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Abstract

Focal adhesions are integrin-based structures that link the actin cytoskeleton and the extra-
cellular matrix. They play an important role in various cellular functions such as cell signal-
ing, cell motility and cell shape. To ensure and fine tune these different cellular functions,
adhesions are regulated by a large number of proteins. The LIM domain protein zyxin local-
izes to focal adhesions where it participates in the regulation of the actin cytoskeleton.
Because of its interactions with a variety of binding partners, zyxin has been proposed to
act as a molecular scaffold. Here, we studied the interaction of zyxin with such a partner:
Tes. Similar to zyxin, Tes harbors three highly conserved LIM domains of which the LIM1
domain directly interacts with zyxin. Using different zyxin variants in pull-down assays and
ectopic recruitment experiments, we identified the Tes binding site in zyxin and showed that
four highly conserved amino acids are crucial for its interaction with Tes. Based upon these
findings, we used a zyxin mutant defective in Tes-binding to assess the functional conse-
quences of abrogating the zyxin-Tes interaction in focal adhesions. Performing fluores-
cence recovery after photobleaching, we showed that zyxin recruits Tes to focal adhesions
and modulates its turnover in these structures. However, we also provide evidence for
zyxin-independent localization of Tes to focal adhesions. Zyxin increases focal adhesion
numbers and reduces focal adhesion lifetimes, but does so independent of Tes. Quantita-
tive analysis showed that the loss of interaction between zyxin and Tes affects the process
of cell spreading. We conclude that zyxin influences focal adhesion dynamics, that it recruits
Tes and that this interaction is functional in regulating cell spreading.

PLOS ONE | DOI:10.1371/journal.pone.0140511

October 28, 2015 1/27


http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0140511&domain=pdf
http://creativecommons.org/licenses/by/4.0/
http://www.fwo.be
http://www.fnr.lu

@’PLOS ‘ ONE

Interaction of Zyxin with Tes

Competing Interests: The authors have declared
that no competing interests exist.

Introduction

The actin cytoskeleton is a highly dynamic cellular system in which actin monomers assemble
into filaments that form different actin structures, depending on the cell type and subcellular
localization. The actin cytoskeleton is linked to the extracellular matrix through multiprotein
complexes called focal adhesions (FAs). FAs play an important role in cellular morphogenesis,
proliferation, signaling, cell adhesion and spreading and cell motility. Over 180 proteins are
known to participate in the architecture and regulation of FAs [1].

The LIM (Lin-11, Isl-1 and Mec3) domain protein zyxin is one of these proteins. Zyxin
localizes to FAs and stress fibers, and is recruited to cell-cell adhesions by nectin [2, 3]. In both
structures, zyxin plays an important role in mechanotransduction [4-9]. Upon mechanical
stress, zyxin localizes to FAs and recruits Ena/VASP-proteins, which are required to induce a
force-dependent actin polymerization [4, 7]. A similar role for zyxin is observed at stress fibers
that depend on mechanical forces for their development [7]. Additionally, a zyxin-dependent
mechanism for stress fiber repair has been reported [10]. Zyxin is recruited to FAs through its
LIM domains, where it has been proposed to play the role of a scaffold protein due to its large
number of interactions with other cytoskeleton proteins [11]. The N-terminal region of zyxin
harbors an o-actinin binding site, located in the first 50 amino acids, as well as a binding site
composed of four proline-rich repeats which are responsible for the interaction with Ena/
VASP family members [12-15]. Zyxin and Ena/VASP have been shown to be necessary for the
induction of actin polymerization along stress fibers [16]. It has also been proposed that zyxin
participates in the regulation of the actin cytoskeleton dynamics by recruiting VASP to FAs
and by promoting VASP-dependent actin filament elongation [17, 18]. Furthermore, zyxin
fibroblasts present enhanced migration and enhanced adhesion compared to wild-type cells,
indicating that zyxin plays an important modulatory role in these cellular functions [19]. In
addition to a-actinin and Ena/VASP proteins, Tes has been described as a zyxin binding part-
ner in FAs [20, 21].

Similar to zyxin, Tes contains three LIM domains and localizes to cell-cell contacts, stress
fibers and FAs [21]. Several studies have highlighted the role of Tes in cell spreading [21-23].
Overexpression of Tes reduces cell motility but enhances cell spreading. In contrast, its knock-
down reduces cell spreading and the number of stress fibers and FAs [22]. Moreover, Tes has
been proposed to be implicated in the regulation of Mena-dependent cell migration [24]. The
overexpression of Tes induces a displacement of Mena from FAs and from the leading edge of
the cell to the cytoplasm, leading to a reduction of cell migration speed. Based hereupon, it has
been proposed that Tes influences Mena-dependent cell migration by sequestering Mena in the
cytoplasm. Similar to zyxin, Tes is capable of interacting with various FA proteins. Through its
N-terminal region, Tes interacts with actin, a-actinin and paxillin, whereas the C-terminal
region of Tes is responsible for the interaction with Mena, VASP and zyxin [20]. Biochemical
analysis has shown that the N-terminal part of Tes is capable of interacting with its C-terminal
part, leading to the hypothesis that Tes can adopt two conformations, a closed conformation in
the cytoplasm, resulting from the intramolecular interaction, and an open conformation which
can be recruited by zyxin to FAs [20]. In FAs, Tes interacts via its LIM1 domain directly with
zyxin [20]. However, the interaction site of Tes within zyxin remains unidentified. Further-
more, little is known about the cellular consequences of this interaction.

Here, we have mapped the Tes binding site within zyxin. Based on this, we have generated a
zyxin mutant which is unable to interact with Tes. We subsequently used this mutant to gain
insight in zyxin-dependent recruitment of Tes to FAs. Performing fluorescent recovery after

/-

photobleaching (FRAP), we have demonstrated that the interaction of Tes with zyxin stabilizes
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Tes in FAs. Furthermore, we have shown that zyxin regulates FA dynamics independently of
Tes, whereas the interaction between the two proteins promotes cell spreading.

Materials and Methods
Plasmid constructs and siRNA oligonucleotides

Tes FL-GFP was generated by cloning a cDNA corresponding to the full length protein (resi-
dues 1-421) into a pEGFP-N3 vector (Clontech). Tes LIM cDNA (coding for residues 234—
421) and Tes-LIM1 ¢DNA (coding for residues 234 to 299) were generated by PCR using Tes
FL-GFP vector as a template, and cloned into pEGFP-C3 vectors (Clontech). To generate the
GST tag construct, Tes LIM1 was amplified by PCR and cloned into a pGEX4T?2 vector (Clon-
tech). To generate GFP-tagged zyxin variants, the cDNA corresponding to Zyx FL WT (1-
572), Zyx FL MT (1-572), Zyx 51-63 and Zyx 51-63-MT were cloned into pEGFP-N3 vector
(Clontech). Zyx FL WT-DsRed and Zyx FL MT-DsRed were generated by substituting the
EGFP gene by a DsRed gene. Zyx FL WT-mito (1-572) and Zyx FL MT-mito (1-572), Zyx
NT-mito (1-380), Zyx LIM-mito (332-572), and the shorter zyxin variants (140-380), (51-
140), (51-110), (111-140), (51-92), (51-77), (51-63 WT) and (51-63 MT) were cloned into
the pUHD10-3 vector which encodes a Myc (9E10) tag followed by a mito tag, except for the
two Zyx FL (WT and MT) constructs which lack the Myc tag. The mito tag inserts itself into
the mitochondrial membrane, thus allowing to target fusion proteins to the surface of mito-
chondria. A sequence of zyxin in which the codons of the four amino acids 60VGEI63 were
substituted by four alanine codons was synthesized by DNA2.0. This sequence was used for
generating the zyxin variants in the pUHD10-3, pEGFPN3 and pDsRed vectors. All constructs
were verified through sequencing by LGC Genomics.

