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Abstract
In recent years, Abscisic Acid (ABA) has been demonstrated to be involved in the regulation

of glucose homeostasis in mammals as an endogenous hormone, by stimulating both insu-

lin release and peripheral glucose uptake. In addition, ABA is released by glucose- or GLP-

1-stimulated β-pancreatic cells. Here we investigated whether ABA can stimulate GLP-1

release. The human enteroendocrine L cell line hNCI-H716 was used to explore whether

ABA stimulates in vitroGLP-1 secretion and/or transcription. ABA induced GLP-1 release in

hNCI-H716 cells, through a cAMP/PKA-dependent mechanism. ABA also enhanced GLP-1

transcription. In addition, oral administration of ABA significantly increased plasma GLP-1

and insulin levels in rats. In conclusion, ABA can stimulate GLP-1 release: this result and

the previous observation that GLP-1 stimulates ABA release from β -cells, suggest a posi-

tive feed-back mechanism between ABA and GLP-1, regulating glucose homeostasis.

Type 2 diabetes treatments targeting the GLP-1 axis by either inhibiting its rapid clearance

by dipeptidyl-peptidase IV or using GLP-1 mimetics are currently used. Moreover, the devel-

opment of treatments aimed at stimulating GLP-1 release from L cells has been considered

as an alternative approach. Accordingly, our finding that ABA increases GLP-1 release in
vitro and in vivomay suggest ABA and/or ABA analogs as potential anti-diabetic

treatments.

Introduction
Abscisic acid (ABA) is a phytohormone regulating fundamental physiological functions in
plants [1, 2]. ABA is also an endogenous hormone in humans, regulating different cell
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responses and functions, including activation of innate immune cells and stimulation of insulin
release and glucose uptake [3–6]. The signaling cascade of ABA in mammalian cells involves
ABA binding to lanthionine synthetase C-like protein 2 (LANCL-2) and cAMP production [7–
9]. Pro-inflammatory stimuli induce ABA production and release from human granulocytes,
monocytes, keratinocytes and fibroblasts [3, 10–12] and ABA stimulates cell-specific functional
activities in granulocytes (chemotaxis, phagocytosis, release of NO and reactive oxygen spe-
cies), monocytes (chemotaxis, release of TNF-α, monocyte chemoattractant protein-1, metallo-
protease 9 and prostaglandin E2), vascular smooth muscle cells (cell proliferation and
migration), keratinocytes (release of NO, PGE2, and TNF-α) and fibroblasts (migration) [3,
10–12].

Several observations indicate that ABA is also involved in the regulation of glucose homeo-
stasis in mammals as an endogenous hormone: i) ABA is released by human and murine pan-
creatic β-cells in response to high glucose, and nanomolar ABA triggers glucose-independent
and potentiates glucose-dependent insulin secretion from these cells [4]; ii) oral glucose admin-
istration increases plasma ABA concentration ([ABA]p) in healthy human subjects [5]; iii)
ABA stimulates glucose uptake by rodent adipocyte and myoblast cell lines [5]. In line with
these data, Guri et al. observed that a chronic oral administration of exogenous ABA reduced
the fasting plasma glucose concentration and ameliorated glucose tolerance in leptin receptor-
deficient (db/db) mice [13].

Interestingly, the increase of [ABA]p in response to an oral glucose load in healthy subjects
was less consistently observed when the same subjects were administered glucose intravenously
[5]. Oral, but not intravenous, glucose administration is followed by the release of the incretin
glucagon-like peptide 1 (GLP-1), a gastrointestinal hormone secreted by enteroendocrine L-
cells in response to nutrients, hormones and neurotransmitters. GLP-1 stimulates insulin and
inhibits glucagon release, thereby contributing to the regulation of glycemia [14–16]. A possi-
ble explanation for the different effect of intravenously or orally administered glucose on
[ABA]p could come from the observation that GLP-1 stimulates ABA release by insulin-secret-
ing cells, both in the presence of low- (2 mM) or of high- (25 mM) glucose concentrations [5].

In this study, we investigated whether ABA affects GLP-1 secretion by enteroendocrine
cells, a process known to be regulated by the [cAMP]i [14], thereby addressing the possible
existence of a positive feed-back mechanism between ABA and GLP-1, regulating glucose
homeostasis.

Methods

hNCI-H716 cell culture and GLP-1 secretion studies
The human L cell line hNCI-H716, derived from a poorly differentiated adenocarcinoma of
the cecum, was obtained from the American Type Culture Collection (Manassas, VA). Cells
were grown in suspension in RPMI-1640 (Sigma, Milano, Italy), supplemented with 10% fetal
bovine serum (FBS), 50 U/ml penicillin and 50 μg/ml streptomycin.

