
RESEARCH ARTICLE

Methane Exchange in a Coastal Fen in the
First Year after Flooding - A Systems Shift
Juliane Hahn1*, Stefan Köhler1, Stephan Glatzel2, Gerald Jurasinski1

1 Landscape Ecology, Faculty of Agricultural and Environmental Sciences, University of Rostock, Rostock,
Germany, 2 Department of Geography and Regional Research, University of Vienna, Vienna, Austria

* to.juliane.hahn@web.de

Abstract

Background

Peatland restoration can have several objectives, for example re-establishing the natural

habitat, supporting unique biodiversity attributes or re-initiating key biogeochemical pro-

cesses, which can ultimately lead to a reduction in greenhouse gas (GHG) emissions.

Every restoration measure, however, is itself a disturbance to the ecosystem.

Methods

Here, we examine an ecosystem shift in a coastal fen at the southern Baltic Sea which was

rewetted by flooding. The analyses are based on one year of bi-weekly closed chamber

measurements of methane fluxes gathered at spots located in different vegetation stands.

During measurement campaigns, we recorded data on water levels, peat temperatures,

and chemical properties of peat water. In addition we analyzed the first 20 cm of peat before

and after flooding for dry bulk density (DBD), content of organic matter and total amounts of

carbon (C), nitrogen (N), sulfur (S), and other nutrients.

Results

Rewetting turned the site from a summer dry fen into a shallow lake with water levels up to

0.60 m. We observed a substantial die-back of vegetation, especially in stands of sedges

(Carex acutiformis Ehrh). Concentrations of total organic carbon and nitrogen in the peat

water, as well as dry bulk density and concentrations of C, N and S in the peat increased. In

the first year after rewetting, the average annual exchange of methane amounted to 0.26 ±

0.06 kg m-2. This is equivalent to a 190-times increase in methane compared to pre-flooding

conditions. Highest methane fluxes occurred in sedge stands which suffered from the heavi-

est die-back. None of the recorded environmental variables showed consistent relation-

ships with the amounts of methane exchanged.

Conclusions

Our results suggest that rewetting projects should be monitored not only with regard to veg-

etation development but also with respect to biogeochemical conditions. Further, high
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methane emissions that likely occur directly after rewetting by flooding should be consid-

ered when forecasting the overall effect of rewetting on GHG exchange.

Introduction
The world’s peatlands play an important role in the global climate system with regard to the
exchange of greenhouse gases (GHG) [1]. They constitute the largest and most concentrated
reservoir of carbon (C) of all terrestrial ecosystems, storing worldwide an estimated 550 Gt of
C in their peat [2]. They further provide a habitat for many characteristic and some highly
adapted plant and animal species [3].

Draining and land use of drained peatlands not only change their plant and microbe com-
munity composition [1] but can also transform these C stores into C sources e.g., [4, 5]. Thus,
drainage for agricultural use has a lasting effect on the C balance of wetlands [6, 7]. In addition
drainage irreversibly alters chemical and physical characteristics of the peat [8, 9].

Until the 1980s the use and drainage of peatlands was the primary objective of peatland
management in Europe and Northern America but the restoration of altered peatlands has
gained importance over the last three decades [10]. Initially, restoration of peatlands primarily
aimed at biodiversity protection. However, the reduction of GHG emissions has grown as an
objective of peatland restoration [11]. Today peatland rewetting and/or restoration seem to be
common land-use management practices [12] in Europe and Northern America. This is also
acknowledged in the recent Wetland Supplement of the IPCC report [5].

A systematic review of the exchange of GHG in restored peatlands is not available at the
moment [10] although some information can be gained from the IPCCWetland Supplement
and the chapter on Rewetted Organic Soils [5]. The storage of C is determined by the balance
between primary production (photosynthesis) and decomposition [13]. Raising the water level
in drained peatlands has the potential to decrease aerobic decomposition, and under certain
conditions is expected to reduce net GHG emissions [14, 15, 16]. Therefore, the re-establish-
ment of hydrological self-regulation and peat accumulation are key aspects of efforts to restore
the C sink function of peatland ecosystems [17, 18]. However, very few studies really compare
full GHG balances before and after flooding under field conditions [19]. The available data sug-
gest, though, that CH4 emissions may increase after rewetting whilst CO2 and N2O emissions
are effectively reduced [20] but this is deduced from measurements in drained, pristine and
very few rewetted peatlands, e.g., [10, 21]. Data on the effects of rewetting of peatlands on eco-
system functioning including GHG exchange, vegetation succession as well as peat and water
chemistry are even more sparse—but see [12] for some references addressing nitrogen com-
pounds and dissolved organic C.

GHG emissions in peatlands are modulated by complex relationships between a range of
interconnected biological, chemical and physical factors [22]. Even within one peatland the
relationships between water level, decomposition and sequestration are not necessarily
straightforward [23]. Furthermore, there is disagreement in the interpretation of the variables,
reactions and the impact of environmental conditions on C storage and release. Thus, a better
understanding of the critical processes regulating GHG dynamics in peatlands in general and
particularly under flooded conditions is needed [24].

In boreal peatlands, restoration after peat mining in cut-over bogs is quite common, e.g.,
[25, 26, 27]. Restoration of fens has been less widespread [10] but during the last decades 10
000 ha of drained, lowland fens have been rewetted in Northeast Germany [28] and 2 500 ha in
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Northwest Germany (NLWKN (2007), in [10]). When low lying fens are rewetted, they are
often flooded since they subsided under drainage because of compaction, shrinking and
decomposition with rates of up to 2cm a-1 in temperate and boreal peatlands [29, 17] resulting
in ground surface levels below sea level or local ground water table. When rewetting is then
achieved by stopping pumping or by blocking the main drainage ditches at the outflow, flood-
ing is inevitable. With regard to biogeochemical cycles flooding leads to increased anoxia
within the peat profile coupled with increased substrate supply in terms of previously mineral-
ized organic matter and plants dying from inundation. This is likely to fuel anaerobic degrada-
tion and thus CH4 production; especially at high temperatures [30].

When land managers plan rewetting projects they want to know beforehand whether their
measures will be effective. Plant species and vegetation composition may help in predicting
future emissions after rewetting. Dias et al. [31] have introduced plant species composition as a
proxy to predict CH4 emissions in peatland ecosystems after land-use changes. Similarly, Cou-
wenberg et al. [32] have developed the methodology of Greenhouse gas Emission Site Types
(GESTs) to assess emissions and emission reductions from peatland rewetting projects using
vegetation as a proxy [32]. Couwenberg and Fritz [33] stated that vegetation is a good proxy
for mean water levels and could provide—with extra attention to species with aerenchyma tis-
sue (“shunt species”)—a robust proxy for accurate and spatially explicit estimates of CH4

effluxes over large areas. This only holds true, however, when the vegetation already has
adapted to the rewetted conditions. Another major problem in forecasting GHG emissions
after rewetting, is the considerable variation in starting conditions (i.e. genesis and succession
of the site followed by the history of anthropogenic alterations) [10] and the lack of knowledge
about changes regarding water quality and peat chemistry and their impact on changes in
GHG exchange rates.

Here, we study the initial rewetting phase in a brackish fen at the coast of the southern Baltic
Sea. During the first year after flooding, we investigated vegetation development, peat and
water properties relevant to ecosystem functioning and the emission patterns of CH4. We
hypothesized that flooding will cause (1) an increase in CH4 emissions because water level is
the strongest driver of CH4 emissions in temperate peatlands, (2) a die-back in the vegetation
because the prevailing plants are adapted to non-flooding conditions and (3) a shift in peat and
water properties because the inflow of fresh water from the catchment will very likely alter the
biogeochemical status and the associated processes.

