretions, and faeces.
Identifying the potential routes of HeV excretion in flying-foxes is important to effectively mit-
igate equine exposure risk at the bat-horse interface, and in determining transmission rates
in host-pathogen models. The aim of this study was to identify the major routes of HeV
excretion in naturally infected flying-foxes, and secondarily, to identify between-species var-
iation in excretion prevalence. A total of 2840 flying-foxes from three of the four Australian
mainland species (Pteropus alecto, P. poliocephalus and P. scapulatus) were captured and
sampled at multiple roost locations in the eastern states of Queensland and New South
Wales between 2012 and 2014. A range of biological samples (urine and serum, and uro-
genital, nasal, oral and rectal swabs) were collected from anaesthetized bats, and tested for
HeV RNA using a gRT-PCR assay targeting the M gene. Forty-two P. alecto (n = 1410) had
HeV RNA detected in at least one sample, and yielded a total of 78 positive samples, at an
overall detection rate of 1.76% across all samples tested in this species (78/4436). The rate
of detection, and the amount of viral RNA, was highest in urine samples (>serum, packed
haemocytes >faecal >nasal >oral), identifying urine as the most plausible source of infection
for flying-foxes and for horses. Detection in a urine sample was more efficient than detection
in urogenital swabs, identifying the former as the preferred diagnostic sample. The detection
of HeV RNA in serum is consistent with haematogenous spread, and with hypothesised
latency and recrudesence in flying-foxes. There were no detections in P. poliocephalus (n =
1168 animals; n = 2958 samples) or P. scapulatus (n = 262 animals; n = 985 samples), sug-
gesting (consistent with other recent studies) that these species are epidemiologically less
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important than P. alecto in HeV infection dynamics. The study is unprecedented in terms of
the individual animal approach, the large sample size, and the use of a molecular assay to
directly determine infection status. These features provide a high level of confidence in the
veracity of our findings, and a sound basis from which to more precisely target equine risk
mitigation strategies.

Introduction

Hendra virus (HeV) is a paramyxovirus of the genus Henipavirus first described in September
1994 in Australia, when it was identified as the aetiological agent in an outbreak of acute equine
respiratory disease that resulted in the deaths of 14 horses and 1 human, in the Brisbane suburb
of Hendra [1]. The subsequent retrospective identification of two equine cases in northern
Queensland a month earlier prompted an extensive serological survey of Queensland horses
which found no evidence of other previous outbreaks. Serologic screening of a limited number
of other domestic animals (e.g. cattle, dogs, cats), rodents and native terrestrial wildlife species
also found no evidence of infection [2]. The focus then shifted to Australian flying-foxes (Chir-
optera: Pteropodidae), which were identified as the likely primary wildlife reservoir through a
series of serological and viral isolation studies [3-5]. Antibodies were detected in all four spe-
cies of Australian mainland flying-foxes, namely the Black flying-fox (P. alecto), Grey-headed
flying-fox (P. poliocephalus), Spectacled flying-fox (P. conspicillatus) and Little red flying-fox
(P. scapulatus) [4]. To 31 July 2015, there have been 52 reported equine incidents involving 94
confirmed or possible equine cases, and 7 associated human cases, with case fatality rates
approaching 90% and 60% respectively [6].

Initial experimental HeV transmission studies with P. poliocephalus yielded inconsistent
results; most infected animals seroconverted, but positive immunohistochemistry (IHC) find-
ings were rarely observed, and virus isolation was mostly unsuccessful in a diverse range of tis-
sues [7, 8]. In one of the two pregnant female P. poliocephalus where live virus was recovered,
vertical transmission was also demonstrated by the isolation of virus from the foetal spleen and
kidney [8]. Vertical transmission was also a feature when Hendra virus was isolated for the first
time from two naturally-infected flying-foxes, including the uterine fluid and pooled foetal
lung-liver of a pregnant P. poliocephalus, and from the foetal lung of a pregnant P. alecto [3]. A
more recent experimental infection study utilising P. alecto essentially replicated earlier find-
ings, with only 10 of the 20 HeV-inoculated animals seroconverting, negative IHC results in all
tissues, and little evidence of HeV infection on histopathological examination of tissues post-
mortem [9]. Halpin et al. (2011) did however detect HeV RNA by qRT-PCR in a limited range
of tissues, swabs, blood and urine samples collected from the 10 animals that seroconverted
within the study period. Live virus was also isolated from the urine of a single P. alecto on days
6 and 8 post-inoculation, albeit at low titres at the limit of detection, and with no evidence of
HeV antigen on IHC staining in either the bladder or kidney post-mortem [9]. All experimen-
tal and natural infection studies to date support the hypothesis that HeV infection in flying-
foxes is largely subclinical in nature [10].