For GLP-1 secretion assays, a protocol similar to the one described in [17] was followed:
briefly, hNCI-H716 cells were seeded on Matrigel matrix (Becton Dickinson, Bedford, MA), at
the density of 2x105 cells/well in 24-well plates, in DMEMmedium supplemented with 10%
FCS, 50 U/ml penicillin, and 50 μg/ml streptomycin. After 48 h, cells were washed in Hank’s
Balanced Salt Solution (HBSS) and then incubated for 2 h in Krebs Ringer Hepes buffer (KRH
buffer: 130 mM NaCl, 5 mM KCl, 1.3 mM CaCl2, 25 mMHEPES, 10 mM Na2HPO4, 1.3 mM
MgSO4, 0.2% BSA), in the presence or absence of the different treatments: glucose (200 mM),
or glutamine (10 mM), or ABA (0.1, 10 or 200 μM).
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After treatments, medium and cells were collected separately: GLP-1 content in the super-
natant was analyzed by GLP-1 Total ELISA Kit (Merck Millipore, Vimodrone, MI, Italy); total
protein content in cells was analyzed by Bradford assay (Bio-Rad, Milano, Italy).

Quantitative real time-PCR
Total mRNA was extracted from hNCI-H716 using Qiazol (Qiagen, Milan, Italy) according to
the manufacturer's instructions. Quality and quantity of RNA were analysed using a NanoDrop
spectrophotometer (Nanodrop Technologies, Wilmington, DE). The cDNA was synthesized
by the iScriptTM cDNA Synthesis Kit (Bio-Rad, Milan, Italy) starting from 1 μg of total RNA.
PCR primers were designed through Beacon Designer 2.0 Software and their sequences were as
indicated in Table 1.

qPCR was performed in an iQ5 real-time PCR detection system (Bio-Rad) using 2× iQ Cus-
tom Sybr Green Supermix (Bio-Rad). Values were normalized on mRNA expression of human
β-actin and HPRT. Statistical analysis of the qPCR was performed using the iQ5 Optical Sys-
tem Software version 1.0 (Bio-Rad) based on the 2−ΔCt method [7]. The dissociation curve for
each amplification was analysed to confirm absence of unspecific PCR products. Experiments
were repeated three times in triplicate.

Measurement of the intracellular cAMP concentration
hNCI-H716 cells were seeded at the density of 5x105/well in 12-well, Matrigel matrix-coated
plates. After 24 h, cells were washed with HBSS, pre-incubated for 10 min in HBSS containing
10 μM IBMX, an inhibitor of phosphodiesterases, and then stimulated with 10 mM glutamine
or 200 μMABA for 2.5 and 5 min.

Supernatant was removed and cells were lysed in 0.6 M PCA. Intracellular cAMP content
was evaluated by EIA (Cayman, Ann Arbor, MI, USA) on neutralized extracts [18].

Vector construction
The full length LANCL2 cDNA was amplified by PCR using cDNA obtained with reverse tran-
scription of total RNA from human granulocytes and using the following primers: 5’-CAC
CATGGGCGAGACCATGTCAAAG-AG-3’(foward); 5’-ATCCCTCTTCGAAGAGTCAAGTTC-
3’ (reverse).

The PCR was performed in 25 μl containing undiluted reaction buffer, 200 μM dNTP, 5
pmol of primers and using 1.25 U of Herculase HotStart DNA polymerase. The PCR reaction
profile was 1 cycle at 94°C for 2 min, 35 cycles at 94°C for 15 s, 62°C for 30 s and 72°C for 1
min with a final extension for 5 min at 72°C. The PCR product was purified with Nucleospin1

Table 1. Primers.

Human gene Sequence, 5’-3’

GLP-1 Forward GCTGAAGGGACCTTTACCAGT

Reverse CCTTTCACCAGCCAAGCATG

GLUCAGON Forward ATTCACAGGGCACATTCACCA

Reverse GGTATTCATCAACCACTGCAC

ACTIN Forward GCGAGAAGATGACCCAGATC

Reverse GGATAGCACAGCCTGGATAG

HPRT-1 Forward GGTCAGGCAGTATAATCCAAAG

Reverse TTCATTATAGTCAAGGGCATATCC

doi:10.1371/journal.pone.0140588.t001
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Extract Kit (Macherey-Nagel) and cloned into pcDNA3.1/V5-His-TOPO©. This vector allows
the synthesis of the recombinant protein as a C-terminal fusion to the V5 epitope and a Histi-
dine tag. The LANCL2 plasmid was purified using PureLink™HiPure Plasmid Filter Kit (Invi-
trogen) and sequenced by TibMolbiol (Genova, Italy).

LANCL2 overexpression
hNCI-H716 cells were transfected in parallel with pcDNA3.1(+) (control plasmid) or with the
plasmid containing the full-length LANCL2 cDNA, LANCL2-pcDNA3.1(+) (LANCL2 plas-
mid). Transient transfection of hNCI-H716 cells (1.5x106) was performed using the Nucleofec-
tor System (Amaxa GmbH, Köln, Germany), program X-005, solution T, with 3 μg
LANCL2-plasmid or control plasmid. hNCI-H716 cells were then resuspended in DMEM and
seeded in Matrigel-coated 24-well plates. Experiments were performed 48 h after transfection.