Small interfering RNA oligonucleotides, directed against Tes or zyxin, were purchased from
Qiagen. The siRNA sequence targeting Tes corresponds to: AACTACACTTCTGGAGGAA
AA. For zyxin knockdown the following siRNA sequence was used: AAGTGTTACAAGTGT
GAGGAC.

Cell culture and transfection

Vero monkey kidney cells (ATCC CCL-81), HeLa cells (ATCC: CCL-2), mouse embryonic
fibroblasts (MEF, ATCC: SCRC-1008) and zyxin-null mouse fibroblasts were grown at 37°C
and under 5% CO, in Dulbecco’s modified Eagle’s medium (DMEM) (Lonza) supplemented
with glutamine, penicillin/streptomycin (Lonza) and 10% fetal calf serum (Lonza). Electropo-
ration of Vero cells was carried out with a total of 15 pg plasmid for 5x10° cells at 240 V and
950 pF. HeLa cells were transfected by phosphate-calcium method as previously described
[25]. Wild-type (MEF) and zyxin-null fibroblasts were transfected with lipofectamine 2000
(Invitrogen) according to the manufacturer’s protocol. All experiments were carried out 24
hours post transfection.

Antibodies and fluorochrome-coupled probes

For immunofluorescence staining, Myc tagged zyxin variants were detected using a monoclo-
nal antibody (clone 9E10, Life Technologies) recognizing the Myc epitope (VAACNMEQKLI-
SEEDLNMNS) (Golsteyn et al., 1997). Endogenous zyxin and the constructs Zyx FL-mito and
Zyx FL MT-mito were detected in cells with a polyclonal zyxin antibody, obtained from the
immunization of a rabbit with two peptides located in the N-terminal region of zyxin (Euro-
gentec). Endogenous vinculin was visualized using a specific monoclonal mouse antibody
(clone VIN-11-5, Sigma-Aldrich). Tes was detected using a polyclonal rabbit antibody raised
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against the N-Terminal domain of Tes (Eurogentec). VASP was revealed with a monoclonal
mouse antibody (clone 43/VASP, Transduction Laboratories). o-actinin was stained with a
monoclonal mouse antibody (clone BM-75.2 SIGMA) and F-actin was labeled with Alexa
Fluor 594 phalloidin (Molecular Probes). Secondary IgG antibodies directed against mouse or
rabbit were coupled to Alexa Fluor dyes (Invitrogen).

For Western blot detection, polyclonal anti-zyxin, monoclonal anti-GFP (clone GFP-20,
Sigma- Aldrich), polyclonal anti-GST (Cat.# 06-332, Upstate), a monoclonal anti-Tes (clone
G9, Santa Cruz Biotechnology) or monoclonal anti-B-actin (clone Ac-15, Sigma-Aldrich) anti-
bodies were used. A secondary antibody coupled to horseradish peroxidase (Amersham, Bio-
sciences) was added and the protein bands were revealed with Super Signal WEST FEMTO
(Thermo Scientific), using a ChemiLux imager system (Intas Science Imaging). Alternatively,
protein bands were revealed based on fluorescence using secondary antibodies coupled to a
fluorescent dye and an Odyssey Infrared imaging system (Licor Biosciences). In this case, don-
key anti-mouse IRdye® 680 (Licor Biosciences) or goat anti-rabbit IgG DyLight 800 (Thermo-
scientific) were used.

Production of recombinant proteins and GST pull-down

The recombinant protein GST-Tes LIM1 was produced in Escherichia coli strain BL21, purified
from the soluble fraction using a Glutathione Sepharose 4B resin (GE Healthcare) and was
eluted using a reduced glutathione buffer (50 mM Tris pH 8; 10 mM reduced glutathione). The
purified recombinant proteins were quantified by Bradford method (Bio-rad) and analyzed on
denaturing SDS-PAGE and stored at -80°C. For GST pull-down assays, the glutathione Sephar-
ose 4B resin was washed three times with NP40 lysis buffer (50 mM Tris pH 7.4; 120 mM
NaCl; 0.5% Nonidet P-40; 0.5 mM EDTA). 16 pg of the purified GST-Tes LIM1 variant were
immobilized on 80 ul Glutathione Sepharose 4B resin (slurry 50%) and incubated during 1
hour using continuous rotation at 4°C. The non-bound fraction was removed by centrifuga-
tion. The fixation of the GST recombinant proteins on beads was verified on SDS-PAGE. HeLa
cells were transfected with the corresponding GFP constructs and lysed 24 hours after transfec-
tion with the NP40 lysis buffer containing protease inhibitor cocktail (ROCHE) and total pro-
tein concentrations were measured by Bradford method (Bio-rad). 80 pl of beads (slurry 50%)
with immobilized GST recombinant proteins were incubated with 200 pg of total proteins dur-
ing 2 hours using continuous rotation at 4°C. After centrifugation at 2000 g during 5 minutes
at 4°C, 18 pl of the non-bound fraction (NB) were collected. Beads were washed extensively in
NP40 lysis buffer. After removing the supernatant, the beads corresponding to the bound frac-
tion (B) were suspended in 18 ul of SDS-Page buffer. For each condition, bound fraction (B)
and non-bound fraction (NB) were loaded on denaturing SDS-PAGE and analyzed by Western
blot.

Microscopy

Fixed cells were processed for immunofluorescence staining as previously described [17], and
were imaged with an epifluorescence microscope (Leica DMRX, HCX PL APO 63x/1.32NA or
100x/1.35NA oil immersion lenses) equipped with the appropriate excitation and emission fil-
ters. Images were acquired with a linear CCD camera (Micromax; Princeton instruments) and
Metaview software (Universal Imaging). All confocal microscopy experiments with living cells
and fixed samples were performed with a Zeiss LSM 510 Meta laser scanning confocal micro-
scope (Carl Zeiss, Jena, Germany) using objectives and acquisition settings specified below.
Living cells were maintained on the microscope stage at 37°C in a 5% CO, atmosphere using
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an air-stream incubator and a heating stage insert (Pecon GmbH). Images were analyzed with
custom ImageJ plugins (NIH) as described below.

Cell spreading assay

Fibronectin-coated coverslips were prepared by incubating them with 20 ug/ml of fibronectin
in PBS (140 mM NacCl, 2.7 mM KCl, 6.5 mM Na,HPO,, 1.5 mM KH,PO,, pH 7.2), followed
by saturation at 37°C for 1 hour with 1% BSA diluted in PBS. Zyxin-null fibroblasts were trans-
fected as indicated. 24 hours after transfection cells were washed with PBS and trypsinized. The
cells were resuspended for 30 minutes and then plated onto the fibronectin-coated coverslips.
After incubation for 15, 30, 60 or 240 minutes at 37°C and 5% CO,, cells were washed twice
with PBS, fixed with 3% PFA for 20 minutes and stained with Alexa Fluor 594 phalloidin
(Molecular Probes). After staining, multiple fields were imaged using the confocal microscope
with a Plan-Apochromat 20x/0.8NA dry lens. To quantify cell areas we first subjected images
in both channels to background subtraction and to filtering with a low-pass filter. Cells were
segmented with a constant intensity threshold level. To select transfected cells the matches
between segmented regions in green and in red channels were identified. Automated analysis
was manually verified to exclude segmented regions that contained more than one cell or cells
with abnormal expression levels. For each condition at least 300 cells were analyzed. Statistical
significances for the differences between mean cell areas were estimated using 1-way ANOVA
followed by Tukey’s significant difference test to compare each pair of conditions.