Materials and Methods

Study site
The study site “Rodewiese” is part of a paludification fen that is located at the southern shore
of the Baltic Sea close to the city of Rostock, Northeast Germany (lat 54°21’N, long 12°18’E) in
the nature reserve “Heiligensee und Hütelmoor” (Fig 1a and 1b) [34]. Access to the site was
granted by the Forest authority of the city of Rostock (Stadforstamt). The site covers an area of
about 0.63km². The climate is temperate with an average annual temperature of 9.1°C and an
average annual precipitation of 645 mm [35] (reference climate period: 1981–2010). The
nature reserve is separated from the Baltic Sea by a dune dike. In the past, it was episodically
flooded with brackish waters. The last major intrusion took place in 1995 [36].

Formerly, the site had been drained by a network of ditches. From 1975 drainage was inten-
sified and soil was ploughed up and mixed with sand at 70% of the area in order to use it for
forage crops (land amelioration) [37, 38]. Starting in 1990, several restoration measures were
implemented. Drainage was stopped in 1992 what led to slight rewetting of the “Rodewiese”.
To prevent the water level to drop considerably below ground surface in summer, a groundsill

Ecosystem Shift of a Coastal Fen after Flooding

PLOS ONE | DOI:10.1371/journal.pone.0140657 October 13, 2015 3 / 25



was installed at the outflow of the catchment in late 2009 [39]. Already some years before that,
in 2005, the maintenance of the dune dike was abandoned.

The soil at the study site is a sapric histosol consisting of 1–3 m thick layers of alternating
sandy sediments and horizons of reed-sedge peat. Due to intense drainage between the 1970s
and 1990s the peat layers are highly degraded (up to H10 at the von Post humification scale).
The vegetation of the study site consists of a dynamic mosaic of reed, rush and sedge stands
featuring species that are adapted to temporal variation in brackishness. The four most impor-
tant species that form dominance stands are Common reed (Phragmites australis L.), Lesser
pond sedge (Carex acutiformis Ehrh.), Sea club-rush (Bolboschoenus maritimus (L.) Palla.) and
Softstem bulrush (Schoenoplectus tabernaemontani C.G. Gmel.). The latter two often occur
together with shared dominance.

In 2009, before flooding, the site was a weak source of CH4 with average annual emissions
of 13.94±5.8 kg ha-1 a-1 CH4 [34] and a sink for CO2 with average uptake of 12.2 ± 0.05 t ha-1

CO2 during the growing season (May-October) 2009 [39]. Emissions of CH4 varied between
different vegetation types with significantly higher fluxes (31.8±5.7 kg ha-1 a-1) from rush
stands with Bolboschoenus maritimus compared to sedge stands (4.3±1.2 kg ha-1 a-1). None of
the other tested variables (root density, pH, ash content, mean annual water level, mean annual
conductivity) had a significant influence on the variation in CH4 emissions [34].

Fig 1. (a) Location of the study site in northeast Germany. (b) Spatial distribution of the twelve measurement spots at the four clusters (aerial photograph
2009, NW = northwest, SE = southeast, + = more inundated, − = less inundated, b = rush stands, c = sedge stands p = reed stands). (c) micro-relief and
inundation intensities in November 2009 (NW = northwest, SE = southeast). Own creation. Map in a) is reprinted from Bundesamt für Kartografie und
Geodäsie under a CC BY license, with permission from the German Ordinance to Determine the Conditions for Use for the Provision of Spatial Data of the
Federation (GeoNutzV), original copyright 2014.

doi:10.1371/journal.pone.0140657.g001
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Field setup
In October 2009, 12 measurement locations (spots) were set up. Each three of these, covering
different dominant vegetation (Common reed (“reed”), Lesser pond sedge (“sedge”) and Sea-
club rush / Softstem bulrush (“rush”)) were arranged in clusters at two inundation levels (one
less (-) and one more (+) inundated). This was replicated in two independent areas (locations)
of the study site (NW and SE). We permanently installed aluminum collars at these spots four
weeks before measurements started. The collars were held in place by aluminum rods allowing
for height adjustment of the collars to the water table and were each surrounded by a wooden
boardwalk to minimize disturbances during sampling (Fig 2).

For measuring water level and for gathering peat water samples we installed one to two dip
wells per cluster (2.20 m depth, 35 mm internal diameter, PVC slotted screen, custom made) in
November 2009 (Table 1). Percent cover of vascular plants was assessed in August 2010 within
each measurement spot following [40]. Regular field sampling campaigns were run biweekly
from November 2009 to November 2010. Thus, the first measurement campaigns were carried
out before flooding, allowing us to derive pre-flooding data on peat and water properties.

Peat water properties
During field sampling campaigns we recorded water table levels, water temperatures, electric
conductivities, and pH-values in the dip wells at a depth of 10 cm below water surface (Univer-
sal Pocket Meter (Multi340i), Wissenschaftlich-Technische Werkstätten GmbH (WTW),
Weilheim, Germany). Water samples were taken monthly with syringes from the dip wells
from 10 cm below the water surface to be analyzed for anions with importance in brackish sys-
tems (Cl- and SO4

2-), for total organic carbon (TOC), and for total bound nitrogen (TNb).
TOC and TNb were determined to assess the nutrient content of the water phase.

The water samples were transported to the lab cooled and stored at -20°C until analysis with
ion chromatography. To prepare the samples for anion analysis a pinch of sample-prepara-
tion-resin D7 (Frank Gutjahr Chromatographie, Balingen, Germany) was mixed with 60 ml of
sample to remove humic acids. The mixture was filtered over a folded filter (Art. CA08.1, Carl
Roth, Karlsruhe, Germany). Filtrates were diluted with high-purity water according to their
EC. Anion concentrations of the diluted filtrates were determined by ion chromatography (M
IC, Metrohm GmbH & Co. KG, Filderstadt, Germany) using an anion exchange column with
chemical suppression (MetrosepA Supp5-150, Metrohm Germany) with a carbonate eluent (2
mMNaHCO3 and 1.3 mM Na2CO3). Anion concentrations in the standards were 0.5 mg l-1,
2.0 mg l-1, 5.0 mg l-1, 10.0 mg l-1, 20.0 mg l-1 and 30.0 mg l-1 of Cl- and SO4

2-, respectively. An
aliquot of the water samples was transferred to glass vials and analyzed for TOC and TNb
(DIMATOC12000, Dimatec Analysentechnik GmbH, Essen, Germany; smallest standard
0.1ml l-1 carbon and nitrogen). Raw data on peat water properties are given in S2 Dataset.