Western blot analysis
hNCI-H716 cells (2.5x105) were lysed in 50 μl HES lysis buffer (20 mMHepes, pH 7.4, 1 mM
EDTA, 250 mM sucrose) containing a protease inhibitor cocktail (Sigma), and LANCL2
expression was analyzed by Western blot, using a monoclonal antibody against LANCL2 [19].
LANCL2 expression was normalized on vinculin levels, detected with a goat polyclonal anti-
body against actin (Santa Cruz Biotechnology, Dallas, TX). Appropriate HRP-conjugated sec-
ondary antibodies (Cell Signaling, Danvers, MA) and enhanced chemiluminescence reagents
(GE Healthcare, Little Chalfont, Buckinghamshire, UK) were used to detect antigens after
transfer to a nitrocellulose membrane.

In vivo experiments
Two-months old female Wistar rats weighing 160 to 198 g (obtained from Charles River Labo-
ratories Italia, Calco, LC, Italy) were housed singly under a 12 h/12 h light/dark cycle under
free feeding conditions, in temperature- and humidity-controlled rooms.

After an overnight fast, the DPP4 inhibitor Sitagliptin (Januvia1, 10 mg/Kg) [20], was orally
administered 30 min prior to ABA (50 mg/Kg) or vehicle (water) gavage. After anesthesia with
ketamine/xylazine, blood samples were collected at 0, 20, 40 and 60 min by orbital sinus bleed-
ing in heparin and plasma aliquots were stored at -20°C.

The dose of ABA was chosen based on the effect of dietary ABA supplementation [13].
In other experiments, where animals were not pre-treated with Sitagliptin, GLP-1 concen-

tration was also evaluated in the portal vein blood, as in [21], 10 min after intragastric vehicle
or ABA administration.

Measurements of plasma GLP-1, glucose, insulin and ABA
GLP-1 concentrations were determined by ELISA (Merck Millipore; the kit detects the total
GLP-1 levels). Glycemia was measured with a glucometer (Bayer, Milano, Italy) and insuline-
mia by ELISA (Bertin-Pharma, Montigny, France). ABA plasma concentrations were deter-
mined by ELISA, as in [5].

Ethics statement
Animal rearing conditions were consistent with the guidelines of the Italian Ministry of Health
and the study was approved by the IRCCS AOU San Martino-IST Ethical Committee (Genova,
Italy).
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Results

ABA stimulates GLP-1 secretion
hNCI-H716 cells were challenged for 2 h with different ABA concentrations and GLP-1 levels
were measured in the supernatants. The basal GLP-1 concentration was 347±106 pM. As
shown in Fig 1A, 200 μMABA approximately doubled the extent of the GLP-1 secretion.
10 μMABA was sufficient to trigger a statistically significantly higher GLP-1 release, compared
to the untreated control. No stimulation of GLP-1 secretion was obtained in the presence of
100 nM ABA. The calculated EC50 for the ABA-induced GLP-1 release was 23±3 μM (not
shown). To compare the effect of ABA on GLP-1 release with that of other secretagogues, cells
were also incubated in the presence of 200 mM glucose or 10 mM glutamine [22, 23]: GLP-1
secretion was increased by approximately 1.4-fold with both stimuli (Fig 1A).

Fig 1. ABA induces GLP-1 release and transcription in hNCI-H716 cells. (A) hNCI-H716 cells were
incubated for 2 h in the absence or presence of ABA (at the indicated concentrations), or of 200 mM glucose
or 10 mM glutamine (gln). In some experiments, cells were pre-incubated for 10 min in the absence or
presence of 20 μM 20,30-Dideoxyadenosine, a specific adenylyl cyclase inhibitor (grey bar) or of 1 μM of a cell
permeable PKA inhibitor (protein kinase A inhibitor 14–22 amide, myristoylated, black bar), prior to
stimulation with 200 μMABA. GLP-1 levels in the culture media were then estimated with an ELISA kit. Data,
expressed as fold increase over values in untreated cells, are expressed as mean±SD of at least 3 different
experiments. *, p<0.05 compared to untreated cells. (B) hNCI-H716 cells were incubated for 2 h in the
absence or presence of 200 μMABA and qPCR was performed with specific primers for GLP-1 and
glucagon; *, p<0.05 compared to expression in untreated cells.

doi:10.1371/journal.pone.0140588.g001
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Interestingly, ABA treatment also significantly increased preproglucagon mRNA levels, as
demonstrated by qPCR using two different sets of primers, specific for GLP-1 and glucagon,
respectively, yielding a similar result (Fig 1B).

The ABA-induced GLP-1 secretion is mediated by a cAMP-dependent
mechanism
In different human cell types, the cell-specific ABA-induced response is mediated by an
increase of the second messenger cAMP [3, 4, 7, 9, 24], and by the consequent PKA activation
[3, 4, 25]. Since GLP-1 release is regulated by the [cAMP]i [14], we verified whether ABA was
able to induce an increase of the [cAMP]i in hNCI-H716 cells. As a positive control, cells were
incubated with glutamine, which is known to determine a [cAMP]i increase in hNCI-H716
cells [26]. As shown in Fig 2A, a 2.5-min incubation in the presence of 200 μMABA induced a
2-fold increase of the [cAMP]i, while 10 mM glutamine increased the [cAMP]i approximately
1.4-fold.