While the apparent lack of clinical disease attributable to HeV infection in flying-foxes is
consistent with coevolution theories pertaining to intimate host-pathogen relationships [11,
12], the inability to routinely recover virus from either naturally or experimentally-infected fly-
ing-foxes is problematic from an epidemiological perspective. The inherent difficulties in iso-
lating HeV from experimentally infected flying-foxes, and the unusually low levels of virus
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observed in animals where infectious material is recovered, has led to the development of sev-
eral novel hypotheses in terms of both HeV transmission between flying-foxes, and from fly-
ing-foxes to horses. For example, Halpin et al. (2011) conclude “that the opportunity for
[equine] spillover of HeV from healthy bats is limited by the amount of excreted virus and the
time over which it is excreted”, while Plowright et al. (2015) put forward the idea of cumulative
exposure to small, incremental doses of infectious HeV material within a flying-fox roost that
would progressively lead to more and more individual bats becoming infected over time, with
the potential to trigger an epidemic [9, 13]. Daniels et al. (2007) speculated that perhaps an
intermediary host that is highly susceptible to infection, capable of generating high levels of
infectious virus, and distributed throughout the range of both flying-foxes and horses is
required to facilitate effective spillover to horses, and suggested that domestic cats might fulfil
these criteria [14]. Ideas such as these however, are largely predicated on the notion that the
average flying-fox is relatively resistant to infection, and once infected sheds very low levels of
virus, as observed in experimental infection studies.

The problem with extrapolating the results of experimental HeV infection studies to likely
modes of transmission between wild flying-foxes, or indeed from wild flying-foxes to equine
spillover hosts, is the extent to which experimental infection models truly reflect the biology of
HeV in naturally-infected flying-foxes. While experimental infection studies can yield useful
information, they are often subject to important caveats (e.g. artificial routes of exposure; very
large infectious doses; small sample sizes; species selection; sex and age classes of animals stud-
ied; limited use of control cohorts), and their direct relevance to gaining an accurate under-
standing of natural disease systems may be questionable [15]. Advancements in molecular
diagnostic techniques, utilising more sensitive tests such as QqRT-PCR, have facilitated the
study of natural HeV infection in wild flying-fox populations. In contrast to the aforemen-
tioned experimental studies [7-9], HeV RNA has been routinely detected in pooled urine sam-
ples collected beneath flying-fox roosts using QRT-PCR, and in addition four HeV isolates have
been cultured from a subset of these HeV-positive pooled urine samples [16, 17]. Other novel
bat paramyxoviruses have also been successfully isolated from this collection of pooled urine
samples, including a novel Henipavirus (Cedar virus), and several novel Rubulaviruses, includ-
ing Menangle virus [18-20]. Vidgen et al. (2015) have also identified a large number (n = 31)
of unidentified flying-fox paramyxoviruses in pooled urine samples collected between 2010-
2013, using a degenerative RT-PCR specific for the L-gene of the Henipavirus, Respirovirus
and Morbillivirus genera [21]. Collectively these results suggest that flying-fox urine is likely to
be an important route of excretion for a diverse range of paramyxoviruses.

The importance of understanding the main routes of HeV excretion in naturally-infected
flying-foxes can be viewed on a number of levels. While we have strong evidence that urine is
an important infectious medium that likely drives bat to bat transmission, and in all likelihood
bat to horse transmission, we are less certain about the relative importance of alternative routes
of excretion (such as nasal and oral secretions, and faeces), notwithstanding a small number of
detections in oral and rectal swabs in both experimentally and naturally-infected P. alecto [9,
22].If, for example, HeV is routinely excreted in nasal secretions, then aerosolised dissemina-
tion of virus becomes more likely, which may favour highly effective, density-dependent bat to
bat transmission within the typically dense, three-dimensional aggregations of individual bats
characteristic of Australian flying-fox roosts. Alternatively, oral excretion of the virus would
require closer social contact for successful virus transmission, and frequency-dependent inter-
actions with conspecifics such as allogrooming, territorial aggression, or mating behaviour
could impart strong spatiotemporal structures on viral infection dynamics. Differentiating
between alternative modes of transmission is critical in determining transmission rates in host-
pathogen models [23], and while previous HeV models have attempted to parameterise
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transmission rates both within and between roosts [24], they would almost certainly be
improved by empirical data on relative infection rates in different bat excreta. Determining the
main routes of HeV excretion in flying-foxes is also important when assessing the relative risk
of spillover to horses on putative exposure to flying-fox derived infectious material.

The primary aim of this study was to determine the major routes of HeV excretion in fly-
ing-foxes. A secondary aim was to identify any between-species variation in excretion preva-
lence. The expectation is that the findings will more precisely inform equine risk mitigation
strategies and add to our understanding of the relative risk of HeV infection at the flying-fox
species level.

Methods
Ethics statement

Fieldwork in all locations was approved under the Queensland Department of Agriculture,
Fisheries and Forestry Animal Ethics Committee Permit SA 2011/12/375 and the Queensland
Department of Environment, Heritage and Protection Scientific Purposes Permits
WISP05810609 and WISP14100614. Full details of capture and sampling methods are pre-
sented below. All methods represent current best practice and were specifically approved
under the permits. Capture and sampling was undertaken by trained and experienced teams
including a veterinarian. No animals were sacrificed.

Study design and sampling locations

Flying-foxes were sampled at multiple roost locations in the eastern Australian states of
Queensland (QLD) and New South Wales (NSW) between February 2012 and June 2014. The
study utilised capture events associated with two related studies: a cross-sectional study series
investigating the association between flying-fox roost disturbance and HeV infection dynamics
[25]; and a structured longitudinal study investigating HeV infection and transmission dynam-
ics in flying-foxes [26]. The study objectives and the data analysis are independent of these
other studies.