Peat properties
Peat temperatures at 10 cm below ground surface were recorded with data loggers (Hobo Tem-
perature/Light Pendant UA-002-64, Onset Computer Corporation, Inc., Pocasset, Massachus-
setts, USA) half hourly from August 2010 until January 2011 at each cluster. Peat temperatures
for the whole investigation period were derived based on a linear regression model of the avail-
able measurements against the water temperature data (p<0.001, R2 = 0.96, n = 77). This
model was used to predict peat temperatures for the times not covered by the direct peat tem-
perature measurements via the water temperature data that covers the whole investigation
period.
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Intact peat cores (7 cm diameter) were collected from the top 20 cm of peat adjacent to the
measurement spots (maximum 1 m apart) for detailed peat characterization in autumn 2009
(pre-flooding) and late summer 2010 (post-flooding). The upper (0–10 cm, D1) and lower
(10–20 cm, D2) parts of the peat cores were analyzed separately to determine differences
between the zone dominated by living roots (D1) and the more humified peat (D2). The sam-
ples were analyzed for dry bulk density, content of organic matter and total amounts of carbon

Fig 2. Closed chamber set-up to measure the CH4 exchange at inundated conditions. a) Scheme of a
measurement spot with the chamber placed at the collar and an attached vacutainer for gas sampling. b)
Photograph of a sedge spot from the study site in July 2010.

doi:10.1371/journal.pone.0140657.g002
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(C), nitrogen (N), sulfur (S), as well as of phosphorus (P), magnesium (Mg), potassium (K),
calcium (Ca), sodium (Na) and iron (Fe). Unfortunately, pre-flooding samples from cluster
NW+ were lost because equipment broke during sampling and we were not able to repair it
before the site was flooded after the ground sill was installed in late 2009.

Content of organic matter was estimated by loss-on-ignition. To do so, 200 g of fresh peat
were dried at 105°C for 24 h and approx. 5 g of dried peat were incinerated in a muffle furnace
at 500°C for 5 h (adapted from [41]). Dry bulk densities and element contents were determined
on peat cores which were dried at 40°C for 48 h. One half of each core was subsequently dried
at 105°C for 24 h to determine the bulk density by dividing the resulting dry mass by the vol-
ume of the half-core [42]. The second half of the 40°C dried cores was used to determine ele-
ments. The dried peat was powdered with a centrifugal ball mill (Typ 1, Retsch GmbH & Co.
KG, Haan, Germany). The CNS-composition of the samples was determined by an Elementar
analyser (VARIO EL, Elementar Analysensysteme GmbH, Hanau, Germany) according to
Blume et al. [43]. To determine total amounts of P, Mg, K, Ca, Na and Fe ca. 30 g of dry peat
were incinerated in a muffle furnace (550°C for 5 h) to remove organic material that could
cause foam formation in the following extraction steps. 0.5 g of incinerated peat were then
digested by 10 ml 65% HNO3 (p.a. grade) followed by a microwave-pressure-extraction (200°C
for 15 min; Mars Xpress, CEM, Kamp-Lintfort, Germany). Ash-particles were filtered off and
element-concentrations were determined by inductively coupled plasma optical emission spec-
trometry (ICP-OES) (Jobin Ivon JY238 ULTRACE, Horiba Jobin Ivon GmbH, Bensheim, Ger-
many) at wavelengths 214.914 nm (P), 202.569 nm (Mg), 766.490 nm (K), 396.847 nm (Ca),
589.592 nm (Na) and 238.204 nm (Fe). Raw data on peat properties are given in S3 Dataset.

Methane measurements
During field sampling campaigns we conducted chamber measurements as described in
Koebsch et al. [34]. Atmospheric CH4-exchange (i.e. above-ground exchange) was determined
based on opaque closed chamber measurements [44]. We used rectangular PVC-chambers
with base areas of 0.5625 m2 and heights of 0.5 m (volume = 280 l). Two sampling outlets—
made from flexible tubes held in place by cable glands and closed by stop cocks—were located
at the top of the chamber. During measurement the chambers were placed in a 5 cm wide and
equally deep channel of the preinstalled aluminum collars (0.75 � 0.75 m2). The channel was
filled with water to provide an airtight seal during gas measurements (Fig 2a). We used cham-
ber extensions with a height of 50 cm to allow for chamber measurements on tall emergent
macrophytes.

During chamber measurements the three spots per cluster were measured in parallel. Gas
samples were taken by evacuated glass-flasks (vacutainer, 46 ml) 0, 10, 20 and 30 min after

Table 1. Average peat water properties at the NW and SE clusters in the first year after flooding.

location WL (m) EC (mS cm-1) Cl-(g l-1) SO4
2- (g l-1) TOC (g l-1) TNb (mg l-1) n

NW 0.39 (0.1)*** 5.37 (2.3) 0.79 (0.7) 0.32 (0.3) 0.10 (0.1) 6.20 (4.9) 90

SE 0.32 (0.1) 6.42 (2.8)* 1.06 (1.2) 0.95 (1.7)*** 0.12 (0.1) 7.70 (9.6) 109, WL = 120

Values are arithmetic means and standard deviations are given in brackets. Differences between NW and SE clusters were tested with one-tailed Wilcox-

rank-sum-tests and significance is indicated by:

* p<0.05 and,

*** p<0.001.

WL = water level above ground, EC = electric conductivity, Cl- = concentration of Cl- anions in the peat water, SO4
2- = concentration of SO4

2- anions in the

peat water, TOC = total organic carbon and TN total bound nitrogen in the peat water; NW = northwest; SE = southeast.

doi:10.1371/journal.pone.0140657.t001
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chamber closure. Prior to each gas sampling we mixed the chamber volume by pumping with a
60 ml syringe for 1 min. Internal chamber temperature was recorded during chamber closure.
The gas samples were analyzed within a week after field sampling with a gas chromatograph
(PerkinElmer Auto System, Massachusetts, USA) equipped with a Porapak packed analytical
column (Loftfields Analytische Lösungen, Germany). CH4 was detected by a flame ionization
detector (FID) at 200°C with an average accuracy (deviation from the reference concentration)
of 2% (149 ppb). Chamber headspace concentrations of CH4 are given in S1 Dataset.

Methane flux calculation
CH4 fluxes were estimated from concentration change over time in the chamber headspace
during chamber placement using package “flux” [45]) for R! [46]. The function flux of the
package allows for automatic outlier detection and finds the best linear fit in the concentration
data from closed chamber measurements by applying iterative linear regressions to the data
points (see [34] for details). Fluxes that did not meet the set quality criteria (R2 > 0.8,
NRMSE< 0.2) were excluded from further analyses. Many of them may have been ebullitions,
however, since there is no straightforward method to distinguish between ebullitions and mea-
surement errors we chose to omit fluxes based on our quality criteria alone. In addition, the
range of the concentration measurements during chamber placement was compared to the
daily repeatability range of GC-measurements. In case the range of the concentration measure-
ments was smaller than the daily repeatability range, the respective flux was set to zero. Nega-
tive flux values indicate biospheric uptake of CH4 (sequestration of C), and positive flux values
indicate CH4 emissions to the atmosphere. Annual emission estimates for each measurement
spot were derived using a Monte Carlo permutation procedure provided by function auc.mc of
the R package “flux” [45], for details see [47].

Data analysis
All data analyses were performed using statistical software R! version 2.14.2 [46]. We interpo-
lated CH4 fluxes and continuous environmental variables by generalized additive (GAM) mod-
els using function gam of base R. Plot wise GAMs were fitted to get fortnightly data sets of CH4

fluxes and the environmental variables. Fitting GAMs assumes linear developments between
adjacent measurement dates in the respective variable. Especially for CH4 fluxes this assump-
tion may be not fully justified because they can be highly variable in time [48]. Nevertheless,
we obtained the possibility to display trends in the relationship between CH4 fluxes and envi-
ronmental variables to illustrate their variability across space and time. Site wise GAMs were
fitted for environmental variables to display trends during the measurement period.

Linear regression was applied to examine the development of CH4 fluxes and environmental
variables (water level, TOC, TNb) during the measurement period. Furthermore, we used lin-
ear regression to investigate whether environmental variables are related (electric conductivity
~ anion content), whether they control CH4 fluxes (CH4 ~ temp, CH4 ~ TOC, TNb) and
whether vegetation cover was driving atmospheric CH4 exchange over the study period (atmo-
spheric CH4 exchange ~ percent cover of floating and rooted vegetation).