In mammalian cells, the ABA-induced cAMP increase is mediated by the protein LANCL2
[7, 9]. hNCI-H716 cells were transfected by electroporation with an empty plasmid, or with a
plasmid containing the full-length cDNA for human LANCL2. LANCL2 overexpression, con-
firmed by Western blot analysis with a specific monoclonal antibody (Fig 2B), was accompa-
nied by a significant increase in ABA-induced cAMP accumulation, as compared to cells
transfected with an empty plasmid (Fig 2C), as well as by a significant increase in ABA-induced
GLP-1 release (Fig 2D). The ABA-induced [cAMP]i increase and GLP-1 release were approxi-
mately 1.4-fold in cells transfected with the empty plasmid (control bars in Fig 2D), and not
2-fold as observed in untransfected cells (Figs 1A and 2A), indicating that cell responsiveness
was slightly affected by the transfection procedure per se.

In order to verify whether the ABA-induced [cAMP]i increase mediates the ABA-stimulated
GLP-1 release, hNCI-H716 cells were pre-incubated in the presence of a specific adenylyl
cyclase inhibitor (20,30-Dideoxyadenosine), or a cell permeable PKA inhibitor: both inhibitors
abrogated the GLP-1 release stimulated by 200 μMABA (Fig 1A).

ABA increases plasma GLP-1 in rats
First, we examined the effect of a single-dose oral administration of ABA (at 50 mg/Kg) on
GLP-1 levels in normal rats (6 animals per experimental group) pre-treated with Sitagliptin. 20
min after ABA administration, plasma GLP-1 (GLP-1p) increased by approximately 50%,
whereas the vehicle alone had no effect on GLP-1p levels (Fig 3A). The area under the curve of
GLP-1p (GLP-1p AUC) over the entire time frame was calculated from GLP-1p values relative
to time zero: the GLP-1p AUC was significantly higher in the ABA-treated compared to the
control animals (Fig 3B).

GLP-1 levels also significantly increased in the portal vein blood of rats not pre-treated with
Sitagliptin 10 min after ABA administration (Fig 3A, inset), indicating that ABA alone is capa-
ble of increasing plasma GLP-1. ABA concentration in the portal vein blood was in the low nM
(4.2±1.9 nM) range in the vehicle-treated animals and in the μM range (3.9±0.4 μM) in the
ABA-treated animals.

The observation that ABA induced an increase of GLP-1p, together with the fact that exoge-
nous ABA is known to directly stimulate insulin release from β-cells in vitro [4], prompted us
to measure insulin levels in the ABA-treated rats. As shown in Fig 3C and 3D, insulinemia
indeed significantly increased after ABA administration and the plasma insulin AUC was con-
sequently higher in the ABA-treated than in the vehicle-treated group.
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Fig 2. ABA induces the increase of the [cAMP]i in hNCI-H716 cells. (A) hNCI-H716 cells were incubated
for the indicated time in the absence or presence of 200 μMABA (squares), or of 10 mM glutamine (rhombi);
[cAMP]i was then measured on cell extracts. Data are mean±SD of at least 3 different experiments; *, p<0.05
compared with untreated cells; #, p<0.05 compared to glutamine-treated cells (for the same time). (B)
hNCI-H716 cells were transfected with an empty plasmid (control) or with a LANCL2-containing plasmid
(LANCL2). After 48 h from transfection, cells were lysed and aWestern blot analysis was performed using an

Abscisic Acid Stimulates Glucagon-Like Peptide-1 Secretion

PLOS ONE | DOI:10.1371/journal.pone.0140588 October 21, 2015 7 / 12



Glycemia was slightly increased in vehicle-treated animals: this increase was not observed
upon oral ABA administration (Fig 3E and 3F). The increase of glycemia observed in the con-
trol animals can be attributed to anesthesia: indeed, ketamine/xylazine have been shown to
induce hyperglycemia in fed rats and, to a lower extent, also in fasted animals [27], as in our
experimental protocol.

In conscious rats, oral ABA administration at the same dose used in the anesthetized ani-
mals (50 mg/Kg) resulted in a slight, yet significant reduction of blood glucose after 60 min (81
±6 mg/dL, n = 6) compared with time zero values (92±10, n = 12, p = 0.03) and with values
measured at the same time point in the vehicle-treated controls (99±14, n = 6; p = 0.02).

Discussion
We had previously demonstrated that GLP-1 stimulates ABA release from β-pancreatic cells
[5]. In this study, we show that ABA can induce GLP-1 release, indicating a positive feed-back
between these two molecules, possibly relevant to glycemia regulation.

The molecular mechanism by which ABA induces GLP-1 release by hNCI-H716 cells is
similar to the one described in several other cell systems (including immune cells, β-pancreatic
cells and endothelial cells), i.e. through the cAMP/PKA axis [3, 4, 6, 7, 9, 24, 25]. Indeed, this
signaling pathway is known to regulate GLP-1 release also in response to other stimuli, such as
glucose and glutamine [14, 15, 26].

In the in vivo experiments, we chose to administer a dose of ABA of 50 mg/Kg, based on the
results obtained by Guri et al. [13], showing that dietary ABA at 100 mg/Kg, introduced over a
24-h period, was effective in reducing glycemia in db/db mice fed a high-fat diet. We hypothe-
sized that a smaller dose could also be effective, if bolus-administered by gavage.