Capture and sampling

Flying-foxes were captured pre-dawn, as they returned to the roost, in 18 m mist nets sus-
pended between either 12 m aluminium poles or 20 m fibreglass telescopic poles (Spiderbeam
GmbH). Animals were carefully extracted from the mist net and immediately placed in a pil-
low-case tied to a horizontal line, which enabled bats to roost in a natural inverted position
while awaiting sampling. All flying-foxes were anesthetised for the collection of samples, as
described by Jonsson et al. (2004) [27]. Species, sex, age class, reproductive status, weight, fore-
arm length and body condition score were recorded for each individual bat. Criteria for each of
these classification schemes are detailed in Table 1. One mL of blood was collected from the
wing (cephalic) vein using a 25G needle and syringe, and immediately placed in a serum tube
(1.3 mL BD Serum Tube®). Blood was allowed to clot for 6-24 hours prior to centrifugation
and separation of serum and packed haemocytes. Urogenital (female bats), preputial (male
bats), nasal, oral and rectal swabs (551C Copan® Minitip Flocked Swab) were collected,
immediately placed in 500 uL of phosphate buffered saline (PBS), and kept chilled on ice prior
to sample processing. Urine was collected by gentle trans-abdominal palpation of the bladder,
and samples retained on ice prior to processing. Anaesthetised flying-foxes were assessed for
haemostasis at the venepuncture site prior to being placed back in a pillow case, and their
immediate post-anaesthetic recovery period monitored until they regained consciousness. At
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sampling locations where capture events extended over multiple days, flying-foxes had their
toe-claws marked with an acrylic lacquer prior to release to enable identification of short-term
re-captures. Flying-foxes were released at their point of capture after a minimum additional %
hour recovery period. At the Boonah roost, P. alecto were preferentially targeted to address the
objectives of the related longitudinal study. From December 2013, where the total daily capture
limit was not met by P. alecto in any capture event, the balance was made up with P. polioce-
phalus and P. scapulatus selected to better balance overall sex and age classes.

Sample processing and testing

Fifty pL of urine, serum, urogenital, preputial, nasal, oral and rectal swab samples were directly
added to 130 pL of lysis solution (MagMAX, Ambion, Texas, Cat AM8500) to inactivate virus
particles and preserve RNA for PCR screening. Total nucleic acid was immediately extracted
from urine, serum, urogenital and preputial swab samples in lysis buffer using a magnetic bead
based nucleic acid extraction kit (MagMAX-96 viral RNA isolation system, Ambion, Texas,
Cat AM1836-5) run on a magnetic particle handling system (Kingfisher KF-96, Thermo-Scien-
tific, Finland) according to the manufacturer’s instructions. The preserved nasal, oral and rectal

Table 1. Classification of flying-fox demographic, morphometric and reproductive variables.
Variable Description

Species Black flying-fox (P. alecto)
Grey-headed flying-fox (P. poliocephalus)
Little red flying-fox (P. scapulatus)

Sex Male
Female

Age' Juvenile
Sub-adult
Adult

Body condition score? 1: Poor condition

2: Less than Fair condition

3: Fair condition

4: Greater than Fair condition

5: Good condition

Weight Body weight (g)
Forearm Forearm length (mm)
Reproductive status® Pregnant
Dependent pup
Lactating

 Adult males distinguished from sub-adult males on the basis of fully developed penis and testes. Adult
females distinguished from sub-adult females on the basis of worn, elongated nipples, indicating that they
had suckled at least once in their lifetime. Females that were palpably pregnant but with no evidence of
worn, elongated nipples were classified as adults. Juveniles (< 12 months old) were classified on their
smaller size and rudimentary development of sexual characteristics.

2 Assessed primarily through palpation of the pectoral muscle mass and associated prominence of the
sternal carinum; quantified on a 5-point scale.

3 Pregnancy was assessed through gentle trans-abdominal palpation of a gravid uterus (early—mid-
pregnancy) or foetal structures (late pregnancy). Dependent pup is in reference to an adult female flying-fox
with a totally dependent pup attached, and indicating the early post-partum period. Lactation (in the
absence of a dependent pup) was confirmed through gentle expression of milk from enlarged nipples, and
indicated the later post-partum period associated with a semi-independent juvenile.

doi:10.1371/journal.pone.0140670.t001
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swab samples were held at 4°C for 24-48 hours, before being stored at -80°C prior to testing
several weeks later.

Urine, serum, urogenital and preputial swabs were used as an initial screening panel for all
individual flying-foxes. Subsequently, the full complement of samples was tested from all HeV-
positive flying-foxes, including the packed haemocyte sample retained after separation of
serum. We also tested a subset of all available samples from all three species to ensure that pos-
sible additional routes of HeV excretion (i.e. nasal, oral and rectal secretions) weren’t being
overlooked in the initial screening approach. The practical outcome of this process was to test
the full complement of samples from an essentially random selection of P. alecto, P. poliocepha-
lus and P. scapulatus captured at multiple sampling locations and across multiple times.

