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Abstract
New polyanionic modifications of polyamide nucleic acid mimics were obtained. Thymine

decamers were synthesized from respective chiral α- and γ-monomers, and their enantio-

meric purity was assessed. Here, we present the decamer synthesis, purification and char-

acterization by MALDI-TOF mass spectrometry and an investigation of the hybridization

properties of the decamers. We show that the modified γ-S-carboxyethyl-T10 PNA forms a

stable triplex with polyadenine DNA.

Introduction
Among the various agents that are capable of antigen- and antisense action [1], artificial bio-
polymers, particularly peptide nucleic acids (PNAs) [2], occupy a special place. A structural
unit of PNAs is the N-(2-aminoethyl)-glycine (aeg) fragment with a nucleic heterocyclic base
attached via the acetyl linker. This structure, on the one hand, allows an effective recognition of
complementary sequences by nucleic bases [3] due to “restrained flexibility” [4] and, on the
other hand, makes aeg-PNAs resistant to protease- and nuclease-mediated degradation due to
non-natural bonds [5].

The properties of aeg-PNAs are well studied. Upon interaction with ss- nucleic acid (NA)
targets (deoxyribooligonucleotides (ODNs) or ribooligonucleotides), they form very stable
anti-parallel and parallel duplexes [3], and the melting temperatures of the antiparallel
duplexes are 10 to 15°C higher than those of the parallel duplexes. High sequence selectivity
has been demonstrated for aeg-PNAs bases [3, 6], and this selectivity is markedly higher than
that found for natural oligonucleotides and their analogues. The formation of triplexes between
dsDNA and aeg-PNAs has been described [6–7]. Homopyrimidine aeg-PNAs are capable of
insertion into dsDNA with ssDNA displacement [7]. Additionally, aeg-PNAs are capable of
forming G-quadruplexes [8].
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PNAs have already been investigated for more than 20 years, and a large number of modifi-
cations that increase PNA selectivity and affinity for nucleic acid targets or facilitate intracellu-
lar PNA delivery have been described [9–11].

A number of studies have shown that the α-R- configuration [12–14], β-S- [15] and γ-S-
configurations [16–23] of the acyclic backbone are beneficial for binding; in the latter case,
accessible chiral agents, namely L-amino acids, were used as the starting compounds. A recent
paper [24] describes promising amino- PNA derivatives (aminomethyl α- and γ-PNAs), that
exhibited high target affinity and selectivity. The best results were obtained for γ-S-derivatives,
whereas α-R-derivatives were significantly less efficient, and α-S-derivatives had the lowest effi-
ciency. High target affinity has also been reported for oligomers comprising monomers with
substituents at both α- and γ- positions with coordinated configurations of the chiral centres
(α-R-, γ-S) [25]. A number of studies have focused on chiral PNAs with guanidine moieties in
the side chains [26]. Good cell membrane permeability has been demonstrated for such PNA
derivatives, and the binding efficiency of the γ-S-derivatives [22, 27–28] was superior to that of
the α-R-derivatives [28]. All of the above-mentioned studies on PNA modification have aimed
at developing new PNA-based molecular tools for fundamental genome studies and broaden-
ing the sphere of the practical applications of PNAs [29].

To solve the problems of self-aggregation and poor solubility, two scientific groups have
independently proposed phosphono-PNAs [30–32]. ODN binding affinity and selectivity of
phosphono-PNAs was inferior to that of aeg-PNAs. However, alternation of phosphono- and
aeg- monomer units in a PNA oligomer resulted in improved binding efficiency [33]. Further
improvements were achieved by the alternation of phosphono monomers and cyclic chiral 1R,
4RS-hydroxyproline-based monomers [34]. Thus, the incorporation of “stereochemically cor-
rect” units generally improved the hybridizing properties of such PNAs. Unlike aeg-PNA-syn-
thesis, the synthesis of phosphono-PNAs is more similar to that of oligonucleotides than to
that of peptides [35]. The preparation of mixed oligomers with aeg-units is therefore rather
complex [36].

For various phosphono-PNAs derivatives, efficient delivery into cells upon complexation
with lipofectamine has been demonstrated [37]. The same delivery principle has been
described for aeg-PNAs derivatives with negatively charged peptide tails [38]. It has been
shown that oligo-L-Asp-based fragments conjugated with aeg-PNAs are prone to complexa-
tion with lipofectamine, and the resulting complexes were readily transported into cells [39]. A
longer the polyasparagine tail is associated with a higher the intracellular delivery efficiency.