The plasma insulin increase upon ABA administration was expected, based on the in vitro
effect of ABA on insulinoma cells and on murine and human β-cells: exogenous ABA, added at
concentrations in the low nM range, stimulated insulin secretion both in the presence and
absence of glucose [4]. The plasma ABA concentration measured in the rats 10 min after oral
ABA administration was in the micromolar range and could thus be responsible for the
observed increase of plasma insulin (Fig 3C). The increase of plasma GLP-1 peaked at 20 min
(Fig 3A), preceding the insulin increase (which conversely was maximal at 40 min, Fig 3C).
This timing of events suggests that ABA stimulated the release of both GLP-1 and insulin.
Since GLP-1 can stimulate ABA release from β-cells in vitro, both in the presence or absence of
glucose [5], one might envisage a feed-back mechanism whereby GLP-1 contributes to stimu-
late endogenous ABA release, which in turn further stimulates insulin secretion.

In control animals, glycemia was significantly higher at both 20 and 40 min compared with
time zero. The increase of glycemia observed in the control animals might be attributed to
anesthesia, as described by Saha JK et al [27], who showed that ketamine and xylazine signifi-
cantly altered glycemia in fed and, to a much lower extent, also in fasted rats, as occurred in
our study (Fig 3E, white squares).

anti-LANCL2 monoclonal antibody [19]; a representative blot is shown, confirming LANCL2 overexpression
after transfection. LANCL2 expression was normalized on vinculin levels. (C) After 48 h from transfection,
cells were stimulated for 2.5 min in the absence or presence of 200 μMABA. [cAMP]i was measured on cell
extracts and data, expressed as fold increase over values in unstimulated cells, are expressed as mean±SD
of at least 3 different experiments; basal cAMP values were not significantly different upon transfection. *,
p<0.05 compared to control. (D) After 48 h from transfection, cells were incubated for 2 h in the absence or
presence of 200 μMABA. GLP-1 levels in the culture media were then estimated with an ELISA kit. Data,
expressed as fold increase over values in unstimulated cells, are expressed as mean±SD of at least 3
different experiments. *, p<0.05 compared to untreated cells.

doi:10.1371/journal.pone.0140588.g002
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Fig 3. Effect of oral ABA on plasma GLP-1, insulin and glucose levels in rats. ABA (50 mg/Kg, black squares) or vehicle alone (open squares) were
orally administered to rats pre-treated with Sitagliptin (6 animals per experimental group) and blood samples were collected at 0, 20, 40 and 60 min to
evaluate plasmaGLP-1 (A), insulin (C) and glucose (E). The AUC corresponding to the curves of GLP-1 (B), insulin (D) and glycemia (F) were calculated.
Inset to panel A: blood samples were collected from the portal vein of rats not pre-treated with Sitagliptin, 10 min after ABA or vehicle administration and GLP-
1 levels were evaluated (n = 5 rats per group). *, p<0.05 and **, p<0.01 compared with the corresponding value in vehicle-treated animals; #, p<0.05 and ##,
p<0.01 compared with time zero.

doi:10.1371/journal.pone.0140588.g003
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In ABA-treated rats, the increase of glycemia was not observed, neither at 20 nor at 40 min
(Fig 3E, black squares): while, at 40 min, a significant increase of insulinemia (Fig 3C) may
have contributed to glycemia control, at 20 min insulinemia was not (yet) increased. Thus, two
mechanisms may be responsible for the maintenance of normal blood glucose levels in the
ABA-treated, anesthetized animals: i) an “early” (0–20 min), insulin-independent glycemia
lowering effect of ABA, followed by, ii) a “late” (20–40 min) glycemia reducing effect, attribut-
able to the increase of insulinemia. We previously reported that ABA can trigger glucose uptake
in myocytes and in adipocytes [5], to a similar extent as that observed with insulin at the same
concentration (i.e. 100 nM). Thus, the normalization of glycemia observed in the ABA-treated
animals compared with the controls could result from stimulation by ABA of both glucose
transport and insulin release. The plasma concentration of ABA measured 10 min after its
administration, which was in the micromolar range, was markedly higher than the one capable
of stimulating myoblast glucose uptake in vitro [5].

Type 2 diabetes treatments targeting the GLP-1 axis by either inhibiting its clearance by
DPP4 or using GLP-1 mimetics [15] are currently used. More recently, treatments aimed at
stimulating GLP-1 release from L cells have been considered as an alternative approach and
our finding that ABA increases GLP-1 release may indicate ABA and/or ABA analogs activat-
ing LANCL2 as potential anti-diabetic treatments, alone or in combination with DPP4 inhibi-
tors. Indeed, detection of high GLP-1 levels in the portal vein upon ABA administration
demonstrates that oral ABA alone is capable of increasing plasma GLP-1 (Fig 3A). Identifying
LANCL2-activating compounds might indeed prove a successful strategy, in view of the multi-
ple anti-diabetic effect that they might trigger. Indeed LANCL2 can: i) mediate the ABA-
induced insulin release [7]; ii) facilitate Akt phosphorylation [28], and increase
GLUT4-mediated glucose uptake [5], which is an Akt-dependent mechanism [29]; iii) mediate
the ABA-stimulated GLP-1 release from L cells (Fig 2D). The potential role of LANCL2 as a
new drug target in diabetes has been also suggested by other authors [30] and efforts at discov-
ering LANCL2-targeting drugs have been reported [31, 32].