The AgPath-ID One-Step RT-PCR Kit (Life Technologies) was used for qRT-PCR, with
5uL of nucleic acid extract added to 20 ul of mastermix. Forward and reverse primers and
probe that target a 69 base pair region on the M gene were used, as described by Smith et al.
(2001) [28]. Positive and negative controls were included in each run. Assays were run on a
7500 Fast Real-Time PCR System (Applied Biosystems) in standard mode for a total of 45
cycles in accordance with the manufacturer’s instructions for the mastermix. A negative result
(not detected) was determined if no amplification occurred within 40 cycles (i.e. the Ct value
was equal to or greater than 40) as per Smith et al. (2001) [28].

Results

A total of 2840 individual flying-foxes were captured and sampled across 10 roost sites over the
28-month period (Table 2). Of these, 42 flying-foxes had HeV RNA detected in at least one
sample and were classified as “HeV-positive” (Table 3). Forty flying-foxes had HeV RNA
detected on the initial screening panel; the two additional HeV-positive animals were identified
from the subset which had the full complement of samples tested (animal numbers 2 and 9 in
Table 3, with detections on a nasal swab and packed haemocyte sample respectively).

Of the three flying-fox species sampled during this study, HeV RNA was detected only in
P. alecto, and all 42 HeV-positive P. alecto were captured at Boonah between June 2013-2014.

Table 2. Details of 2840 flying-foxes captured and sampled in the eastern Australian states of Queensland (QLD) and New South Wales (NSW)

between February 2012 and June 2014.

Roost location State
Boonah? QLD
Toowoomba? QLD
Sydney?® NSW
Gayndah® QLD
Charters Towers® QLD
Calliope® QLD
Parkinson® QLD
Loders Creek® QLD
Laidley® QLD
Duaringa® QLD
Total

BFF ' GHFF' LRFF’ Sampling period
1045 747 214 May 2012—June 2014
236 1 April 2013
80 408 March—May 2012
4 10 February—March 2012
4 March 2012
8 July 2012
2 12 August 2012
18 August 2012
13 30 November 2012
8 May 2012
1410 1168 262

'BFF = Black flying-fox (Pteropus alecto); GHFF = Grey-headed flying-fox (P. poliocephalus); LRFF = Little red flying-fox (P. scapulatus).

2 Roosts shared with a structured longitudinal study investigating HeV infection and transmission dynamics in flying-foxes (reported elsewhere); site
selection changed after first bi-monthly sampling event from Toowoomba to Boonah.

3 Roosts shared with a cross-sectional study series investigating the association between flying-fox roost disturbance and HeV infection dynamics [25].

doi:10.1371/journal.pone.0140670.1002
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Table 3. qRT-PCR Ct results on biological samples, and physiological characteristics of 42 HeV-positive Black flying-foxes (P. alecto)'.

Animal  Samplingevent Sex?  Age Repro. Status?>  Urine  Urogenita>? Serum  PHemo®? Rectal Nasal Oral
1 Jun-13 F A G > 40 33.53 35.848 30.27 > 40 > 40
2 Jun-13 M A > 40 > 40 > 40 > 40 > 40 36.99 > 40
3 Jun-13 F SA 28.76 23.26 37.25 39.545 36.34 > 40 > 40
4 Jun-13 F A 35.58 > 40 37.12 > 40 > 40 > 40 > 40
5 Jun-13 F A GL 36.80 > 40 37.15 > 40 > 40 > 40 > 40
6 Jun-13 F A G 22.26 24.721 34.64 31.7 26.76 33.28 33.65
7 Jun-13 F A G 35.291 36.14 35.41 > 40 > 40 > 40
8 Jun-13 M A 36.82 > 40 > 40 > 40 > 40 > 40 > 40
9 Jul-13 M A > 40 > 40 > 40 36.48 > 40 > 40 > 40
10 Jul-13 F A 29.38 > 40 > 40 > 40 > 40 > 40 > 40
11 Jul-13 M A 29.31 32.93 > 40 > 40 > 40 > 40 > 40
12 Jul-13 F A G 36.79 > 40 > 40 > 40 > 40 > 40
13 Aug-13 M SA 35.39 > 40 > 40 > 40 > 40 > 40 > 40
14 Aug-13 F A G 37.72 > 40 > 40 > 40 > 40 > 40
15 Aug-13 F A G 36.31 > 40 > 40 > 40 > 40 > 40 > 40
16 Aug-13 F A G 36.89 > 40 > 40 > 40 > 40 > 40
17 Dec-13 F A L 36.88 > 40 > 40 > 40 > 40 > 40
18 Dec-13 M A 36.75 > 40 > 40 > 40 > 40 > 40
19 Dec-13 F A LP 37.33 > 40 > 40 > 40 > 40 > 40 > 40
20 Feb-14 M A 34.57 > 40 > 40 > 40 > 40 > 40
21 Feb-14 M SA 30.44 37.07 39.92 > 40 > 40 > 40
22 Apr-14 M A 33.95 > 40 > 40 > 40 > 40 > 40
23 Apr-14 F A 37.3 > 40 > 40 > 40 > 40 > 40
24 Apr-14 M A 36.91 > 40 > 40 > 40 > 40 > 40
25 Apr-14 M A 28.62 > 40 > 40 > 40 > 40 > 40
26 Apr-14 M A 31.06 > 40 > 40 > 40 > 40 > 40
27 Apr-14 F SA > 40 34.06 35.29 > 40 > 40 > 40
28 Apr-14 F SA 31.41 > 40 > 40 > 40 > 40 > 40
29 Apr-14 F A 35.86 37.12 35.31 37.65 > 40 > 40 > 40
30 Apr-14 F A L 32.55 36.18 > 40 > 40 > 40 > 40 > 40
31 Apr-14 M A 33.78 > 40 > 40 22.84 > 40 > 40
32 May-14 F A G 31.69 36.41 > 40 > 40 36.43 > 40 > 40
33 May-14 M A 30.59 > 40 > 40 > 40 > 40 > 40
34 May-14 F A G > 40 > 40 35.55 > 40 > 40 > 40 > 40
35 May-14 F A 29.27 > 40 > 40 > 40 36.75 > 40 > 40
36 May-14 F SA 35.05 37.19 37.35 > 40 37.64 36.31
37 May-14 F A G 33.05 > 40 > 40 > 40 > 40 > 40
38 May-14 F A G 33.56 > 40 > 40 > 40 > 40 > 40 > 40
39 May-14 M A 37.12 > 40 > 40 > 40 > 40 > 40
40 Jun-14 F A G 25.71 32.73 > 40 37.45 35.16 > 40 > 40
41 Jun-14 F SA 27.31 > 40 > 40 30.43 > 40 > 40
42 Jun-14 F A G 30.43 > 40 > 40 > 40 > 40 > 40
'All 42 HeV-positive flying-foxes in the study were Black flying-foxes (P. alecto) caught at the Boonah roost.