We used non-parametric statistics to account for (mainly) non-normal distribution of the
data when comparing environmental variables and peat properties between locations, inunda-
tion levels, and clusters. For location and inundation level we used one tailed, paired, two-sam-
ple Wilcoxon signed rank tests with continuity correction, for clusters we used pairwise
Wilcoxon rank sum test with Holm correction for p-values [49]. Both tests are not sensitive to
normal distribution. In case the data were normally distributed, the Welch test was used
instead. Significance level was set to p<0.05.
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To examine changes of the peat water or peat properties before and after flooding as well as
to jointly analyze relationships between annual CH4 exchange and site characterizing parame-
ters we applied non-metric multidimensional scaling (NMDS) separately for water and peat.
We used function “metaMDS” (package “vegan” version 2.0–5, [50] for R!) on transformed
data (standardized into the range 0–1) with Euclidean distances and maximum 100 random
starts in search for a stable solution. For peat water data we used water level, concentrations of
TOC, TNb, chloride, and sulfate. For peat properties we included dry bulk density, dry mass,
and concentrations of C, N, S, P, K, Mg, Ca, Na, Fe. For the analysis of the relationships
between annual CH4 exchange and site characterizing parameters we used the averages of envi-
ronmental variables from the measurement period, peat properties from late summer 2010 and
data from the vegetation cover estimation. We excluded variables with a significance level
below 0.05 by backward selection until the ordination results were constant. From this process,
13 parameters were retained, namely: electric conductivity and concentrations of TOC, TNb
and SO4

2- in the peat water at 10 cm depth as well as dry bulk density, percent dry weight, con-
tent of organic matter and total concentrations of C, N, S, K, Mg and Na in the uppermost
20cm of peat. We checked the significance of the parameters that remained in the NMDS with
a permutation test (function “envfit”, 1000 permutations; package “vegan” version 2.0–5, [50]
for R!) and assumed that those with p<0.001 significantly characterized the measurement
spots. Afterwards we used this permutation test to check for relationships of these site charac-
teristics with the amount of CH4 exchanged during the first year after flooding. To visualize
these relationships we scaled the symbols according to the amount of annual CH4 exchange.

Results

Site characteristics
Vegetation development. During the first year after flooding, we observed a substantial

die-back of vegetation—especially in the sedge stands. This was reflected in the post-flooding
plant species percent cover estimates in August 2010 compared to the pre-flooding estimates
from August 2009: Percent cover of rooted vegetation ranged between 1 and 100%. Three of
four spots with Lesser pond sedge showed the least cover of rooted vegetation compared to the
other spots in the cluster. The actual sedge cover ranged from 0 to 20%. Furthermore, at ten
out of twelve spots floating plants such as Duckweed (Lemna sp. L.) and Water starwort (Calli-
triche sp. L.) occurred during the study period. Percent cover of floating species significantly
increased with decreasing cover of rooted vegetation (linear regression, n = 12, R² = 0.4445,
p = 0.0179).

Peat water properties. Due to the flooding of the area, the water levels increased signifi-
cantly (linear regression, n = 208, R2 = 0.1128, p<0.001) from 17±8 cm (November before
flooding) to 52±9 cm above ground surface (November after flooding). On average the increase
amounted to 34 ± 1 cm and was most pronounced (with 46±10 cm) at cluster NW+ where it
rose from 27 cm before to 63 cm after flooding (November 2009 and 2010, respectively). After
flooding, the water levels ranged between 4 and 65 cm with a mean of 35±13 cm (Fig 3a).

Both TOC and TNb in the peat water increased significantly in the first year after flooding
(linear regression, n = 102, TOC: R2 = 0.404, p<0.001, TNb: R2 = 0.368, p<0.001; Fig 3g and
3h). Concentrations of TOC rose by a factor of six, and TNb by a factor of four. Peat water con-
centration of TOC was 80±60 mg l-1 whereas concentration of TNb averaged at 5±3 mg l-1.
Highest values of TOC and TNb occurred at cluster NW-, especially in late summer when
overall concentrations were highest (Fig 3g and 3h).

Electric conductivity remained relatively constant whereas concentrations of Cl- and SO4
2-

dropped to three quarters and one third of pre-flooding conditions, respectively. Electric
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conductivity in the peat water was 6.0±2.7 mS cm-1 and concentrations of Cl- ranged from 0.01
to 1.10 g l-1, averaged at 0.88±0.14 g l-1, while the concentrations of SO4

2- ranged from 0.01 to
11.0 g l-1 and averaged at 0.37±0.27 g l-1 (Fig 3d–3f). Across the whole range of values the rela-
tionship between electric conductivity and the concentrations of Cl- and SO4

2 was rather weak
(linear regression, n = 118, R2 = 0.2663, p<0.001). However, up to values of 4 mS cm-1 electric
conductivity was increasing together with the concentrations of Cl- and SO4

2 whilst above 4
mS cm-1 the concentrations of Cl- remained constant or decreased and SO4

2- concentrations
increased further whilst displaying strong statistical spread. Generally, the electric conductivi-
ties and the concentrations of SO4

2- in peat water were significantly higher in the SE of the
study site compared to the NW while concentrations of Cl- were homogeneous across the
study site (see Table 1).

After flooding, peat water properties became more heterogeneous (Fig 4a) and the SE clus-
ters experienced the strongest change in peat water composition (Fig 3d–3h). At SE+ the
increase in TOC and TNb was three times higher compared to all other spots and electric

Fig 3. Environmental variables at the more (NW+, SE+) and less (NW-, SE-) inundated clusters after
flooding. From November 2009 until January 2011, we recorded a) water level (WL), b) peat temperature
(PT), c) pH-value, d) electric conductivity (EC), e) concentration of chloride (Cl-), f) sulfate (SO4

2-), g) total
organic carbon (TOC), and h) total bound nitrogen (TNb) in the peat water at 10 cm peat depth. Generalized
additive models were fitted to the data to display the overall trends during the measurement period (solid line:
modelled value; dashed lines: 95% confidence interval); the goodness of model fit is given by R2 and p-value.
Extreme values (�1.5 x interquartile range) were not included into modelling; they are marked by arrows and
values are given next to the symbol of the particular cluster.

doi:10.1371/journal.pone.0140657.g003
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Fig 4. Properties of the a) peat water and b) peat (0-20cm) before (pre) and after (post) flooding. Spots
which shared one dip well are represented by one data point. Only parameters that contributed significantly to
the NMDS (p < 0.01) were included. Parameters included in peat water NMDS were water level (WL), the
contents of total organic carbon (TOC) and nitrogen(TN), chloride (CL) and sulfate (SO4). Stress of the peat
water NMDS was 0.012. Flooding significantly (p<0.001***) altered peat water characteristics. For pre-
flooding peat water properties from the 25.11.2009 and for post-flooding those from the 25.11.2010 were
used (n = 14).

doi:10.1371/journal.pone.0140657.g004
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conductivity, Cl- and SO4
2- even increased compared to pre-flooding conditions. Actually,

highest concentrations of SO4
2- were found in dip wells P4 (SE-; median concentration of 0.78

g l-1 SO4
2-) and P7 (SE+, median concentration of 0.71 g l-1 SO4

2-), and extremely high values
of both Cl- (4–6 g l-1) and SO4

2- (4–10 g l-1) occurred from September to December 2010 (Fig
3e and 3f).