Besides its effects on glycemia regulation, GLP-1 also exerts protective effects on the cardio-
vascular system [14]: thus, ABA administration, resulting in GLP-1 release, might be beneficial
also in this respect, together with improving glycemic homeostasis. Indeed, ABA administra-
tion has been reported to improve atherosclerosis in ApoE-/- mice [24].

So far, it is not possible to exclude that, when administered in vivo, ABA can also trigger
GLP-1 release from organs/tissues other than L-type cells, e.g. α-pancreatic cells [15]. More-
over, it remains to be defined whether ABA stimulates GLP-1 release acting on the intestinal
lumenal side of L-cells, like a nutrient, or whether plasma ABA can stimulate GLP-1 secretion
also acting as a hormonal stimulus on the vascular side of L-cells, as happens for glucose [14].
Indeed, GLP-1 release is evoked in response to multiple paracrine, neural and hormonal sti-
muli [14, 15]. Finally, future studies should explore the effect on GLP-1 release by ABA admin-
istered together with nutrients.

Acknowledgments
We thank Prof. Emilia Turco (MBC, Torino, Italy) for kindly providing the monoclonal anti-
body against vinculin and LANCL2.

Author Contributions
Conceived and designed the experiments: SB MM ADF EZ. Performed the experiments: SB
EMMMGS LS CF VB LE. Analyzed the data: SB EM EZ. Wrote the paper: SB ADF EZ.

Abscisic Acid Stimulates Glucagon-Like Peptide-1 Secretion

PLOS ONE | DOI:10.1371/journal.pone.0140588 October 21, 2015 10 / 12



References
1. Hong JH, Seah SW, Xu J. The root of ABA action in environmental stress response. Plant Cell Rep.

2013; 32: 971–983. doi: 10.1007/s00299-013-1439-9 PMID: 23571661

2. Lee SC, Luan S. ABA signal transduction at the crossroad of biotic and abiotic stress responses. Plant
Cell Environ. 2012; 35: 53–60. doi: 10.1111/j.1365-3040.2011.02426.x PMID: 21923759

3. Bruzzone S, Moreschi I, Usai C, Guida L, Damonte G, Salis A, et al. Abscisic acid is an endogenous
cytokine in human granulocytes with cyclic ADP-ribose as second messenger. Proc Natl Acad Sci USA
2007; 104: 5759–5764. PMID: 17389374

4. Bruzzone S, Bodrato N, Usai C, Guida L, Moreschi I, Nano R, et al. (2008) Abscisic acid is an endoge-
nous stimulator of insulin release from human pancreatic islets with cyclic ADP ribose as second mes-
senger. J Biol Chem. 2008; 283: 32188–32197. doi: 10.1074/jbc.M802603200 PMID: 18784081

5. Bruzzone S, Ameri P, Briatore L, Mannino E, Basile G, Andraghetti G, et al. The plant hormone abscisic
acid increases in human plasma after hyperglycemia and stimulates glucose consumption by adipo-
cytes and myoblasts. FASEB J 2012; 26: 1251–1260. doi: 10.1096/fj.11-190140 PMID: 22075645

6. Tossi V, Cassia R, Bruzzone S, Zocchi E, Lamattina L. ABA says NO to UV-B: a universal response?
Trends Plant Sci 2012; 17:510–517. doi: 10.1016/j.tplants.2012.05.007 PMID: 22698377

7. Sturla L, Fresia C, Guida L, Bruzzone S, Scarfì S, Usai C, et al. LANCL2 is necessary for abscisic acid
binding and signaling in human granulocytes and in rat insulinoma cells. J Biol Chem. 2009; 284,
28045–28057. doi: 10.1074/jbc.M109.035329 PMID: 19667068

8. Sturla L, Fresia C, Guida L, Grozio A, Vigliarolo T, Mannino E, et al. Binding of abscisic acid to human
LANCL2. Biochem Biophys Res Commun. 2011; 415: 390–395. doi: 10.1016/j.bbrc.2011.10.079
PMID: 22037458

9. Bassaganya-Riera J, Guri AJ, Lu P, Climent M, Carbo A, Sobral BW, et al. Abscisic acid regulates
inflammation via ligand-binding domain-independent activation of peroxisome proliferator-activated
receptor gamma. J Biol Chem. 2011; 286: 2504–2516. doi: 10.1074/jbc.M110.160077 PMID:
21088297

10. Bruzzone S, Basile G, Mannino E, Sturla L, Magnone M, Grozio A, et al. Autocrine abscisic acid medi-
ates the UV-B-induced inflammatory response in human granulocytes and keratinocytes. J Cell Phy-
siol. 2012; 227: 2502–2501. doi: 10.1002/jcp.22987 PMID: 21898394

11. Bruzzone S, Battaglia F, Mannino E, Parodi A, Fruscione F, Basile G, et al. Abscisic acid ameliorates
the systemic sclerosis fibroblast phenotype in vitro. Biochem Biophys Res Commun. 2012; 422:
70–74. doi: 10.1016/j.bbrc.2012.04.107 PMID: 22560900