Quantification of FAs and FA proteins

Zyxin-null fibroblasts were transfected with Tes FL-GFP and DsRed, Zyx FL WT-DsRed or
Zyx FL MT-DsRed and were fixed 24 hours after transfection. Endogenous vinculin was
stained with a mouse monoclonal anti-vinculin and an Alexa Fluor 647-coupled secondary
antibody. For actin quantification, zyxin-null fibroblasts were transfected with DsRed, Zyx FL
WT-DsRed or Zyx FL MT-DsRed, vinculin was labelled with the same primary antibody and
an Alexa Fluor 488-coupled secondary antibody. Similarly, for siRNA experiments, cells were
stained for vinculin and actin using the same antibodies and phalloidin probes. Imaging was
performed with the confocal microscope in square regions of 1024x1024 pixels (0.14 pm/pixel)
with a Plan-Apochromat 63x/1.4NA oil-immersion objective and a confocal pinhole set to

122 pm. Fusion protein expression levels were taken into account and only cells with similar
levels of expression were selected. To segment FAs and to quantify the corresponding fluores-
cent signals we applied a customized version of a previously reported algorithm [26]. Images in
vinculin channel were subjected to background subtraction with the rolling-ball algorithm and
used to segment FAs, minimal FA size was set to 20 pixels (0.39 um?). Fluorescence signals in
all channels were quantified in segmented regions using non-transformed images. To account
for fluorescence that comes from non-bound proteins, for each FA we calculated the average
intensity of pixels which are in the vicinity of the selected FA (closer than 4.2 um to its cen-
troid), but which do not belong to any FA and which are located within the analyzed cell.
When this value was subtracted from the average intensity within FA, the result was multiplied
by FA area to estimate the total amount of the bound protein. Measured FA sizes and protein
quantities were averaged for each cell and these numbers were used to build the final bar plots
(represented as mean + S.E.M. for each condition) and to perform statistical tests. Statistical
significances for the differences of mean parameters for each pair of conditions were estimated
using 1-way ANOVA followed by Tukey’s significant difference test, or t-test when two condi-
tions were compared.
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Quantification of FA turnover rates

Zyxin-null fibroblasts were transiently co-transfected with mEmerald-paxillin and DsRed, Zyx
FL WT-DsRed or Zyx FL MT-DsRed. Time series of 60 minutes (30 seconds time intervals)
were acquired on the confocal microscope with a Plan-Apochromat 63x/1.4NA oil-immersion
lens and a confocal pinhole set to 300 pm. mEmerald paxillin was detected using 488 nm
Argon laser line and a 505 to 550 nm band-pass emission filter. DsRed was detected with a
DPSS-561 laser and a 575 nm long-pass emission filter. In each case imaging was performed
with 2% of maximum laser power, a minimum of 10 cells were analyzed for each condition.
Only cells with similar levels of expression were selected. To track FAs through their lifetime,
the cell in question was segmented using the mEmerald channel and all FAs within this cell
were identified at each time step similarly to what was done for the quantification of FAs in
fixed cells. Lineages of the segmented FAs were identified following the rules described in [27].
Lineages which are shorter than 3 sequential time points were discarded. The remaining tracks
were used for analysis (3040, 4553 and 3013 tracks for Control, Zyx FL WT and Zyx FL MT
respectively) To calculate the distribution of FA lifetimes we considered only FAs which
appeared as new objects and completely disassembled during the observation period (1023,
1618 and 1006 tracks for Control, Zyx FL WT and Zyx FL MT respectively). The number of
FAs within each subgroup on the lifetime histogram was normalized to the total number of
FAs selected for the analysis of lifetimes. We considered FAs as being stable if they were present
at the start of the acquisition and existed throughout the observation period (25, 65 and 51
tracks for Control, Zyx FL WT and Zyx FL MT respectively). For comparison, these numbers
were normalized to the average number of FAs detected per time point for each condition. To
calculate p-values for the differences between the fractions of FAs within each subgroup of the
lifetime distributions and between the fractions of stable FAs we used pairwise z-test for pro-
portions with Benjamini-Hochberg correction.

Fluorescence recovery after photobleaching

FRAP experiments were performed on the confocal microscope with a Plan-Apochromat 63x/
1.4NA oil-immersion lens and a confocal pinhole set to 300 pm. GFP-labelled zyxin variants
and Tes FL-GFP were detected with 488-nm Argon laser line and 505 to 550 nm band-pass
emission filter, mCherry-actin was detected using a DPSS-561 laser and a 575 to 615 nm band-
pass emission filter. In each case imaging was performed with 2% of the maximum laser power.
The same laser line was used for bleaching fluorochromes within circular spots with a diameter
of 2.7 uM covering FAs. Three bleaching iterations were performed in less than 0.2 seconds
with the laser power adjusted to bleach either 100% (for Tes and actin) or about 50% (for zyxin
variants) at FAs. FRAP acquisitions were performed in rectangular regions of 512x128 pixels
(0.14 pm/pixel). In FRAP experiments with Tes FL-GFP and with GFP-labelled zyxin variants,
20 images before bleaching and 220 images after bleaching were acquired with time intervals
between images equal to 0.5 seconds. In experiments with mCherry-actin, the time-lapse
images were simultaneously acquired in two fluorescent channels to use zyxin GFP variants as
a marker for the subsequent tracking of FAs. Twenty images before bleaching and 400 images
after bleaching were acquired with the time interval between images equal to 1 second. To
properly account for FA sliding observed in zyxin-null fibroblasts, the movement of the
bleached FAs was tracked with the algorithm used for quantification of FA lifetimes (only one
FA per time series tracked in FRAP experiments). Average fluorescence intensities inside the
identified FA masks were calculated at each time point. Quantified FRAP curves were normal-
ised using Eq (1) to correct for background fluorescence, acquisition photobleaching and laser
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fluctuations [28, 29].

Fe) = Liup(®) = L) Ly .

Iref(t) - Ihase(t) Ifmp_pre

where If;,,(t) - quantified intensity in the bleached region; I,.t) - average intensity of the cell;
Ipase(t) - background intensity measured out of the cell; subscript _pre means the averaging of
intensities for the prebleach time points after background subtraction. Depending on the
experiment, at least 80 (Tes and Zyx) or 15 (actin) recovery curves per condition, collected dur-
ing 4 independent experiments, were analyzed. Each normalised FRAP curve was fitted sepa-
rately with Eq (2):

F

ﬁ:(t) =1, - Ile_kl' (2)

where I, - normalised fluorescence plateau at the end of recovery; I; - amplitude of the recov-

ery; k; - the turnover rate that is inversely proportional to the recovery halftime (¢, = %2)).

The estimated recovery halftimes are represented on a logarithmic scale as Box-and-Whis-
ker plots overlaid with individual data points and thin lines inside boxes representing mean
recovery halftimes for each condition. Because the distribution of the FRAP recovery halftimes
deviated significantly from normal distribution, we used non-parametric methods to evaluate
these data. The Mann-Whitney U test (2 conditions for FRAP with zyxin and with actin) or
Kruskal-Wallis test followed by pairwise Wilcoxon test with Benjamini-Hochberg correction
(3 conditions for FRAP with Tes) were used to test for the statistical significance of the increase
or decrease of the estimated parameters. To compare variations of Zyx FL WT and Zyx FL MT
recovery halftimes, we calculated logarithm of each estimated halftime value and applied
Fligner-Killeen test of homogeneity of variances on these values. The logarithmic transforma-
tion resulted in the parameters distributions that were much closer to normal in comparison
with initial distributions and equalized the impact of high and low FRAP halftime values in
this statistical test.

Results
Tes interacts with the N-terminal region of zyxin

Previous studies have shown that zyxin regulates the localization of Tes by recruiting Tes to
FAs [20]. Furthermore, it was shown that the first LIM domain of Tes (Fig 1 A) interacts
directly with zyxin. So far, the binding site of Tes within zyxin remained unknown. We per-
formed ectopic recruitment experiments on the surface of mitochondria as well as pull-down
assays to analyze the capacity of different zyxin variants to interact with Tes and to map and
identify the Tes binding site in zyxin.