A number of studies have focused on the incorporation of chiral monomers based on
dicarboxylic amino acids into aeg-PNA oligomers. Nielsen et al. [13] showed that the intro-
duction of thymine α-monomers based on D-glutamic and L-asparaginic acids into the
H-GTxAGATxCACTx-NH2 aeg-PNA decamer decreased the melting temperatures (Tm) of
complexes with native oligonucleotides compared with those of the unmodified PNA/DNA
duplex. It has been found that the negatively charged modified decamers demonstrated
increased sensitivity to non-complementary nucleosides (mismatches) in the DNA strand
(ΔТm

perfect duplex–mismatch duplex = 20°C).
In a recent study conducted by Heemstra et al. [40], γ-S-carboxymethyl thymine monomers

based on L-Asp were incorporated into Nielsen’s H-GTxAGATxCACTx-NH2 aeg-PNA deca-
mer [13]. The resulting negatively charged PNA oligomers formed rather stable complexes
with NA targets (particularly RNA) at moderate and high salt concentrations. Additionally,
aeg-PNA with γ-S-carboxymethyl thymine monomers exhibited high sensitivity to mismatches
in both DNA and RNA complements [41].

In recent years, some novel types of negatively charged PNAs have been reported, the and
their charges are represented by N-alkyl-carboxyl groups in the achiral backbone [42] and
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sulfomethyl groups at the γ-positions [43]. γ-S-Sulfomethyl PNAs formed PNA2DNA triplexes
and demonstrated good lipofectamine-mediated penetration into SKBR3 cells in model
experiments.

It should be noted that all of the previous papers [13, 40, 42–43] describe PNA oligomers
with negatively charged thymine monomers exclusively (with at most 3 residues in a chain). To
summarize, the incorporation of negative charges into PNA oligomers is required to ensure
PNA solubility and compatibility with standard cationic lipofection systems, whereas for an
effective recognition of complementary NA sequences the configuration and the positions of
chiral centres in the backbone are important. It has been shown earlier that more chiral mono-
mers with the γ-S configuration is associated with a the higher NA binding efficiency [16, 23,
27]. However, no previous studies have investigated γ-chiral polyanionic NA mimics with a γ-
S-chiral centre and a negative charge in each structural unit of the oligomer.

In the present work, we outline a synthesis of homothymine polyanionic PNAs based on L-
Glu with chiral centres in the γ-S configuration (1, 2) and an investigation of their hybridiza-
tion properties with complementary oligodeoxyriboadenylate d(A)10. Additionally, this work
presents the first synthesis of a homothymine polyanionic PNA α-oligomer (3).

Results and Discussion

Synthesis of monomers and estimation of their enantiomeric purity
The synthesis of the starting monomers 4 and 5 (Fig 1C) was performed using previously
described methods [44–45], in which the key pseudopeptide intermediate was obtained via
Mitsunobu condensation [46]. In a recent work, we reported the synthesis of monomer 4 via
thymine alkylation with a bromoacetoamide precursor [47]. An alternative route for the prepa-
ration of monomer 5, in which the pseudopeptide intermediate is obtained by reductive N-
alkylation, was outlined previously [13]. The syntheses of some other γ-PNA monomers based
on dicarboxylic acids and meant for Fmoc-protocol oligomerization (L-Asp [40] and L-Glu
[48]) have also been reported. The preparation of a different type of negatively charged γ-PNA
monomers, namely the γ-sulfomethyl PNA monomers, was described previously [43] (the cor-
responding hydroxymethyl derivatives served as monomer precursors).

Because the stereochemical structure of chiral monomers in PNA oligomers impacts PNA
binding with nucleic acid targets [9], we performed enantiomeric purity tests for the starting
monomers 4 and 5 using direct and indirect chromatographic methods. The direct approaches
for assessing the enantiomeric purity of chiral PNA monomers have been described in the liter-
ature [48–49]. Known indirect approaches include preliminary derivatization of R- and S-
PNAs monomers at the C-termini with subsequent HPLC-analysis of the resulting diastereo-
meric mixtures [12–13] and derivatization of γ-chiral monomers at the N-termini with Mosher
reagents [23–24, 27] with subsequent analysis of the diastereomeric mixtures by 19F-NMR
spectroscopy. The latter indirect approach was recently used for determining the enantiomeric
purity of α- monomers [24], and the purity was shown to be sufficient for subsequent oligo-
merization. Thus, according to the literature, α- and γ- monomers do not racemize upon N-
terminal derivatization.