12. Magnone M, Bruzzone S, Guida L, Damonte G, Millo E, Scarfì S, et al. Abscisic acid released by
human monocytes activates monocytes and vascular smooth muscle cells responses involved in ath-
erogenesis. J Biol Chem. 2009; 284: 17808–17818. doi: 10.1074/jbc.M809546200 PMID: 19332545

13. Guri AJ, Hontecillas R, Si H, Liu D, Bassaganya-Riera J. Dietary abscisic acid ameliorates glucose tol-
erance and obesity-related inflammation in db/db mice fed high-fat diets. Clin Nutr. 2007; 26: 107–116.
PMID: 17000034

14. Ezcurra M, Reimann F, Gribble FM, Emery E. Molecular mechanisms of incretin hormone secretion.
Curr Opin Pharmacol. 2013; 13: 922–927. doi: 10.1016/j.coph.2013.08.013 PMID: 24035446

15. Sandoval DA, D'Alessio DA. Physiology of Proglucagon Peptides: Role of Glucagon and GLP-1 in
Health and Disease. Physiol Rev. 2015; 95:513–548. doi: 10.1152/physrev.00013.2014 PMID:
25834231

16. Velàsquez DA, Beiroa D, Vàzquez MJ, Romero A, Lòpez M, Diéguez C, et al. Central GLP-1 actions on
energy metabolism. Vitam Horm. 2010; 84: 303–317. doi: 10.1016/B978-0-12-381517-0.00011-4
PMID: 21094905

17. Reimer RA, Darimont C, Gremlich S, Nicolas-Métral V, Rüegg UT, Macé K. A human cellular model for
studying the regulation of glucagon-like peptide-1 secretion. Endocrinology. 2001; 142: 4522–4528.
PMID: 11564718

18. Moreschi I, Bruzzone S, Nicholas RA, Fruscione F, Sturla L, Benvenuto F, et al. Extracellular NAD+ is
an agonist of the human P2Y11 purinergic receptor in human granulocytes. J Biol Chem. 2006; 281:
31419–31429. PMID: 16926152

19. Vigliarolo T, Guida L, Millo E, Fresia C, Turco E, De Flora A, et al. Abscisic Acid transport in Human
Erythrocytes. J Biol Chem. 2015; 290: 13042–13052. doi: 10.1074/jbc.M114.629501 PMID: 25847240

20. Forest T, Holder D, Smith A, CunninghamC, Yao X, Dey M, Frederick C, Prahalada S. Characterization
of the exocrine pancreas in the male Zucker diabetic fatty rat model of type 2 diabetes mellitus following
3 months of treatment with sitagliptin. Endocrinology 2014; 155: 783–792. doi: 10.1210/en.2013-1781
PMID: 24424056

Abscisic Acid Stimulates Glucagon-Like Peptide-1 Secretion

PLOS ONE | DOI:10.1371/journal.pone.0140588 October 21, 2015 11 / 12

http://dx.doi.org/10.1007/s00299-013-1439-9
http://www.ncbi.nlm.nih.gov/pubmed/23571661
http://dx.doi.org/10.1111/j.1365-3040.2011.02426.x
http://www.ncbi.nlm.nih.gov/pubmed/21923759
http://www.ncbi.nlm.nih.gov/pubmed/17389374
http://dx.doi.org/10.1074/jbc.M802603200
http://www.ncbi.nlm.nih.gov/pubmed/18784081
http://dx.doi.org/10.1096/fj.11-190140
http://www.ncbi.nlm.nih.gov/pubmed/22075645
http://dx.doi.org/10.1016/j.tplants.2012.05.007
http://www.ncbi.nlm.nih.gov/pubmed/22698377
http://dx.doi.org/10.1074/jbc.M109.035329
http://www.ncbi.nlm.nih.gov/pubmed/19667068
http://dx.doi.org/10.1016/j.bbrc.2011.10.079
http://www.ncbi.nlm.nih.gov/pubmed/22037458
http://dx.doi.org/10.1074/jbc.M110.160077
http://www.ncbi.nlm.nih.gov/pubmed/21088297
http://dx.doi.org/10.1002/jcp.22987
http://www.ncbi.nlm.nih.gov/pubmed/21898394
http://dx.doi.org/10.1016/j.bbrc.2012.04.107
http://www.ncbi.nlm.nih.gov/pubmed/22560900
http://dx.doi.org/10.1074/jbc.M809546200
http://www.ncbi.nlm.nih.gov/pubmed/19332545
http://www.ncbi.nlm.nih.gov/pubmed/17000034
http://dx.doi.org/10.1016/j.coph.2013.08.013
http://www.ncbi.nlm.nih.gov/pubmed/24035446
http://dx.doi.org/10.1152/physrev.00013.2014
http://www.ncbi.nlm.nih.gov/pubmed/25834231
http://dx.doi.org/10.1016/B978-0-12-381517-0.00011-4
http://www.ncbi.nlm.nih.gov/pubmed/21094905
http://www.ncbi.nlm.nih.gov/pubmed/11564718
http://www.ncbi.nlm.nih.gov/pubmed/16926152
http://dx.doi.org/10.1074/jbc.M114.629501
http://www.ncbi.nlm.nih.gov/pubmed/25847240
http://dx.doi.org/10.1210/en.2013-1781
http://www.ncbi.nlm.nih.gov/pubmed/24424056