As illustrated in Fig 1B, the full-length protein Tes FL-GFP showed only a weak colocaliza-
tion with the wild-type zyxin, Zyx FL WT-mito, that is targeted to the surface of mitochondria
by the membrane anchor of the Listeria monocytogenes protein ActA (mito). In contrast, Tes
LIM-GFP, which corresponds to the 3 LIM domains of Tes (amino acids 234-421) was
strongly recruited to the mitochondrial surface by Zyx FL WT-mito, consistent with published
data that zyxin likely interacts with the open conformation of Tes [20]. Additionally, as Tes
LIM-GFP interacted with Zyx NT-mito but not with Zyx LIM-myc-mito (Fig 1C), our results
suggest that it is the N-terminal region of zyxin that mediates the interaction with the LIM
domains of Tes.
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Fig 1. Ectopic recruitment to mitochondria of Tes and Tes LIM by zyxin-mito variants. (A) Schematic representation of the LIM domain proteins zyxin
and Tes. The a-actinin binding site (AcBS) and the proline-rich region binding Ena/VASP family members (Pro-rich region) of zyxin are shown as well as the
LIM domains. For Tes, the PET domain in the N-terminal part and the three LIM domains in the C-terminal part are depicted. In (B) and (C), Vero cells were
transiently transfected with Zyx-mito variants and Tes FL-GFP, GFP-Tes LIM or GFP (control). Zyx FL WT-mito (B) and Zyx NT-mito (C) were labelled with an
anti-zyxin antibody and Zyx LIM-myc-mito was labelled with an anti-myc antibody. Scale bar: 50 um; the insets show a higher magnification of the outlined

regions.

doi:10.1371/journal.pone.0140511.9001

Delineation of the Tes-binding site in the N-terminal region of zyxin

The N-terminal region of zyxin contains the binding site for a-actinin [15] as well as four
FPPPP motifs necessary for interaction with members of the Ena/VASP family [13, 16, 17]
(Fig 2A). Knowing that Tes is also capable to interact with a-actinin, VASP and Mena, the
mitochondrial recruitment observed above could result either from a direct recruitment or
from an indirect recruitment of Tes to zyxin mediated by these partners. To address this issue
and further map the sequences of zyxin that are implicated in the direct recruitment of Tes, we
first generated two myc-mito variants of Zyx NT; a variant lacking the proline rich sequences
(Zyx 140-380-myc-mito) and a variant containing the proline rich sequences but lacking the
o-actinin binding site (Zyx 51-140-myc-mito). Immunofluorescence analysis of the subcellular
distribution of these zyxin variants revealed that Zyx 140-380-myc-mito failed to recruit
GFP-Tes LIM or GFP-Tes LIM1 on the surface of the mitochondria (Fig 2A table inset and
Fig 2B) suggesting that the region between the proline rich sequences and the LIM domains is
not implicated in the interaction with Tes. In contrast, the variant Zyx 51-140-myc-mito
retained the capacity to recruit GFP-Tes LIM or GFP-Tes LIM1 to the mitochondria (Fig 2A
table inset and Fig 2B). This additionally indicates that the interaction between Tes and zyxin
is independent from o-actinin. To further dissect this region, we generated variants corre-
sponding to parts of the sequences in region 51-140: Zyx 51-110, 51-92, 51-77, 78-126 and
111-140. Subsequent analysis revealed that the variant Zyx 51-77-myc-mito in this series was
the smallest peptide able to recruit GFP-Tes LIM (containing the three LIM domains) or
GFP-Tes LIM1 (containing only the first LIM domain with the zyxin binding site) (Fig 2A
table inset). The sequence enclosed in residues 51-77 contains 13 residues (amino acids 51-63)
followed by the first proline rich region of zyxin (amino acids 64-77) containing the first
FPPPP motif. Thus, we designed two smaller variants corresponding to residues 51-63 (Zyx
51-63-myc-mito) and 64-77 (Zyx 64-77-myc-mito), respectively. Contrary to residues 64-77,
residues 51-63 recruited GFP-Tes LIM and GFP-Tes LIM1 (Fig 2A table inset and Fig 2C).
These results show that the Tes LIM1 binding site in zyxin is localized in the region 51-63 and
is independent of the FPPPP motifs (and thus independent of recruitment by members of the
Ena/VASP family) as well as of the o-actinin binding site.

The four amino acids VGEI in zyxin are necessary for the interaction with
Tes

Protein interaction sites are often strongly conserved among homologues. To evaluate this for
the identified Tes binding site in zyxin, we performed protein sequence alignments of zyxin
proteins from different species. Interestingly, the alignments showed that residues 51-63 are
strongly conserved among species, especially in the C-terminal part (Fig 3A). We mutated the
sequence 60VGEI63 in this fragment of zyxin into four alanines (Zyx 51-63 MT-myc-mito,
MT indicates mutant carrying 60AAAA63). Ectopic recruitment experiments showed that this
mutant fragment failed to recruit GFP-Tes LIM1, in contrast to the VGEI containing fragment
Zyx 51-63-myc-mito (Fig 3B). We reproduced this mutation in full length zyxin (Zyx FL MT-
mito). Similar to the Zyx 51-63 MT-myc-mito construct, Zyx FL MT-mito lost the capacity to
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Fig 2. Determination of the minimal sequence of zyxin that interacts with Tes. (A) Schematic representation of zyxin (1-572), fused to the mitochondrial
targeting sequence (mito). The green box corresponds to the a-actinin binding site (AcBS), the four red boxes correspond to the four FPPPP motifs binding
VASP, the yellow box represents the amino acids VGEI. Zyxin-mito variants are represented by lines showing their respective position in the full-length
protein (in the same order as in the inset table). Their ability to recruit GFP-Tes LIM and GFP-Tes LIM1 on the surface of mitochondria in Vero cells is
indicated in the table (nt: not tested). (B) and (C) Ectopic recruitment of GFP-Tes LIM1 by the zyxin variants Zyx 140-380-myc-mito, Zyx 51-140-myc-mito,
Zyx 64-77-myc-mito and Zyx 51-63-myc-mito to the surface of the mitochondria in Vero cells. The different zyxin variants were labelled with an anti-myc
antibody. Scale bar: 50 um; the insets show a higher magnification of the outlined regions.

doi:10.1371/journal.pone.0140511.g002

recruit GFP-Tes LIM1 (Fig 3C). Similarly to Zyx FL WT, Zyx FL MT retained the capacity to
bind and recruit a-actinin as well as VASP (S1 Fig), indicating that these two binding sites,
which flank the Tes binding site on both sides, were not affected by the mutation.

To biochemically confirm the importance of the VGEI sequence, we performed pull-down
assays with GST-Tes LIM1 (amino acids 234-299) produced in E. coli and zyxin-GFP fusion
proteins from HeLa cell extracts (Fig 4A and 4C, showing equal expression levels of zyxin WT
and MT). Western blot analysis using a GFP-specific antibody revealed the interaction between
Tes LIM1 and Zyx 51-63-GFP. However, in the case of the variant Zyx 51-63 MT-GFP, no
interaction could be detected (Fig 4B). We were able to pull down Zyx FL WT-GFP as well as
endogenous zyxin with GST-Tes LIM1, this in contrast to Zyx FL MT-GFP (Fig 4D).

To determine whether this Tes interaction site is functional in FAs, we used fibroblasts in
which the zyxin gene was deleted by homologous recombination (further referred to as zyxin-
null) [19]. In wild-type fibroblasts, GFP-Tes LIM1 localized to FAs in contrast to zyxin-null
fibroblasts in which GFP-Tes LIM1 failed to accumulate to FAs (Fig 5A). We compared the
ability of the Zyx FL WT and Zyx FL MT to recruit Tes, via its LIM1-domain to FAs, by co-
expressing these forms as DsRed fusions with GFP-Tes LIM1 in zyxin-null fibroblasts. In con-
trast to Zyx FL WT-DsRed, the mutant Zyx FL MT-DsRed did not exhibit the capacity to
recruit GFP-Tes LIM1 to FAs (Fig 5B). Taken together, these findings demonstrate that the
amino acids 60VGEI63 in zyxin are necessary for the interaction with Tes at FAs, in particular
with its LIM1 domain.