Parameters included in peat NMDS were dry bulk density (DBD), dry weight (DW), and
contents of total carbon (C), nitrogen (N), sulfur (S), phosphorus (P), potassium (K), magne-
sium (Mg), calcium (Ca), sodium (Na), and iron (Fe). Stress of the peat NMDS was 0.041.
Flooding altered peat water characteristics significantly (p<0.05�). Spots 1–3 were excluded
from the peat property analysis due to missing values before flooding. For pre-flooding peat
properties from the 25.11.2009 and for post-flooding those from the 23.08.2010 were used
(n = 18).

Peat properties. The peat from the uppermost 20 cm had—on average—a dry bulk density
(DBD) of 0.8±0.2 g cm-3, a content of organic matter (OM) in the dry mass of 68±11% and a
water content of 77±5%. The C:N ratio averaged at 15.7. We observed the formation of FeS
(black film on study site equipment) and H2S (smell) during field sampling campaigns. The
DBD was relatively homogeneous throughout the study site. The contents of organic matter,
the C:N ratio as well as the concentrations of C, N, S, P, K, Mg, Ca, and Na were higher in the
NW compared to the SE of the study site (one tailed paired Wilcoxon tests, n = 96, p<0.05).

There was a trend to higher amounts of C, N, and S in and higher dry bulk density of the
peat after flooding compared to pre-flooding conditions (Table 2). However, the twelve mea-
surement spots varied with regard to their peat properties before and after flooding (Fig 4b).
As single parameter flooding significantly increased concentrations of C, N, S and Fe (one-
tailed paired Wilcoxon rank sum test, n = 84; p(C)< 0.05, p(N)< 0.05, p(S)< 0.01, p(Fe)<
0.05). Most remarkable, however, was the increase in dry bulk density after flooding (DBD
(pre-flooding) = 0.6±0.2, DBD (post-flooding) = 0.8±0.1 g cm-3; one-tailed paired Wilcoxon
rank sum test, n = 108, p< 0.001). In the peat zone with roots (D1, 0-10cm depth) dry bulk
density doubled and in the more humified peat (D2, 10-20cm depth) it increased by factor
1.25. Additionally, the water content in D1 increased at half of the spots and decreased at the
other half. Thus, on average water content did not change when comparing pre- to post-flood-
ing conditions. In the lower peat layer (D2), however, water content increased after flooding,
except at the spots 7 and 8 which were located on a sand lens.

Neither flooding nor dominant vegetation nor peat layer had a consistent effect on all peat
properties (Fig 4b, see Table 2 for an overview of peat properties before and after flooding).
Regarding the entity of all recorded peat properties (permutation test of NMDS fit, 1000 per-
mutations, p<0.05), the peat zone with roots (D1) was significantly different from the peat
layer below that zone (D2).

Methane fluxes
From November 2009 to November 2010, in total 267 fluxes of CH4 were recorded; of which
39% were excluded from further analysis because they did not meet the quality criteria. On
average 260±60 g m-2 CH4 were emitted from the study site during the measurement period.
The largest share was released during summer and autumn (98±3% of total annual). From
June to November 2010, peak emissions between 226.4 and 727.5 mg m-2 h-1 occurred, but in
general CH4 fluxes ranged from -43.8 to 727.5 mg m-2 h-1. During the first year after rewetting,
reed, rush, and sedge stands emitted, 200±50 g m-2 CH4, 300±140 kg m

-2 CH4, and 470±140 kg
m-2 CH4, respectively. CH4 fluxes increased significantly (linear regression, n = 162, R2 =
0.1152, p< 0.001) after flooding. In November 2010, fluxes of CH4 were on average 186-times
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higher than in November 2009 (one-tailed Wilcoxon rank test, n = 48, p< 0.001). Further-
more, CH4 fluxes from the NW clusters were higher compared to the SE clusters (one-tailed
Wilcoxon rank test, n = 162, p< 0.05) (Fig 5) during the period of study.

Methane exchange in relation to controls
Controls of single methane fluxes during the first year after flooding. The GAM- inter-

polations for the environmental variables had a mean percentage standard error of 0.5%. Due
to only one data point in autumn 2009 and small fluxes in winter 2009 (-1±9 μg m-2 h-1), mean
percentage standard error was 266% for CH4. For the rest of the study period mean percentage
standard error for CH4 was 3%.

Table 2. Peat properties before (“PRE”) and after (“POST”) flooding in the peat zones dominated by living roots (0–10 cm, D1) and the more humi-
fied peat (10-20cm, D2).

n PRE POST

0-10cm 10-20cm 0-10cm 10-20cm

DBD 84 0.38 (0.1) <*** 0.69 (0.1) <*** 0.78 (0.2) ns 0.84 (0.1)

OM 47 71.36 (3.8) >* 53.10 (19.3) ns 64.88 (5.9) ns 54.90 (14.8)

C:N 84 15.78 (0.6) <* 17.10 (1.3) ns 16.37 (1.1) <** 18.24 (1.4)

C 84 28.04 (6.8) >* 23.86 (9.0) <* 35.02 (4.4) ns 33.90 (6.4)

N 84 1.76 (0.3) >* 1.41 (0.5) <* 2.13 (0.3) >** 1.9 (0.4)

S 84 1.11 (0.3) >** 0.92 (0.3) <** 1.42 (0.3) ns 1.51 (0.8)

P 84 3.75 (1.6) >*** 1.40 (0.7) ns 2.55 (0.4) >** 1.95 (1.1)

K 84 3.85 (1.9) >** 2.00 (0.5) ns 4.30 (2.0) >** 3.15 (1.7)

Ca 84 14.70 (3.5) >* 12.05 (4.5) ns 13.90 (1.6) ns 14.75 (2.7)

Na 84 25.90 (16.3) >*** 12.75 (6.4) ns 19.78 (10.6) ns 26.10 (20.1)

Mg 84 12.25 (6.3) >* 8.30 (4.3) ns 12.35 (5.8) ns 15.30 (10.5)

Fe 84 23.90 (4.6) ns 20.60 (5.7) ns 25.90 (4.4) ns 28.81 (9.7)

Medians and median deviations (median (md)) are presented. Direction of significance testing and level of significance are indicated by: ns (p>0.05),

* (p<0.05),

** (p<0.01) and,

*** (p<0.001).

OM = percent organic matter in %, DBD = dry bulk density in g cm-3, C:N = C:N-ratio, C = total carbon in %, N = total nitrogen in %, S = total sulfur in %,

P = total phosphorus in g kg-1 dry weight, K = total potassium in g kg-1 dry weight, Mg = total magnesium in g kg-1 dry weight, Na = total sodium in g kg-1

dry weight, Ca = total calcium in g kg-1 dry weight, Fe = total iron in g kg-1 dry weight.

doi:10.1371/journal.pone.0140657.t002

Fig 5. Exchange of CH4 at the more (NW+, SE+) and less (NW-, SE-) inundated clusters. The CH4 exchange was measured from November 2009 until
November2010 using the closed chamber approach.

doi:10.1371/journal.pone.0140657.g005
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Fluxes of CH4 significantly increased during the first year after flooding (linear regression,
n = 28, p< 0.001, R2adj (CH4) = 0.2496). Interpolated CH4 fluxes were 205-times higher in
the autumn after flooding compared to pre-flooding conditions (one-tailed Wilcoxon rank
test, n = 33, p< 0.001). The increase in CH4 fluxes was positively related with the increase in
concentrations of TOC and TNb in the peat water (linear regression, p<0.001, n = 336, R2adj
(TOC) = 0.2073; R2adj(TNb) = 0.1436). The highest CH4 fluxes recorded in this study occurred
in late summer on sedge spots (Fig 5) and (interpolated) CH4 fluxes from sedge spots were sig-
nificantly higher compared to those from rush and reed spots (pairwise Wilcoxon rank tests,
n = 28, p< 0.01). The season—and, thus, the development of vegetation and the progression of
flooding—influenced the relationship between the controlling parameters and CH4 exchange.
For example, at the same peat temperatures the fluxes of CH4 were higher in autumn compared
to spring 2010 (Fig 6). Although the patterns at individual spots differed from or even contra-
dicted the general trend, some similar trends occurred within clusters (e.g., NW+ in Fig 6) or
for one plant species (e.g., rush in SE+ and NW-).