2M = Male; F = Female: A = Adult; SA = Sub adult; J = Juvenile: G = Gestation; L = Lactation; P = Pup attached: Urogenital = vulvovaginal swab in
females and preputial swab in males; PHemo = Packed haemocytes.

doi:10.1371/journal.pone.0140670.t003
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Table 4. qRT-PCR status summary statistics on biological samples from 42 HeV-positive Black flying-foxes (P. alecto)'.

Sample type Positive Negative n % Positive Min Cy Max Ct
Serum 11 31 42 26 33.53 37.25
PHemo? 10 32 42 24 31.70 39.92
Urine 26 3 29° 90 22.26 37.33
Urogenital 18 14 32* 56 23.26 37.72
Rectal 8 34 42 19 22.84 36.75
Nasal 3 39 42 7 27.64 33.28
Oral 2 40 42 5} 33.65 36.31

Al 42 HeV-positive flying-foxes in the study were Black flying-foxes (P. alecto) caught at the Boonah roost.
2PHemo = packed haemocytes.

3 Urine samples were collected from 29/42 confirmed positive black flying-foxes.

*# Urogenital samples were collected from 32/42 confirmed positive black flying-foxes.

doi:10.1371/journal.pone.0140670.t004

Range Ct

3.72
8.22
15.07
14.46
13.91
5.64
2.66

Mean Ct

35.91
36.66
32.56
33.60
31.87
35.97
34.98

SD Cr

1.38
2.35
3.98
4.38
5.18
2.35
1.88

The majority of HeV-positive flying-foxes had HeV RNA detected in a single sample (26/42;
61.9%), while a smaller number of animals had HeV RNA detected in multiple samples (i.e. 2
samples: 7/42; 16.7%; 3-or-more samples: 9/42; 21.4%). One individual flying-fox had HeV
RNA detected on the full panel of samples available for testing (animal number 6 in Table 3; Ct
values ranging from 22.26 in urine to 34.64 in serum). The overall estimate of HeV prevalence
(95% binomial confidence intervals) in P. alecto across the entire study was 3% (2-4%).
Of the 29 HeV-positive P. alecto from which a urine sample was successfully collected, 26
(i.e. 90%) had HeV RNA detected in their urine, at Ct values ranging from 22.26-37.33
(Table 4). HeV RNA was also detected in over half of the urogenital swabs (including preputial
swabs from male flying-foxes) collected from HeV-positive animals, at Ct values ranging from
23.26-37.72. Just over a quarter of HeV-positive flying-foxes had HeV RNA detected in their
serum, and there were also detections in rectal swabs (8/42; 19%). Nasal and oral swabs yielded
relatively low numbers of detections in HeV-positive animals, and at higher average Ct values

than urine, urogenital and rectal swabs.

Of the 4 sample-types selected for HeV screening, urine yielded the highest number and
percentage of HeV-positive detections in P. alecto (26/689; 4%), with less frequent detections

urogenital and preputial swabs (18/1116; 2%) and serum (11/1385; 1%) (Table 5). The 42

HeV-positive P. alecto returned a total of 78 positive samples, at an overall detection rate of

Table 5. qRT-PCR summary statistics on biological samples collected from the three surveyed Australian Pteropus species.