Tes can be recruited to focal adhesions in a zyxin-independent manner

We attempted to reproduce the above results (represented in Fig 5B) with full-length Tes, and
unexpectedly, we observed that endogenous Tes, as well as Tes FL GFP, could be recruited to
FAs in zyxin-null fibroblasts (Fig 6A and 6B) indicating that this recruitment can also occur
independently of zyxin. These results together with those obtained for GFP-Tes LIM1 demon-
strate that in fibroblasts, full-length Tes can also be recruited to FAs in a zyxin-independent
way and that this recruitment does not seem to involve Tes LIM1. Furthermore, we monitored
whether variations in zyxin expression levels influence Tes expression and, reciprocally,
whether loss or overexpression of Tes affects zyxin expression levels. To this end, MEF cells
were transfected with siRNAs directed against Tes or zyxin respectively. Quantitative analysis
of Western blot bands did not reveal any significant differences (S2 Fig). Similarly, overexpres-
sion of GFP-zyxin or GFP-Tes did not reveal any effect on the expression levels of the endoge-
nous proteins.

Although the zyxin-independent recruitment of Tes complicates analysis, we quantitatively
assessed the impact of the zyxin-Tes interaction on the localization of both proteins to FAs by
using immunofluorescence microscopy. To this end we transfected zyxin-null fibroblasts with
expression constructs for Tes FL-GFP and Zyx FL WT-DsRed, the variant Zyx FL MT-DsRed,
or DsRed (control). After fixation, cells were stained with an antibody for the FA marker vincu-
lin. FA characterization was only carried out for cells expressing both GFP and DsRed con-
structs. Corroborating our results above, Tes quantities in FAs were enhanced (twofold) in the
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for the indicated species, the zebrafish sequence was retrieved from Ensembl). Protein sequences were aligned with ClustalW2. The a-actinin binding site
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(top panels), (C) Zyx FL WT-mito and Zyx FL MT-mito were labelled with an anti-zyxin antibody (top panels). Bottom panels show GFP-Tes LIM1 signals.
Scale bar: 50 ym; the insets show a higher magnification of the outlined regions.
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Fig 4. The VGEI sequence in full-length zyxin is necessary for the interaction with Tes LIM1. (A) and (C) expression levels of GFP-fusion proteins in
HelLa cells were verified by Western blot using an anti-GFP antibody (A), an anti-zyxin antibody (C) and an anti-B-actin antibody (control) (A, C). (B) Western
blot analysis of GST pull-down experiments performed with GST-Tes LIM1 immobilized on glutathione sepharose resin, and extracts of HelLa cells
transfected with Zyx 51-63-GFP, Zyx 51-63 MT-GFP or GFP (negative control). The presence of zyxin-GFP variants was analyzed in bound “B” or non-
bound “NB” fractions using an anti-GFP antibody. (D) Zyx FL WT-GFP and Zyx FL MT-GFP extracts from transfected Hela cells, were analyzed in bound (B)
and non-bound (NB) fractions using an anti-zyxin antibody. Note the presence of endogenous zyxin (zyxin endo) in the bound fraction.

doi:10.1371/journal.pone.0140511.g004

presence of Zyx FL WT compared to control, but not in the presence of Zyx FL MT (Fig 6C).
Tes FL-GFP quantities at FAs in case of the presence of Zyx FL MT were comparable to the
control zyxin-null cells (Fig 6C) and likely represent the zyxin-independent recruitment to
FAs. The results indicate that mutation of VGEI abolishes the interaction between Tes FL and
zyxin in FAs. Notably, the levels of Zyx FL WT and Zyx FL MT in FAs were not statistically dif-
ferent (Fig 6D), indicating that zyxin recruits Tes to FAs, but not vice versa. Taken together,
these findings demonstrate that the VGEI-mediated zyxin-Tes interaction increases Tes quan-
tities in FAs.

Interaction between zyxin and Tes modulates kinetics of Tes at FAs

To determine if a loss of interaction between Tes and zyxin influences the turnover of each of
these proteins at FAs, we performed FRAP experiments (Fig 7A). We first investigated the
effects of the zyxin-Tes interaction on zyxin turnover in FAs. To this end, we transfected
zyxin-null fibroblasts with Zyx FL WT-GFP and Zyx FL MT-GFP and measured turnover
times of these proteins at FAs by FRAP (Fig 7B and 7C). The individual fluorescence recoveries
of both Zyx FL WT and Zyx FL MT at FAs could be well fitted by a single exponential function.
The performed analysis did not reveal any significant increase or decrease of recovery halftimes
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Fig 5. The recruitment of Tes LIM1 to FAs depends on the VGEI sequence of zyxin. (A) Wild-type and zyxin-null fibroblasts were transfected with
GFP-Tes LIM1 or GFP (control). FAs were stained with an anti-vinculin antibody. (B) Zyxin-null fibroblasts were cotransfected with GFP-Tes LIM1 and
DsRed, Zyx FL WT-DsRed or Zyx FL MT-DsRed. Scale bar: 50 pm, the insets show a higher magnification of the outlined regions.

doi:10.1371/journal.pone.0140511.g005

(ty) for Zyx FL MT in comparison to Zyx FL WT (p-value ~ 0.1) (Fig 7C), in line with the
observation that Tes does not recruit zyxin to FAs. However, the variation of individual half-
time values was significantly larger for Zyx FL WT in comparison with Zyx FL MT as shown
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Fig 6. Tes localizes to FAs in the absence of zyxin. (A) Endogenous Tes was stained with an anti-Tes antibody in wild-type and zyxin-null fibroblasts and
the FA marker vinculin was revealed with an anti-vinculin antibody. (B) Wild-type and zyxin-null fibroblasts were transfected with Tes FL-GFP and stained
with an anti-vinculin antibody. Scale bar: 50 um; the insets show a higher magnification of the outlined regions. (C) and (D) Zyxin-null fibroblasts were
cotransfected with Tes FL-GFP and the constructs DsRed (control), Zyx FL WT-DsRed or Zyx FL MT-DsRed. 24 hours after transfection, cells were fixed and
stained for vinculin, and analyzed by immunofluorescence confocal microscopy. Measured intensities at FAs were then averaged for each cell. Bar plots
indicate the intercellular means of measured intensities of Tes FL-GFP (C) and the means of the integrated fluorescence intensities of Zyx FL WT-DsRed and
Zyx FL MT-DsRed (D) For all quantifications at least 25 cells and >1500 FAs per condition were analyzed. Error bars represent S.E.M. *** P<0.0001, only
significant differences are indicated.

doi:10.1371/journal.pone.0140511.g006

PLOS ONE | DOI:10.1371/journal.pone.0140511 October 28, 2015 15/27



Interaction of Zyxin with Tes

t = 10s (bleach)

3
3o
=2
2
[]
g/
B h «  Zyx FLWT
égj_ . s ZyxFLMT
(e}
<o06] ¢
0 20 40 60 80 100
Time, s

D

1.0 e Tes recovery curves
309-
2

2 &
£08-
E &
3 3 > Control
2 - ZyxFLWT
20-7- ) s ZyxFLMT

£
Z

064 =

0O 20 40 6 8 100 120
Time, s

C

(V)]
@ 50 5
£ s
“T;zo— g
= 10
&
2 5
o
o -
- 24
c k4
.51_ '
N 4

.