Controls of total atmospheric methane exchange in the first year after flooding.
According to the final NMDS ordination TOC, TNb, dry bulk density, dry mass content
(100-water content), electric conductivity, peat water sulfate content, concentrations of S, K,
Mg, Na, C, and N as well as content of organic matter contributed significantly to the charac-
terization of the environmental conditions at the 12 measurement spots (permutation test of
NMDS fit, 1000 permutations, p<0.001; Fig 7a). The environmental variables and peat proper-
ties of the four clusters differed significantly from each other (permutation test of NMDS fit,
p<0.001) although the measurement spots within clusters NW+ and NW- were quite homoge-
neous. On the contrary, the site characteristics of the spots within clusters SE- and especially
SE+ differed strongly from each other (Fig 7b and 7c).

We could not find any relation to the amount of atmospheric exchange of CH4 when testing
the site characterizing parameters from the ordination plus dominant vegetation by a permuta-
tion test of the ordination. Nevertheless, we found high annual emissions of CH4 from single
spots irrespective of water and peat properties, of the cluster and of dominant vegetation; but
there seemed to be a trend towards higher emissions of CH4 from sedge (Fig 7b). According to
linear regression (n = 12, p< 0.05), annual emissions of CH4 were higher when the cover of
rooted vegetation was lower, but this was not significant (R2 = 0.189).

Discussion

Water level increase and die-back of vegetation
Rewetting of the coastal peatland was achieved by blocking the outflow of the catchment with a
ground sill. This turned the previously summer dry fen into a shallow lake with a mean water
level of 35±13cm and thereby triggered a change in the characteristics of the ecosystem.
Strength and direction of the change differed considerably, depending on the starting condi-
tions of the single measurement spots.

Most obvious was the die-back of rooted vegetation that was especially substantial in sedge
stands in which as few as 0–20% of the measurement spots were covered by sedge post-flooding
(compared to over 50% pre-flooding). A strong decrease in sedge cover under high inundation
is also reported by Timmermann et al. [51] from a percolation fen in Western Pomerania. Such
strong die-backs after flooding might be predictable when the plant physiology of the respec-
tive species is well known, e.g., [52, 53]. Short grass species are known to suffer most from the
short-term negative effects of flooding [54] and are less able to recover [55]. According to Kvet
(1984; in [56]), the growth of wetland sedges (Carex spp.) is favored by low inundation levels
and hampered by high inundation. On the other hand, large emergent macrophytes like
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Phragmites australis, that are highly tolerant to flooding [57], showed only small decrease after
flooding. Thus, it is to be expected, that adapted wetland plants will gain dominance under the
new conditions [35]. There are both reports about strong fluctuations and higher variability in
the first years after rewetting [58] as well as about homogenization in vegetation cover under
flooding [59]. Nevertheless, there seems to be an element of chaos in these succession trajecto-
ries: Reviewing the literature on restoration of wetlands, Klötzli & Grootjans ([58], p.210) state,
that “although many species fluctuations could be explained after identification of changes in
environmental conditions [. . .], many other fluctuations were quite unforeseeable [. . .]”.

Water level increase and changed peat and peat water properties
The variation in peat water and peat properties across the study site became stronger after
flooding. The only consistent effect of flooding was the approximate doubling of dry bulk

Fig 6. Impact of peat temperatures (°C) on CH4 fluxes (mgm-2 h-1) in the four seasons (blue = winter, green = spring, yellow = summer,
red = autumn) in the northwest (NW) and the southeast (SE) of the study site at the more (+) and less (-) inundated measurement spots.Data are
interpolated by generalized additive models. Error bars indicate the standard error of the interpolation.

doi:10.1371/journal.pone.0140657.g006
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Fig 7. Interaction of site characteristics with the exchange of CH4 in the first year after flooding.
Measurement spots are arranged according to Bray-Curtis-dissimilarity regarding the average site
characteristics (median) of the measurement spot (for abbreviations see Fig 4) (a). The size of the symbols
represents the relative values of the annual emissions of CH4 (b). All parameters contributed significantly
(p<0.001) to the ordination. The polygons display the cluster (i.e. location and inundation level, see Fig 1c) of
the particular measurement spot. Clusters differed significantly regarding their site characteristics (p<0.05).
Stress of the NMDSwas 0.012.

doi:10.1371/journal.pone.0140657.g007
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density that was most likely due to the (tripled) weight of the water column, which likely led to
compression of the peat. This effect was especially pronounced in the uppermost 10cm domi-
nated by living roots.

Despite the variations between the measurement spots, there was an overall trend to
increased concentrations of C, N, and S in the peat as well as of TOC and TNb in the peat
water. The latter we observed especially at low inundation levels and it was most pronounced
where vegetation suffered from the heaviest die-back (cluster NW-). Schulz et al. [56] found
that helophyte species like e.g. Carex riparia or Phragmites australis store considerable
amounts of carbon and temporarily withdraw high amounts of nutrients from the top soil dur-
ing the growing season; elements that will be released when vegetation dies back. Zak et al. [28,
60] report that drained fens may lose their nutrient sink-function during the initial stage of
rewetting. They have observed increased amounts of redox sensitive substances and enhanced
availability of decomposable organic matter in the upper, highly decomposed peat horizon that
caused mobilization of P, organic carbon and ammonium in the soil and surface water of
rewetted fens, causing nutrient enrichment. Therefore, we attribute the increase of C and N in
the water and peat to the decay of inundated plants although we are aware that we measured
total concentrations only. The average C:N-value of 15.7 is characteristic for eutrophic condi-
tions, that are related to the occurrence of easily degradable organic matter by Succow and
Joosten [17]. Thus, this C:N-value could indicate ample supply with fresh and easily degradable
C- and N-compounds (e.g., hemicelluloses [61]) that could fuel microbial activity. In accor-
dance, Hahn-Schöfl et al. [62] observed the formation of a new sediment layer from easily
decomposable plant litter which originated from reed canary grass killed by flooding a
degraded fen.

In addition, flooding reduced the brackishness of the fen by diluting the concentrations of
Cl- and SO4

2- in the peat water. Still, the mean values of 0.88 g l-1 Cl- and 0.37g l-1 SO4
2- were

small compared to concentrations in Baltic Sea water (5–6 g l-1 Cl- and ca. 0.6 g l-1 SO4
2- (own

measurements in December 2010 and [63])) and to average ocean water (ca. 19g l-1 Cl- and 3 g
l-1 SO4

2- [64]).