P. alecto P. poliocephalus P. scapulatus
Biological sample Neg Pos Prevalence (95% Cl) Neg Pos Prevalence (95% ClI) Neg Pos Prevalence (95% CI)
Serum 1385 11 1(0-1) 1164 0 0 (0-0) 248 0 0 (0-2)
PHemo' 51 10 16 (9-28) 8 0 0 (0-32) NT NT NT
Urine 663 26 4 (3-5) 534 0 0 (0-1) 94 0 0 (0-4)
Urogenital 1116 18 2(1-2) 660 0 0 (0-1) 193 0 0 (0-2)
Rectal 385 8 2 (1-4) 202 0 0 (0-2) 216 0 0 (0-2)
Nasal 378 3 1(0-2) 200 0 0 (0-2) 220 0 0 (0-2)
Oral 380 2 1(0-2) 200 0 0 (0-2) 220 0 0 (0-2)
TOTAL 4358 78 2(1-2) 2958 0 0 (0-0) 1191 0 0 (0-0)
'Packed haemocytes
doi:10.1371/journal.pone.0140670.t005
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approximately 1.76% across all samples tested in this species (78/4436). There were no detec-
tions in P. poliocephalus (n = 1168 animals; n = 2958 samples) or P. scapulatus (n = 262 ani-
mals; n = 1191 samples) (Table 5).

Discussion

This study represents the single largest sampling of individual wild-caught flying-foxes for
HeV surveillance in Australia, and more broadly, for henipavirus surveillance globally. While
other studies have used serological tools as a proxy for infection status of individual flying-
foxes [29-31] to estimate prevalence, we were primarily interested in determining the major
routes of HeV excretion in naturally-infected flying-foxes. The overall 3% HeV detection rate
in P. alecto is higher than the 0.8% HeV detection rate reported by Breed et al. (2013), who
sampled 124 P. alecto in Australia (n = 64), Papua New Guinea (n = 15) and Indonesia (n = 45)
and detected one HeV-positive animal, using the same qRT-PCR for detection of HeV RNA,
and with a comparable selection of screening samples (serum, urine and oral swabs). The single
HeV-positive P. alecto described by Breed et al. (2013) was a sub-adult male, with detection of
HeV RNA in blood, urine and saliva [22]. The Ct values of 35.3, 37.6 and 39.9 reported for
these respective samples are essentially comparable to the values seen in our study, although
the oral swab at a Ct of 39.9 is at the limits of detection for the assay in question.

One point of difference between our study and Breed et al. (2013) which may contribute to
the difference in crude prevalence estimates is the physical choice of swab; the patented flocked
swabs utilised in our study are purportedly more sensitive for bacterial and viral diagnostics
than the cotton-tipped swabs used by Breed at al. (2013) [32-34]. Our study also involved a
considerably larger sample size, and included both opportunistic cross-sectional and structured
longitudinal sampling of flying-fox roosts; the latter is of particular importance in terms of
accurately estimating HeV infection prevalence, as any temporal variation in viral shedding is
captured by the longitudinal study design. The clustering of detections at the Boonah roost is
plausibly explained by these features, given the greater sampling intensity over time at this
roost and the relative over-representation of black flying-foxes at this roost. Other as yet
unidentified factors may also have played a role.

Our study confirms that urine is the most important route of HeV excretion in naturally
infected flying-foxes [16-21], and thus should be considered a priority sample from a diagnos-
tic or surveillance screening perspective. Collecting a urine sample from flying-foxes is prob-
lematic however, as many animals will void their bladder at various points throughout the
capture, holding, and sampling period, making urine recovery rates variable. We collected uro-
genital swabs from all animals to assess the relative diagnostic sensitivity of swabs. While there
were 11 animals that were positive on urogenital swabs in the absence of a urine sample, only
seven of 16 animals for which both samples were available tested positive on both, indicating
that urogenital swabs underestimate HeV infection and excretion by about 50%. There were no
instances where an animal tested negative on a urine sample but positive on a urogenital swab.
These collective results suggest that the detection of HeV on a urogenital swab likely reflects
the harvesting of residual HeV-positive urine within the lumen of the urogenital tract, rather
than the detection of viral RNA associated with urogenital mucosal cells per se.

HeV-positive urine samples had comparable mean and minimum Ct values to HeV-positive
urogenital swabs and rectal swabs. Mean and minimum Ct values in oral and nasal swabs were
higher, indicating relatively lower levels of viral RNA associated with these portals. Although
virus isolation was not attempted on any of the HeV-positive samples collected in this study,
the use of Ct values as a semi-quantitative proxy for likely ‘viral load’ (or ‘intensity’ of viral
shedding) is considered reasonable (see [9, 35, 36] for recent viral and bacterial examples,
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including HeV in experimentally-infected P. alecto). Given the successful isolation of HeV
from pooled urine samples collected beneath Australian flying-fox roosts [17], and from an
experimentally-infected P. alecto [9], it is reasonable to assume that viral RNA detected in the
urine of naturally-infected flying-foxes can represent viable virus. The lowest Ct values
observed in this study across a range of HeV-positive biological samples (around 22-23 units)
are considerably lower than those observed in experimentally-infected P. alecto (28-29 units in
select throat swabs and urine samples) [9]. Halpin et al. (2011) interpreted the low viral titres
observed in these experimentally-infected bats as constraining the opportunity for equine spill-
over [9]. We suggest that the low Ct values observed in naturally-infected P. alecto in this study
indicate that free-living flying-foxes are indeed capable of excreting potentially infectious viral
loads. While previous virus isolation attempts from pooled flying-fox urine samples collected
under-roost showed no apparent correlation with lower Ct values [17], we contend that lower
Ct values in individual flying-fox urine samples are highly indicative of individual P. alecto
shedding large amounts of potentially infectious virus in this excretory medium. In contrast to
pooled urine samples, interpretation of the Ct value of individual urine samples is not compli-
cated by pooling, samples are collected directly, and samples are immediately placed on ice.
Future studies that pursue virus isolation from such samples would readily establish any corre-
lation, although the BSL-4 pathogen status of HeV imposes significant logistical constraints to
undertaking virus isolation experiments.