T T
Zyx FLWT Zyx FLMT
E
50 — *XK
-
n = —:—

(7]
520 ry
£ | 352
£ 10
: k-
>5{ o E
2 4 i i
. ¢ ?
0 ! -
Pl L ¢

T

Control

Zyx FLWT Zyx FL MT

Fig 7. Dynamics of zyxin and Tes at FAs. (A) A typical FRAP experiment with Zyx FL WT-GFP in zyxin-null fibroblasts. Left panel: A cell expressing Zyx FL
WT-GFP. The white rectangle indicates the area selected for FRAP acquisition. Right panels represent the time-course of a FRAP experiment: prebleach

PLOS ONE | DOI:10.1371/journal.pone.0140511

October 28, 2015

16/27



@. PLOS ‘ ONE Interaction of Zyxin with Tes

image (top), firstimage after bleach (middle), 100 s after start of acquisition (bottom). The white circle outlines the region selected for the bleach. Scale bars:
10 ym. (B) Normalized and averaged Zyx FL WT-GFP (Zyx FL WT) and Zyx FL MT-GFP (Zyx FL MT) recovery curves obtained from four independent
experiments (in total about 100 acquisitions per condition). (C) t; values of recovery halftimes of individual zyxin-GFP FRAP recoveries that were averaged
in B are represented as Box-and-Whisker plots overlaid with data points. Thin lines inside boxes represent mean t,; values. (D) Normalized and averaged
Tes FL-GFP recovery curves in the presence of DsRed (Control), Zyx FL WT-DsRed (Zyx FL WT) or Zyx FL MT-DsRed (Zyx FL MT) obtained from four
independent experiments (in total about 80 acquisitions per condition). (E) t,; values of recovery halftimes of individual Tes FL-GFP FRAP recoveries that
were averaged in D are represented as Box-and-Whisker plots overlaid with data points. Thin lines inside boxes represent mean t,; values. *** P<0.0001,
only significant differences are indicated.

doi:10.1371/journal.pone.0140511.g007

by the Fligner-Killeen test of homogeneity of variances (p-value < 0.05, see Materials and
methods) suggesting that the heterogeneity of zyxin dynamics in the analyzed FA population is
higher when the zyxin-Tes interaction is intact.

As Tes can be recruited to FAs in the absence of zyxin, we decided to analyze binding kinet-
ics of Tes in FAs in three different conditions: in the absence of zyxin (DsRed), in the presence
of Zyx FL WT-DsRed or in the presence of Zyx FL MT-DsRed (Fig 7D and 7E). In each case
FRAP of the Tes FL-GFP was used to determine the kinetics of Tes in FAs. Only curves that fit-
ted with a single exponential function were retained (/=70% of the curves). Recovery of Tes was
generally slower than for zyxin (compare panels C and E). The average ¢, value for Tes in the
presence of wild-type zyxin (13.5 seconds) at FAs was approximately threefold higher than the
corresponding average t,, for wild-type zyxin (4.8 seconds), indicating that the exchange of
zyxin in FAs is much faster than the exchange of Tes. Furthermore, the statistical analysis
revealed that recovery of Tes in the presence of Zyx FL MT was significantly faster than in the
presence of Zyx FL WT (Fig 7D and 7E). Surprisingly, in cells that were not transfected with
any zyxin construct, the average recovery t,, of Tes FL-GFP at FAswas only slightly lower than
in Zyx FL WT expressing cells and slightly higher than in Zyx FL MT expressing cells, resulting
in no statistically significant differences of the average recovery halftime of Tes between control
cells and Zyx FL WT or Zyx FL MT cells (Fig 7E).

Zyxin affects FA numbers and lifetime independently of Tes

We next tested whether the Tes-zyxin interaction affects FA properties. To this end, zyxin-null
fibroblasts were transfected with expression constructs for Zyx FL WT-DsRed or the variant
Zyx FL MT-DsRed, using DsRed expressing cells as control, and stained with an antibody
directed against the FA marker vinculin. FA characterization was only carried out in DsRed
positive cells. FA size was not influenced by the expression of Zyx FL WT or Zyx FL MT (Fig
8A). However, compared to control cells, expression of Zyx FL WT led to a significant increase
(~222%) in FA number per cell area unit (Fig 8B). FA number in cells expressing Zyx FL MT
was in between that in control and Zyx FL WT cells but no statistically significant difference
could be determined. Additionally, actin staining revealed that the reintroduction of Zyx FL
WT and Zyx FL MT enhanced the quantity of actin in FAs compared to control (S3 Fig). Inter-
estingly, overexpression of Tes GFP in zyxin-null cells also increased the number of FAs while
a knockdown of Tes led to a decrease in FA numbers (S4 Fig).

The higher amount of Tes in FAs of Zyx FL WT expressing cells (Fig 6C) correlates with the
increase in FA number per area unit. This suggests that the zyxin-Tes interaction may take part
in the regulation of FA dynamics and their lifetimes. To investigate this, we determined
whether the interaction between zyxin and Tes modulates the turnover of FAs. Zyxin-null
fibroblasts were co-transfected with mEmerald-paxillin and Zyx FL WT-DsRed, Zyx FL
MT-DsRed or DsRed (control). Transfected cells were imaged during 1 hour by time-lapse
microscopy. To determine FA lifetimes, their assembly/disassembly events were detected using
paxillin as FA marker (Fig 8C, 8D and 8E). The majority of FAs were dynamic (Fig 8D) and
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Fig 8. Zyxin affects FA density in cells, FA morphology and FA lifecycle in a Tes-independent manner. (A) Average FA size in the presence of DsRed
(Control), Zyx FL WT-DsRed (Zyx FL WT) or Zyx FL MT-DsRed (Zyx FL MT). (B) Average number of FAs per um? of cell area in the presence of DsRed
(Control), Zyx FL WT-DsRed (Zyx FL WT) or Zyx FL MT-DsRed (Zyx FL MT). In (A) and (B) measurements are based on vinculin staining with an anti-vinculin
antibody and were first averaged per cell, barplots represent means + S.E.M. of these values. For quantifications in A and B at least 25 cells and >1500 FAs
per condition were analyzed. (C) Time-course panels representing different stages of FA lifecycle followed using mEmerald paxillin: FA de novo birth (upper
panels), FA disassembly (middle panels), and stable FA existing throughout the observation time period (lower panels). Despite of having long lifetimes,
these FAs can shift position and substantially change their phenotype. (D) Histogram representing the distribution of FA lifetimes in the presence of DsRed
(Control), Zyx FL WT-DsRed (Zyx FL WT) or Zyx FL MT-DsRed (Zyx FL MT). 1023, 1618 and 1006 tracks accordingly were considered (see Materials and
methods for details). (E) Fraction number of stable FAs (25, 65 and 51 tracks for Control, Zyx FL WT and Zyx FL MT respectively) presented as fractions
relative to the average number of FAs per time frame. For quantifications in (D) and (E) at least 10 cells and >1000 FAs per condition were analyzed.
*P<0.05, **P<0.01, ***P<0.0001, only significant differences are indicated.

doi:10.1371/journal.pone.0140511.g008

only a small population (<10%) was stable during the whole acquisition period (Fig 8E). We
considered FAs as being stable, when they were present at the start of the acquisition and
existed throughout the observation period. Expression of Zyx FL WT or Zyx FL MT into
zyxin-null fibroblasts led to an increase of the number of stable FAs (Fig 8E). The distribution
of FA lifetimes in the dynamic FA population shows that Zyx FL WT and Zyx FL MT increased
the fraction of dynamic FAs with a short lifetime (1-5 min, representing ~60% of total and
~70% in zyxin-expressing cells) while decreasing the fractions of dynamic FAs with longer life-
times (Fig 8D). Overall, no statistically significant differences were identified between Zyx FL
WT and Zyx FL MT. Thus, the expression of both Zyx FL WT and Zyx FL MT decreased the
FA lifetime in comparison to control cells. These data suggest that zyxin promotes turnover of
dynamic FAs, but does so independently of Tes.

As both zyxin and Tes have been proposed to regulate the actin cytoskeleton, we chose to
investigate the turnover of mCherry-actin in the presence of Zyx FL WT-GFP or Zyx FL
MT-GEFP. The slow turnover of actin (longer acquisition times) and the highly dynamic nature
of the actin cytoskeleton translated into FAs which were significantly moving and/or were
undergoing assembly/disassembly processes during the acquisition time, rendered the evalua-
tion difficult. We used the zyxin constructs as markers to track this FA movement. FAs under-
going notable assembly/disassembly processes during the acquisition (~70%) were not selected
for evaluation resulting in a low number of usable acquisitions. No statistically significant dif-
ference between the turnover rates of mCherry-actin in the presence of Zyx FL WT or Zyx FL
MT were determined (S3 Fig).