Water level increase and increased methane emissions
We recorded a strong increase in the emission of CH4 compared to pre-flooding-conditions.
CH4 emissions—on average—increased 186-fold from pre- to post-flooding conditions. Pre-
flooding mean CH4 efflux was 0.0014 ± 0.0006 kg CH4 m

-2 a-1 in 2009 [34]. In the first year
after flooding, average CH4 emission was 0.26±0.06 kg CH4 m

-2 at comparable spots. Due to
our set quality criteria for fluxes we omitted a relatively high share of fluxes from later analysis
(39%). Many of these were likely ebullitive fluxes. Thus the very high annual CH4 exchanges
we find can be seen as conservative estimates and the real CH4 emissions were likely even
higher than reported here. Although there might as well be a contribution of inter-annual vari-
ation in climatic conditions and some effect of variation in location of measurement spots, this
is quite a dramatic increase that led to an exceptional annual emission that compares well to
the highest values in the literature that are reported from tropical floodplain wetlands in Costa
Rica (up to 0.35 kg CH4 m

-2 a-1; [65]). Our values (e.g., 0.47±0.14 kg CH4 m
-2 a-1) for sedge

spots are even higher than those and are by far higher than the highest estimates that Saarnio
et al. [66] suggest for fresh marshes (0.091 kg CH4 m

-2 a-1), saltwater marshes (0.076 kg CH4

m-2 a-1) or minerotrophic mires (0.048 kg CH4 m
-2 a-1) based on a comprehensive review of

the relevant literature from Europe.
Couwenberg et al. [32] compiled studies that report very high CH4 emissions and state that

specific (starting) conditions such as emissions from ditches only [67], flooded harvest [68], or
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compacted gyttja soils [21] may explain such very high CH4 emissions. Similarly, Hahn-Schöfl
et al. [62] found the formation of fresh (2.5years old) plant litter to be the source for large fluxes
of CH4 and CO2 after flooding a degraded fen grassland. The presence of species with well
developed aerenchyma may be another possible explanation for high CH4 emissions [32, 69].
At our study site, the presence of plants with aerenchyma tissue seems to have had minor influ-
ence because we measured high CH4 emissions especially from plots where total vegetation
cover has decreased strongly after flooding. Thus, we infer that the supply with fresh substrate
from plant species that could not outgrow the increased water levels (i.e., sedges) was the main
source and, thus, the major driving force for the exceptionally high CH4 emissions after flood-
ing at our study site. The concomitant increase of TOC and TNb in the peat water, the accumu-
lation of organic matter, N, P, and K support this hypothesis.

The rewetting of the “Rodewiese” was conducted by flooding the fully vegetated site. Thus it
was in sharp contrast to Couwenberg et al.’s [32] recommendation for minimizing GHG emis-
sions after peatland rewetting, i.e. the peatland should be free of lush and abundant vegetation
and the water table should be raised to a level constantly close to the surface (±10cm). Accord-
ing to their GEST classification an annual GHG release of 1t CO2-eq. ha

-1 a-1 was expected
from the study site (water level +6, eutrophic, sub-neutral). Taking into account that Koebsch
et al. [39] reported a sink for CO2 of approx. 11 t ha

-1 for the vegetation period, we could also
assume conservatively that the site is neutral with regard to the exchange of CO2 with the
atmosphere when considering the whole year. Then still, the average CH4 exchange alone rep-
resents a GWP of approx. 73 t CO2-eq. ha

-1 a-1 (calculated with CH4 having a radiative forcing
of 28�CO2 [70]). This confirms Couwenberg et al.’s [32] remark that the GESTs are only reli-
able for the mid-term-perspective after 3 to 5 years. Nevertheless, we think, that these high ini-
tial emissions should be considered in GHG balances of rewetting projects.

Complex modulation of increased methane emissions after flooding
Methane and temperature. On our study site neither the variation of the annual estimates

nor of the single fluxes of CH4 could be attributed to a consistent set of control parameters. In
accordance with DeLaune et al. [71] CH4 emissions from all spots were highly variable, both
within a cluster and over time, but they were at least partially correlated with temperature.
Given anoxic conditions, temperature is one of the most important controls on CH4 exchange
in wetlands [72, 73, 33]. Kayranli et al. [24] even designate temperature the most important
control factor outside the growing season during which organic matter availability primarily
limits methanogenesis [72, 73, 33]. Similar to Bartlett et al. [74] we found that although CH4

fluxes were related to peat temperature (based on fortnightly, interpolated values), other vari-
ables created higher fluxes in autumn than in spring for equivalent temperatures (Fig 6). Stud-
ies from salt marshes have reported similar temporal trajectories regarding rates of bacterial
sulfate reduction [75] and CO2 production [76]. The availability of readily metabolized organic
substrates as marsh plants mature and die was hypothesized to cause the higher rates in
autumn. In addition, the authors infer that the modulation of the processes must be located in
the root zone. This explanation suits to our results and is supported by the findings of Tuittila
et al. [77] on the seasonal dynamics of CH4 exchange in the first three years in a rewetted cut-
away peatland. In addition to soil temperature (at 15 and 30cm depth) and an effective temper-
ature sum index they included cotton-grass cover (Eriophorum vaginatum) as well as the inter-
action between cotton-grass cover and water level in their model. This model explained 81% of
the variation in the CH4 flux data. Overall, they also arrived to the conclusion that increased
primary production and the consequent deposition of substrate to anoxic conditions caused
higher CH4 emissions in the first three years after rewetting.
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Methane and seasonality. Tuittila et al. [77] hypothesize that at the end of the vegetation
period plants respire less of the fixed carbon and, thus, root exudates and plant residues pro-
duced during high season are accumulated as substrate for later methanogenesis. Thus,
although instantly available labile organic matter seems to stir up significant inorganic produc-
tion of CO2 and CH4 in (moist) peat (e.g., [62]), substrate supply is highest when the vegetation
period is beyond its zenith [78]. This is well in accordance with our findings, that (i) the annual
estimates of CH4 exchange were largely fueled by the peak emissions of CH4 that were recorded
in late summer; and (ii) the highest CH4-fluxes that were recorded during the study (727 mg
m-2 h-1) occurred in late summer 2010 at the sedge stands of cluster NW-, where vegetation
suffered from the heaviest die-back and the overall values of TOC and TNb were highest. This
highest CH4-flux of 727 mg m-2 h-1 is 7-times higher than the highest rates reported by Heyer
and Berger [79] from a shallow coastal area of the Baltic Sea, between the islands of Rügen and
Hiddensee. The average water depth of 25-35cm in that study was in the range of our study site
but the organic matter content of the sediment in 0–10 cm depth (2.6–8.8% of dry weight) was
much lower than the 68% in our study site. The authors note, however, that organic matter
content increased considerably after an irregular seasonal transport of organic matter (benthic
algae, seaweeds) into the study area and the formation of microbial mats but unfortunately
they did not quantify organic matter afterwards (ibid.). Nevertheless, Heyer and Berger [79]
found the amount of organic matter in the sediment to be the crucial factor for the inter-annual
and seasonal variations of CH4 emissions and also for small-scale spatial differences.

Methane and trophic state of the wetland ecosystem. We have already discussed the
strongly increased input of fresh litter after flooding and concluded that freshly synthesized
labile organic matter due to vegetation die-back may well have been driving the high CH4 emis-
sion from our study site. However, we cannot attribute variations in CH4 emissions to it statis-
tically. Admittedly this might be due to our low number of replicates in a peatland with a high
inherent variability of site characteristics. It seems noteworthy, though, that we have measured
the highest CH4 fluxes in the NW of our study site that was characterized by higher concentra-
tions of organic matter, nutrient elements like C, N, and P, and concentrations of TOC and
TNb. Keeping in mind that “the relationship between increased nutrients and flux does not
appear to be simple” [74] we might interpret this as an indication for CH4-modulation via con-
centration of organic matter and nutrient elements. This would be well in agreement with the
suggestion that the trophic status of the water and the sediment may be an important factor
regulating emissions of drainage ditches and lakes [67]. By using multiple linear regression the
authors were able to explain 87% of the variation in CH4 fluxes by PO4

3- concentration in the
sediment and Fe2- concentration in the water, and 89% of the CO2 flux by depth, EC and pH of
the water.