21. Hirasawa A, Tsumaya K, Awaji T, Katsuma S, Adachi T, YamadaM, Sugimoto Y, Miyazaki S, Tsujimoto
G. Free fatty acids regulate gut incretin glucagon-like peptide-1 secretion through GPR120. Nat Med.
2005; 11:90–94. PMID: 15619630

22. Jang HJ, Kokrashvili Z, Theodorakis MJ, Carlson OD, Kim BJ, Zhou J, et al. Gut-expressed gustducin
and taste receptors regulate secretion of glucagon-like peptide-1. Proc Natl Acad Sci USA 2007; 104:
15069–15074. PMID: 17724330

23. Reimann F, Williams L, da Silva Xavier G, Rutter GA, Gribble FM. Glutamine potently stimulates gluca-
gon-like peptide-1 secretion from GLUTag cells. Diabetologia 2004; 47: 1592–1601. PMID: 15365617

24. Guri AJ, Misyak SA, Hontecillas R, Hasty A, Liu D, Si H, et al. Abscisic acid ameliorates atherosclerosis
by suppressing macrophage and CD4+ T cell recruitment into the aortic wall. J Nutr Biochem. 2010;
21: 1178–1185. doi: 10.1016/j.jnutbio.2009.10.003 PMID: 20092994

25. Guri AJ, Hontecillas R, Bassaganya-Riera J. Abscisic acid synergizes with rosiglitazone to improve glu-
cose tolerance and down-modulate macrophage accumulation in adipose tissue: possible action of the
cAMP/PKA/PPAR γ axis. Clin Nutr. 2010; 29: 646–653. doi: 10.1016/j.clnu.2010.02.003 PMID:
20207056

26. Tolhurst G, Zheng Y, Parker HE, Habib AM, Reimann F, Gribble FM. Glutamine triggers and potentiates
glucagon-like peptide-1 secretion by raising cytosolic Ca2+ and cAMP. Endocrinology 2011; 152:
405–413. doi: 10.1210/en.2010-0956 PMID: 21209017

27. Saha JK, Xia J, Grondin JM, Engle SK, Jakubowski JA. Acute hyperglycemia induced by ketamine/
xylazine anesthesia in rats: mechanisms and implications for preclinical models. Exp Biol Med. 2005;
230: 777–784.

28. Zeng M, van der DonkWA, Chen J. Lanthionine synthetase C-like protein 2 (LanCL2) is a novel regula-
tor of Akt. Mol Biol Cell. 2014; 25: 3954–3961. doi: 10.1091/mbc.E14-01-0004 PMID: 25273559

29. Ishiki M., Klip A. Minireview: recent developments in the regulation of glucose transporter-4 traffic: new
signals, locations, and partners. Endocrinology 2005; 146: 5071–5078. PMID: 16150904

30. Lu P, Hontecillas R, Philipson CW, Bassaganya-Riera J. Lanthionine synthetase component C-like pro-
tein 2: a new drug target for inflammatory diseases and diabetes. Curr Drug Targets. 2014; 15:
565–572. PMID: 24628287

31. Lu P, Hontecillas R, HorneWT, Carbo A, Viladomiu M, Pedragosa M, Bevan DR, Lewis SN, Bassaga-
nya-Riera J. Computational modeling-based discovery of novel classes of anti-inflammatory drugs that
target lanthionine synthetase C-like protein 2. PLoS One. 2012; 7: e34643. doi: 10.1371/journal.pone.
0034643 PMID: 22509338

32. Bruzzone S, De Flora A, Grozio A, Guida L, Millo E, Magnone M, Salis A, Zocchi E. Synthetic ana-
logues of abscisic acid with anti-inflammatory and insulin release stimulation effects on human cells.
EP 2511272 B1, 2015-04-15.

Abscisic Acid Stimulates Glucagon-Like Peptide-1 Secretion

PLOS ONE | DOI:10.1371/journal.pone.0140588 October 21, 2015 12 / 12

http://www.ncbi.nlm.nih.gov/pubmed/15619630
http://www.ncbi.nlm.nih.gov/pubmed/17724330
http://www.ncbi.nlm.nih.gov/pubmed/15365617
http://dx.doi.org/10.1016/j.jnutbio.2009.10.003
http://www.ncbi.nlm.nih.gov/pubmed/20092994
http://dx.doi.org/10.1016/j.clnu.2010.02.003
http://www.ncbi.nlm.nih.gov/pubmed/20207056
http://dx.doi.org/10.1210/en.2010-0956
http://www.ncbi.nlm.nih.gov/pubmed/21209017
http://dx.doi.org/10.1091/mbc.E14-01-0004
http://www.ncbi.nlm.nih.gov/pubmed/25273559
http://www.ncbi.nlm.nih.gov/pubmed/16150904
http://www.ncbi.nlm.nih.gov/pubmed/24628287
http://dx.doi.org/10.1371/journal.pone.0034643
http://dx.doi.org/10.1371/journal.pone.0034643
http://www.ncbi.nlm.nih.gov/pubmed/22509338