With respect to alternative routes of HeV excretion, the relatively limited number of detec-
tions on rectal swabs suggests that while faeces may potentially represent a source of infection
to both flying-foxes and horses, it is much less significant a source than urine. This observation
is consistent with relative detections in flying-fox urine and faeces collected under roosting fly-
ing-foxes [26]. There were fewer still detections on oral and nasal swabs, suggesting that oro-
nasal secretions may be relatively unimportant as a mode of transmission. Additionally, we
cannot rule out the possibility of urine contamination of both rectal and nasal swabs, which
would effectively render any detection via these samples “false positives”. Urine contamination
of female rectal swabs is particularly problematic given the close anatomical arrangement of
the urogenital opening and the anus, and any urination event (including manual expression of
the bladder) has the potential to result in urinary contamination of the perineum, with subse-
quent transfer of urine to rectal swabs likely. Urine contamination of nasal swabs is possible
when flying-foxes urinate in their holding pillow-case; the animal’s head is then in direct appo-
sition to the urine-soaked portion of the pillow-case, and urine contamination around the pla-
num nasale is commonly observed. Despite these potential limitations in interpreting positive
detections on rectal and nasal swabs, we did observe two instances where rectal and nasal
swabs were positive in conjunction with confirmed negative urine and urine/urogenital swabs
respectively (see animals 1 and 2 in Table 3), indicating the fundamental veracity of these
routes of excretion. Oral swab-positive animals (animals 6 and 36 in Table 3) were observed
only with concurrent HeV RNA detections across multiple samples, and while animals poten-
tially shedding infectious virus from multiple excretory routes may provide some support for
the “supershedder” hypothesis [13, 24], the small numbers observed ultimately preclude mean-
ingful interpretation. The culture of live virus from HeV-positive nasal, oral and rectal swabs
would clarify the relative importance of these routes in the transmission of HeV between fly-
ing-foxes, and from flying-foxes to horses.

The detection of HeV RNA in serum of naturally-infected P. alecto is of particular interest
from a disease pathogenesis perspective, as it provides at least initial support for existing dis-
ease models that suggest localised viral infection at the point of inoculation (e.g. oropharyngeal
mucosal replication) closely followed by systemic (i.e. haematogenous) spread to internal
organs (e.g. lung, spleen, kidneys) [3, 8, 9, 37]. While the detection of HeV RNA in serum does
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not conclusively demonstrate an active viraemic phase, the presence of viable virus in blood is
a necessary pre-condition for haematogenous dissemination of HeV to target organs. Culture
of live virus from serum, packed haemocytes or (ideally) separated red and white blood cell
components would facilitate greater understanding of how HeV spreads systemically within its
natural flying-fox host. Berhane et al. (2008) have demonstrated in porcine models that the
closely-related Nipah virus (NiV) is able to replicate in peripheral blood mononuclear cells
(PMBC:s), which facilitates both haematogenous spread and possible host immunosuppression
due to viral replication in these particular immune cells [38].

Latent HeV infection interspersed with periods of recrudescence has also been hypothesised
as a potentially important mechanism in maintaining persistent infection at both the individual
bat and flying-fox population level [13, 39], and detection of HeV RNA in serum is at least con-
sistent with the possible reactivation of a latent infection and haematogenous dissemination of
virus to tissue sites where viral shedding can occur. A recent study identified the spleen as a
possible site of latent HeV-infection in naturally-infected flying-foxes [37], and one plausible
recrudescent pathway could involve haematogenous spread of virus from the spleen to kidney
or bladder tissues, facilitating a patent viral infection in urine. While the small number of HeV
RNA detections in serum precludes statistical significance testing, it is interesting to note that
10/11 (~91%) serum-positive animals were female. Additionally, all detections in female P.
alecto clustered in April-June, which coincides with early to mid-gestation in this species (and
half of all serum-positive females were indeed palpably pregnant at the time of sampling). Preg-
nancy has previously been recognised as a risk-factor for HeV infection in P. scapulatus and P.
conspicillatus, using HeV serology as a proxy for infection status [29, 30], and the apparent
association between HeV RNA detection in serum and pregnancy may be consistent with a
recrudescent event in this particular demographic cohort. Halpin et al. (2011) also had an
apparent sex-bias in relation to HeV RNA detections in blood from experimentally-infected P.
alecto (4/5 blood-positive animals were female), although only one of these females was preg-
nant during the experimental period [9]. Alternatively, while the viraemic phase is generally
presumed to be short in henipavirus infections in flying-foxes [8, 40], temporal or sex-related
factors leading to differential viraemic periods could also explain an apparent demographic
clustering of serum-positive females coinciding with early to mid-gestation.