In our study site, the SE clusters were more dominated by electric conductivity and higher
concentrations of Cl- and SO4

2-. Here the CH4 fluxes were lower. Therefore, another explana-
tion of the high variability in CH4 efflux might be the sulfate concentration. According to Pof-
fenbarger et al. [80] our study site is at the threshold below which variation in porewater CH4

increases dramatically with an average of 0.4 g l-1 SO4
2-. Taking into account that CH4 in the

pore water is likely the source for CH4 emission [81], variation in the former may explain varia-
tion in the latter. Furthermore, Poffenbarger et al. [80] report that sulfate depleted clusters
might form where input of labile organic carbon is high. This, in turn, might facilitate the pro-
duction and consequently the release of CH4 by reducing substrate competition and establish-
ing favorable redox-conditions [82]. During field campaigns, we regularly observed FeS-films
on our study site equipment and the smell of H2S both of which indicates the presence of sul-
fate reduction. Furthermore, a linear regression of CH4 emissions against SO4

2-concentrations
in the peat water shows a relatively close relationship (R2 = 0.4538, p<0.001). Therefore, we
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hypothesize the co-existence (e.g., [83, 80]) and simultaneous stimulation of sulfate reduction
and methanogenesis by excess substrate supply through decaying vegetation.

Methane and plant species. Poffenbarger et al. [80] point out that plants are a major
source of variation in CH4 emissions because they are sources of both organic carbon and cer-
tain electron donors. Before flooding, Koebsch et al. [34] found vegetation to be the major con-
trolling factor of CH4 emissions from our study site. Similarly, Tuittila et al. [77] report that
the CH4 dynamics in a restored cut-away peatland were mainly controlled by vegetation suc-
cession of the typical dominant species (cotton-grass). Only recently Bhullar et al. [84] have
confirmed that plant species composition influences CH4 emission from wetlands, and suggest
that they should be considered when developing measures to mitigate GHG emissions. This
seems all the more important when taking into consideration that plants can be a control for
CH4 production even when they are no longer growing on the site: In their study of peatland
ecosystems in North America Yavitt et al. [85] have found the highest CH4 production at a bog
site where sedges had been growing in the recent past and the decomposition of sedge residues
in the peat below the surface supported CH4 production. We find this partly confirmed in our
study as we saw a trend to highest CH4 emissions from spots that were dominated by sedges
before and by floating vegetation after flooding.

Methane and site heterogeneity under flooded conditions. Heterogeneity of the site
characteristics was medium before and large after flooding as common in ecosystem research
and particularly in rewetting studies [10]. For instance, in their review on CH4 release from
European wetlands and watercourses Saarnio et al. [66] state that uncertainties of the CH4

release estimates did not only arise from uncertainties in the estimation of the area of ecosys-
tem types but also from their internal heterogeneity. For our study site, Koch et al. [35] have
confirmed the influence of spatial heterogeneity on annual estimates CH4 emissions from reed
stands. Furthermore, Saarnio et al. [66] note that their reviewed publications did not support a
more detailed analysis of the dependence of CH4 release on different abiotic and biotic factors.

In our study, the selected clusters differed significantly in their peat and water properties—
apart from the highly individual behaviour of the twelve measurement spots. The spots 7 and 8
(SE-, sedge & reed, dip well P4) were special cases: Here, the peat and water properties differed
considerably from the other spots (increased TOC, TNb, EC, Cl- and SO4

2-, decreased nutrient
concentrations after flooding). This was most likely due to the location of these spots on sand
lenses which are remainders from land amelioration. Maybe a larger sample size might have
diminished the influence of these spots on the data set and led to a clearer picture of the ongo-
ing changes; but under the prevailing conditions the installation of more measurement spots
was impossible and we wanted our setup to reflect the real heterogeneity of the study site.

In addition to heterogeneous site characteristics, the process of flooding itself is highly
dynamic and affects an ecosystem at different levels. In our study, the interaction between sea-
son and flooding could have masked relationships between environmental variables and atmo-
spheric CH4 exchange. Furthermore, there were interactions of site characteristics themselves.
For instance, we found different responses of particular plant species to flooding that possibly
influenced peat properties which directly or indirectly may have affected CH4 exchange. Fur-
thermore, high temperatures in late summer could have enhanced decomposition of plant spe-
cies that could not outgrow the increased water level and thereby maximize CH4 emissions.

Therefore, it was difficult to assign changes of peat and water properties or CH4 exchange to
the factor flooding only. Moreover, it is not surprising that it was not possible to disentangle
the interactions of peat and water properties with the exchange of CH4 in the first year after
flooding. Kaat & Joosten [2] stated that the effect of increased CH4 emissions after rewetting is
usually of short duration, and rewetting of peatlands always leads to a net reduction of climate
relevant emissions on the mid and long-term. Therefore, it seems not reasonable to evaluate
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the overall success of a peatland restoration regarding atmospheric CH4 exchange and ecosys-
tem properties based on data gathered directly after rewetting alone. Instead, it is essential to
monitor the further development to properly evaluate the effect of flooding of the examined
fen; especially regarding the amount, species and direction of GHGs which are exchanged and
the shift of the ecosystem parameters such as vegetation cover.

Conclusions
In the short term perspective covered in this study, i.e. first year after flooding, our hypotheses
were confirmed: Rewetting by flooding was not beneficial in order to reduce GHG emissions,
especially due to the very strong increase in CH4 emissions. This effect was even enhanced by
the fact that the study site was a negligible source of CH4 and likely neutral with respect to CO2

exchange before rewetting by flooding. In the present case the installation of the ground sill tar-
geted not only at the restoration of the biogeochemical functioning of the ecosystem but the
focus was on establishing suitable habitat for waterfowl and other faunal elements that need
shallow open water. This suggests that it is necessary to carefully evaluate the advantages and
disadvantages and the possible implications of rewetting projects for different ecosystem
properties.

Furthermore, we observed an overall destabilization of the ecosystem functioning: The envi-
ronmental parameters that are commonly used to explain variation in GHG exchange did not
show any consistent correlation and some showed dramatic changes when comparing pre- and
post-flooding. This kind of chaotic reaction of many ecosystem properties makes general con-
clusions about the effect of flooding difficult. However, our study is the first that demonstrates
in detail the de-stabilization of a peatland ecosystem after rewetting. Therefore, we think, it
gives valuable insights into the ecosystem functioning of rewetted peatlands despite its
limitations.

Our results suggest that rewetting projects should be monitored not only with regard to veg-
etation development but also with respect to biogeochemical conditions. Further, high CH4

emissions that likely occur directly after rewetting by flooding should be considered when fore-
casting the overall effect of rewetting on GHG exchange of a particular site. After all, it seems
reasonable to state, that it is not expedient to evaluate the success of peatland restoration
regarding atmospheric C-exchange and ecosystem properties based on data gathered shortly
after rewetting only. Instead, our results illustrate the necessity for more research on the effect
of rewetting on intensively drained, degraded temperate fens. Especially, longer term compre-
hensive monitoring data of the development of biogeochemical processes and vegetation pat-
terns after rewetting are needed to foster our understanding of the functioning of restored
peatlands to better advise the planning of rewetting measures.
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