The interaction between zyxin and Tes influences cell spreading

As Tes and zyxin have both been shown to play a role in cell spreading, we wanted to assess the
importance of their interaction in the regulation of this process. We analyzed this by compar-
ing cell areas of zyxin-null fibroblasts transfected with Zyx FL WT-GFP or with Zyx FL
MT-GFP. Resuspended cells were plated onto coverslips coated with fibronectin and allowed
to adhere either for 15, 30, 60 or 240 minutes. During cell spreading, both zyxin variants local-
ized to FAs and to a lesser extent to stress fibers. Quantitative analysis of the time points 15,
30 and 60 minutes revealed that cells expressing constructs Zyx FL WT or Zyx FL MT, dis-
played a smaller cell surface compared to control cells. Additionally, the expression of the Zyx
FL MT construct in zyxin-null fibroblasts, further altered their spreading on fibronectin at the
60 minutes time point (Fig 9). Indeed, Zyx FL MT cells showed a decrease of the average sur-
face as compared to cells expressing Zyx FL WT, indicating that the cells expressing Zyx FL
MT were impaired in their spreading ability to a stronger extent than Zyx FL WT expressing
cells. At a later time point (240 minutes) statistically relevant differences between the three
conditions were no longer observed (Fig 9B). These results indicate that zyxin affects cell
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Fig 9. Tes interaction with zyxin affects cell spreading. Zyxin-null fibroblasts were transfected with GFP (Control), Zyx FL WT-GFP or Zyx FL MT-GFP.
Spreading assays were performed as described in Materials and methods. Cell surfaces of individual transfected cells were determined 15 min, 30 min, 60 min,
and 240 min after plating on fibronectin (20 pg/ml). Bar plots correspond to the means + S.E.M. of 3 independent experiments. ** P<0.01, *** P<0.0001, only
significant differences are indicated.

doi:10.1371/journal.pone.0140511.g009

spreading, and that the interaction between Tes and zyxin appears transiently involved in the
process of cell spreading.
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Discussion

In this study we have delineated the Tes binding site within zyxin to a sequence comprising
zyxin residues 51-63 and we have shown that mutating the amino acids VGEI contained in
this region was sufficient to abolish the interaction. Analysis of the variant Zyx FL MT in cells
revealed that zyxin influences FA dynamics independently of Tes suggesting that zyxin acts
upstream of Tes. Nevertheless, we have shown that the interaction between zyxin and Tes is
functional since it enhances recruitment of Tes to FAs and it promotes the kinetics of cell
spreading.

Identification of the Tes binding site in zyxin

The binding site of zyxin within Tes has previously been described [20], and corresponds to
the first LIM domain of Tes. To determine the complementary binding site of Tes in zyxin, we
combined ectopic recruitment and GST pull-down experiments and we showed that the first
LIM domain of Tes is capable of interacting with residues 51-63 of zyxin. Moreover, mutation
of the four conserved amino acids VGEI within this region in full-length zyxin abolished Tes
binding, indicating that the VGEI sequence is crucial for the interaction. Our results illustrate
that the binding site comprised within residues 51-63 is necessary and sufficient to bind Tes.
The sequence seems to be unique to zyxin, as sequence alignments did not identify it in other
eukaryotic proteins including the closest zyxin homolog, lipoma preferred partner (LPP). The
binding site of Tes in zyxin is located between the binding sites of a-actinin and Ena/VASP
proteins [16]. Indeed, the binding sites of Tes and Ena/VASP proteins are adjacent, as the
VGEI motif and the first FPPPP motif are only separated by 7 amino acids, while the distance
between the binding sites for o-actinin (first 50 residues) and for Tes is similarly small. Fur-
thermore, Tes has been described to interact with VASP and Mena through its LIM domains
and with a-actinin through its N-terminal region (residues 1-234) [20, 24]. Given that the
three binding sites in zyxin are in such close proximity, it raises the interesting possibility that
these proteins could interact with each other and perhaps form various supramolecular com-
plexes active in FAs. However this question remains to be elucidated.

Zyxin and Tes at focal adhesions, who is influencing who?

Our new observation of zyxin-independent recruitment of Tes to FAs and the potential exis-
tence of different ternary or quaternary complexes containing zyxin and Tes obviously compli-
cates the interpretation on the measured dynamic properties of zyxin and Tes and their
interplay at FAs.

Whereas zyxin does not influences Tes expression levels (and vice-versa), zyxin positively
affects Tes quantities in FAs as disruption of their interaction reduces the amount of Tes by
twofold. The recovery halftime of Tes, measured by FRAP, was significantly higher in the pres-
ence of Zyx FL WT as compared to Zyx FL MT (Fig 7D and 7E). Combined these findings indi-
cate that zyxin can stabilize Tes in FAs. In the presence of Zyx FL MT, the enhanced Tes
turnover rates could result solely from the zyxin-independent recruitment whereas the recov-
ery curves in the presence of Zyx FL WT could represent the turnovers of two Tes populations.
Thus, it may well be that the bleached Tes molecules exchange more slowly in a scaffolding
interaction with zyxin, whereas in the case of zyxin-independent recruitment the kinetics of
Tes appear to be faster. Obviously, the differences in t,,-values of Tes reflect differences in the
molecular context of the scaffolds recruiting Tes. It is known that FAs correspond to complex
protein networks with a large number of possible interactions [30] that may change composi-
tion upon maturation [31].
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The FRAP recovery halftimes of Tes (average 13.5 seconds) and zyxin (average 4.8 seconds)
seen in time-lapse imaging are typical for FA proteins [32, 33]. The different values make a sce-
nario where zyxin-Tes complexes dissociate from or assemble to a FA as a single complex
unlikely. In FRAP experiments a slower recovery usually implicates a lower k¢ Because zyxin
recruits Tes, it is therefore somewhat surprising that the exchange of zyxin at FAs is faster than
that of Tes suggesting that they have different dissociation rates and that upon zyxin dissocia-
tion from the FA it leaves Tes behind. Tes has then to be stabilized by other interactions at FAs
and this is consistent with our proposal that (different) zyxin-Tes containing higher order
structures in FAs might exist as mentioned above. This does not exclude a scenario in which
the zyxin-associated population of Tes (in part) associates with the protein that recruits Tes
independently from zyxin, prior to Tes dissociation from FAs.

Tes also appears to contribute to zyxin turnover. Determination of zyxin turnover rates by
FRAP revealed that a lack of interaction with Tes resulted in a more narrow distribution of ¢,
values. It appears that lack of interaction with Tes makes the zyxin behavior with respect to
turnover more uniform suggesting more heterogeneity in behavior when Tes is bound to zyxin.
This could again involve the formation of different supramolecular complexes on zyxin that
directly affect in a positive or negative manner the turnover rates of zyxin.

Zyxin influences FA properties independently of Tes

Roles for Tes and zyxin in the regulation of the actin cytoskeleton have been previously docu-
mented [16-18, 22]. To determine if the interaction between both proteins influences FAs, we
probed the effect of a loss of their interaction on the properties of FAs. In zyxin-null cells
expression of Zyx FL WT did not result in a difference in the average FA size, but the number
of FAs was enhanced. Furthermore, actin quantities in FAs were enhanced in the presence of
zyxin. Results obtained with wild-type and mutant zyxin, however, were not statistically differ-
ent suggesting that this effect is independent of Tes. Similarly, overexpression and knockdown
experiments in zyxin-null fibroblasts showed that Tes is capable of regulating FA numbers
independently of zyxin. Therefore it seems that Tes and zyxin act, at least partially, indepen-
dently to influence FA numbers in zyxin-null fibroblasts. Additional analysis of FA lifetimes
revealed that wild-type and mutant zyxin both decreased average FA lifetimes by enhancing
the number of FAs with a short lifetime. In parallel, wild-type and mutant zyxin enhanced the
number of FAs that were stable throughout the 60 minutes observation time. Although this
may at first appear contradictory, it may reflect a different effect of zyxin during nascent and
mature adhesion formation. Indeed these separate effects of zyxin can reflect the high heteroge-
neity of FAs. The molecular constitution and morphology of FAs will vary over time as they
undergo assembly, disassembly and maturation processes [1, 34, 35]. From our analysis, it
appears however that the zyxin-Tes interaction is not involved in this and/or that the effects of
disrupting the zyxin-Tes interaction are too subtle to be measured with our approach.