The complete lack of detections in P. poliocephalus and P. scapulatus adds to a growing
body of evidence suggesting that P. alecto and P. conspicillatus are the main reservoir host spe-
cies for HeV [37, 41]. It could be argued that the lack of detections in P. scapulatus in this study
may simply reflect the relatively limited, non-targeted sampling effort in this species (although
n = 262, while modest compared to the P. alecto and P. poliocephalus samples, is substantial
nonetheless), or alternatively, the narrow spatiotemporal sampling of P. scapulatus given its
extensive geographic occurrence and highly nomadic nature [42]. Yet, with pregnancy previ-
ously associated with serological evidence of HeV infection in P. scapulatus [30], we were
unable to detect any evidence of viral shedding in 83 adult females sampled at time points coin-
cident with early-mid gestation for this species (Oct-Feb), including 43 confirmed pregnant
animals. The complete absence of HeV detections in this higher infection risk cohort strength-
ens our contention that P. scapulatus is not a primary reservoir host.

Interpretation of the negative HeV data for P. poliocephalus is unambiguous given the pre-
dominant structured temporal surveillance at two disparate locations, and the large sample size
(n =1168). At the Boonah roost, which yielded the majority of the P. poliocephalus samples, all
42 HeV detections were made in co-roosting P. alecto in the same time period. At the Sydney
Royal Botanic Gardens roost, the March-May 2012 sampling period encompassed breeding
and early gestation in P. poliocephalus [43]. The lack of detections in this species at either loca-
tion across various putative “high-risk” periods for HeV infection in flying-foxes [13, 29, 30,
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44] strongly suggests that P. poliocephalus has a significantly lower infection rate than P. alecto.
Our findings in relation to both P. scapulatus and P. poliocephalus are consistent with several
other recent studies employing different sampling methodologies [16, 25], and provide addi-
tional evidence that HeV infection rates are low in these two species.

In terms of possible viral transmission pathways between flying-foxes, and from flying-
foxes to horses, the results of this study provide new empirical evidence on the most likely
sources of HeV exposure for both flying-foxes and horses. While fajlure to isolate HeV from
nasal, oral, rectal and urinary samples from experimentally-infected P. poliocephalus has previ-
ously led authors to conclude that these potential excretory routes may be of little importance
[8], a more recent appraisal of the evidence argues that early experimental infection models
were likely flawed [37, 44]. The historical focus on the importance of infectious birthing mate-
rial as a possible source of infection to horses [3, 8] has also been tempered by serological stud-
ies suggesting vertical transmission in flying-foxes is unlikely to be the predominant form of
transmission [29, 30], and Goldspink et al. (2015) support this contention through an absence
of HeV RNA detection in placental and uterine tissues from all four species of Australian main-
land flying-fox [37]. The routine detection of HeV (and other paramyxoviruses) in pooled fly-
ing-fox urine samples [16-18, 21, 25] highlights the importance of this excretory medium in
naturally-infected flying-foxes, and our study confirms that urine is the most significant route
of HeV excretion in wild-caught P. alecto. Collectively these results suggest that flying-fox
transmission likely revolves around direct contact with infectious urine of conspecifics (or pos-
sibly cross-species transmission in multi-species roosts). Hypothesised indirect transmission
pathways facilitating spillover to horses via urinary contamination of pasture, feed and water
sources remain plausible [44], although ingestion of contaminated ‘spats’ seems less likely
given the low detection rates in oral swabs (notwithstanding the possibility that spats could be
contaminated with infectious urine). The role of direct transmission pathways from flying-
foxes to horses perhaps deserves greater attention. Our routine observation of the abundance
of flying-fox urine, faeces and food debris underneath trees in which they are feeding suggests
that horses underneath such trees have a high likelihood of direct physical contamination with
potentially infectious material. Equine behavioural studies confirm that horses are essentially
crepuscular in terms of their feeding activity, and while there is evident seasonal variation,
horses in general spend more time resting at night than foraging [45, 46]. This infers that
horses are more likely to be resting than grazing or browsing when flying-foxes are most
actively foraging, making direct inoculation of infectious urine across oronasal or conjunctival
surfaces potentially more plausible than ingestion. Both Field et al (2012) and Smith et al
(2014) have previously alluded to the possibility of direct transmission [41, 44], and Field et al
2015 [47] elaborate the potential. A recent modelling paper reiterates the prospect [48]. Addi-
tional behavioural ecology studies on flying-fox and equine activities that influence potential
contact rates at the bat-horse interface would further inform modes of transmission between
flying-foxes and horses.

Conclusion

We sought to identify the major routes of HeV excretion in naturally infected flying-foxes, and
secondarily, to identify between-species variation in excretion prevalence. We captured free-
living flying-foxes over space and time, and collected and screened multiple samples from each
individual using a molecular approach to identify HeV RNA. The rate of detection, and the
amount of viral RNA was highest in urine samples (>serum, packed haemocytes >faecal
>nasal >oral), identifying urine as the most plausible source of infection for flying-foxes and
for horses. Detection in a urine sample was more efficient than detection in urogenital swabs,
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identifying the former as the preferred diagnostic sample. The detection of HeV RNA in serum
is consistent with haematogenous spread, and with hypothesised latency and recrudesence in
flying-foxes. The lack of detections in P. poliocephalus and P. scapulatus strongly suggest these
species are epidemiologically less important than P. alecto. The study is unprecedented in
terms of our individual animal approach, our large sample size, and our use of a molecular
assay to directly determine infection status. These features provide a high level of confidence in
the veracity of our findings, and a sound basis from which to more precisely target equine risk
mitigation strategies.
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