Zyxin-Tes interaction influences cell spreading

Zyxin and Tes have each been described to play a role in cell spreading. Overexpression of Tes
has been reported to lead to an increase of the initial cell spreading rate in rat fibroblasts and
chicken embryonic fibroblasts, while not affecting the cell surface after spreading. Melanoma
cells in which zyxin is upregulated were more spread [36] while the spreading rate on fibronec-
tin was reduced in epithelial cells where zyxin mislocalization was induced by a peptide inhibi-
tor [12]. Furthermore, a knockdown of zyxin has been reported to slow down the spreading
rate of MDCK cells on E-cadherin [37]. To investigate if zyxin and Tes cooperate during cell
spreading, we performed spreading assays involving Zyx FL WT and Zyx FL MT. To our

PLOS ONE | DOI:10.1371/journal.pone.0140511 October 28, 2015 22/27



@’PLOS ‘ ONE

Interaction of Zyxin with Tes

surprise cells expressing Zyx FL WT presented smaller surfaces at the time points 15 min and
30 min than control cells while after 60 min reintroduction of Zyx FL WT did not affect the
spreading rate of zyxin-null fibroblasts on fibronectin. These results contrast with previous
findings obtained with PtK2 epithelial cells and microvascular smooth muscle cells [8, 12]
showing that zyxin promotes cell spreading. One possible explanation is that the effect is cell
type dependent. This is not without precedence as different cell lines have been shown to
spread differently on the same surface [38]. Furthermore, whereas zyxin has been shown to
promote cell spreading, it has also been shown to inhibit cell adhesion [8]. As the processes of
cell adhesion and cell spreading are closely linked and cells transition from the process of cell
adhesion to the processes of cell spreading, the reduced cell surface at the time points 15 and
30 min could be the result of a delayed start of the spreading mechanism due to an inhibition
of the cell adhesion process by the reintroduction of zyxin. Another likely possibility is that
zyxin is not the sole determinant of the spreading rate. Indeed our results with Zyx FL MT
show that a lack of interaction between zyxin and Tes reduces the spreading rate of zyxin-null
fibroblasts after 60 minutes, while after 15 and 30 min and 4 hours no difference could be
determined, indicating that Tes and zyxin interact to regulate an intermediate phase of cell
spreading. The mechanism by which Zyx FL MT decreases the cell spreading rate remains to
be clarified. A possibility is that a lack of interaction between Tes and zyxin leads to the recruit-
ment of another partner which negatively impacts cell spreading. Indeed different pathways
and proteins which inhibit cell spreading have already been described [39-42]. Of particular
interest, Nishiya and colleagues described that Hic-5 inhibits integrin-mediated cell spreading
of NIH 3T3 cells on fibronectin by competing with paxillin for FAK. A similar mechanism
could account for the observation regarding our effects of zyxin and Tes on spreading. Drees
et al. demonstrated that a perturbation of the interaction between zyxin and members of the
Ena/V ASP family similarly reduces cell spreading on fibronectin [16]. Mena and VASP have
also been shown to interact with Tes and, given that the Tes binding site is adjacent to FPPPP-
motifs in zyxin, these proteins may exist in one complex in FAs as has been proposed before
[20, 21]. Taken together, this protein complex may participate in the regulation of cell spread-
ing and the elimination of one partner from the complex may reduce the cell spreading rate.
In summary, our findings identify the interaction site of Tes in zyxin which is located
between the a-actinin and the VASP binding sites. We show that zyxin recruits Tes to FAs
although in fibroblasts there appears to be a portion of Tes molecules that localize to FAs inde-
pendently of zyxin. Furthermore, our data also imply that through their interaction at FAs,
zyxin and Tes act together to regulate cell spreading and that zyxin influences FA dynamics.

Supporting Information

S1 Fig. VASP and a-actinin are still recruited by zyxin variants lacking the VGEI motif. A)
Schematic representation of the first 140 amino acids of Zyxin containing the o-actinin (AcBS,
green) and VASP (FPPPP, red) binding sites as well as the VGEI motif (VGEI, yellow). B)
Zyxin-null fibroblasts transfected with Zyx FL WT -mito and Zyx FL MT- mito. Zyxin-mito
constructs were labelled with a rabbit anti-zyxin mAb, VASP with a mouse anti-VASP mAb
and o-actinin with a mouse anti-ai-actinin mAb. Zyx FL WT -mito as well as Zyx FL MT -mito
recruited VASP and o-actinin to the surface of mitochondria. Scale bar: 50 um.

(TIF)

S2 Fig. Variation of Tes levels do not affect zyxin levels and vice versa. (A) Representative

Western blot analysis and quantification of the expression of endogenous zyxin or endogenous
Tes in MEF cells transfected with control siRNA (control), siRNA against Tes (siRNA Tes), or
siRNA against zyxin (siRNA Zyx). GADPDH was used as a loading control. The graphs on the
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side of each blot show the respective quantification of proteins levels after normalization to
GAPDH signal (n = 3) (B) Representative Western blot analysis and quantification of the
expression of endogenous zyxin or endogenous Tes in MEF cells transfected with GFP, Tes
FL-GFP, or Zyx FL WT-GFP. GAPDH was used as a loading control. The graphs on the side of
each blot show the respective quantification of proteins levels after normalization to GAPDH
signal (n = 3). For (A) and (B), data represent the mean of three independent experiments;
error bars indicate S.E.M.

(TIF)

S3 Fig. Loss of interaction between zyxin and Tes does not have a significant effect on the
measured actin kinetics at FAs. (A) Normalized and averaged mCherry-actin recovery curves
in presence of Zyx FL WT-GFP (Zyx FL WT) or Zyx FL MT-GFP (Zyx FL MT) obtained from
three independent experiments (in total 17 acquisitions in case of Zyx FL WT and 15 acquisi-
tions in case of Zyx FL MT). Only two conditions were compared in this experiment, because
zyxin signal was used to segment the bleached FAs and track their positions during the recov-
ery time-course (see Materials and Methods section of the manuscript for the details). (B)
Halftimes of individual mCherry-actin FRAP recoveries are represented as Box-and-Whisker
plots overlaid with data points. Thin lines inside boxes represent mean halftime values.
Although we did not identify statistically significant differences for the recovery halftimes (the
Mann-Whitney U test was used), it does not mean that the studied interaction has no effect on
actin kinetics. Importantly, we were able to acquire representative recoveries only for relatively
long-living FAs, which do not represent the majority of FA population (see Fig 8D in the main
text). FAs which underwent noticable assembly or disassembly processes during the recovery
acquisition were discarded from the analysis. (C) Histograms indicate the fluorescence intensi-
ties of actin. For all quantifications at least 25 cells and >1500 FAs per condition were ana-
lyzed. Error bars indicate S.E.M. *P<0.05,"**P<0.0001.

(TIF)

S4 Fig. Variation of Tes levels influence the number of FAs independently of zyxin. (A)
Average number of FAs per um?2 of cell area in the presence of GFP (Control), or Tes FL-GFP
(Tes FL). (B) Average number of FA per um2 of cell area in the presence of control siRNA
(Control) and siRNA directed against Tes (siRNA Tes). In (A) and (B) measurements are
based on vinculin staining with an anti-vinculin antibody and were first averaged per cell. For
quantifications in A and B at least 25 cells and >1500 FAs per condition were analyzed. Bar-
plots represent means + S.E.M. of these values. “P<0.05,"*P<0.005.

(TIF)
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