The direct approach used in the present work involves the synthesis of two enantiomers (in
our case, one from L-Glu (γ-S-4a) and one from D-Glu (γ-R-4b) [44]), the selection of the opti-
mal conditions for their separation on a column with a chiral sorbent and the estimation of the
enantiomeric purity in a selected system. For HPLC separation of the 4a/4bmixture, a hybrid
sorbent (silica gel with immobilized eremomycin) was chosen. This chiral selector has been
reported to possess good enantio-selectivity toward modified α- and β-amino acids and their
derivatives [50–51]. The separation of the S- and R-monomers, 4a and 4b, was relatively
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efficient under the selected conditions (Fig 2A). The target (γ-S-) thymine monomer 4a was
analysed in this system (Fig 2B), and its enantiomeric purity was estimated to be> 99%. The
same method was employed to assess the enantiomeric purity of the α-S-monomer, 5b (Fig 2C
and 2D). The results of the direct method are shown in Fig 2B and 2D. Peak area calculations
indicated that the enantiomeric purity of 5b was> 99%.

According to the results of the direct tests, both the α- and γ- monomers have sufficient
enantiomeric purity and can be used for solid-phase oligomerization without further purifica-
tion. The significant broadening and asymmetry of the HPLC peaks observed upon separation
of the enantiomer mixtures 4a/4b and 5a/5bmay be due to the existence of each enantiomer in
solution as two constrained conformers (Fig 1C). To reliably exclude the presence of substan-
tial enantiomeric impurities, we performed additional indirect tests with monomers 4 and 5.
For these tests, C-terminal diastereomers were obtained.

The enantiomers 4a/4b and 5a/5b were derivatized with the asymmetric reagent, L-IleOMe
6 (S1 Scheme) in the presence of N-ethyl-N’-(3-dimethylaminopropyl) carbodiimide (EDC)
and 3-hydroxy-1,2,3-benzotriazine-4-on (DHbtOH) to yield the respective diastereomers 7a/
7b and 8a/8b (Fig 3). The diastereomer structures were confirmed by 1H-, and 13C-NMR and
elemental analysis. Elution systems for reverse-phase HPLC separation of the diastereomer
pairs 7a/7b and 8a/8b (Fig 3A and 3C, respectively) were selected.

The enantiomeric purities of the target diastereomers 7a and 8a (Fig 3B and 3D, respec-
tively) were estimated under the selected conditions. Importantly, no significant peak broaden-
ing was observed. Although we were unable to find a system for the complete separation of the
diastereomers 7a and 7b, the system with heptane/isopropanol (88:12) provided the best sepa-
ration. The enantiomeric purity of the target SS-diastereomer 7a in this system was approxi-
mately 98%. The HPLC analysis of 8 a revealed that the portions of the SS- and RS-
diastereomers were approximately 90.1 and 9.9%, respectively, which agrees with the results of
previous studies [13].

Fig 1. Schematic representation of PNA and DNA fragments. (A) DNA fragment; (B) aeg-, γ- and α-ce-PNAs; (C) Starting thymine monomers 4 and 5 and
their conformers, which coexist in solution due to the reduced rotation along the Ntert-C(O)-bond.

doi:10.1371/journal.pone.0140468.g001
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The results of the indirect enantiomeric purity test correlate well with those of the direct test
only in the case of the γ-monomer (4), but certain racemization may have occurred upon C-
terminal derivatization of the α-monomer (5) to prevent good correlation between the two
tests. It can be concluded that the direct tests are more accurate and adequate. It is known that
α-PNA monomers have a tendency to racemize upon activation of the C-terminal carboxyl
group [52]. In this respect, these monomers are not good substrates for oligomerization. In the
case of γ-monomers, on the contrary, racemization has never been observed under standard
PNA synthesis conditions [53]. Thus, according to our data and the data reported by other
groups, γ-monomers do not exhibit a tendency to racemize in indirect tests upon derivatization
at both the N- and C-termini and are stereochemically more stable than α-derivatives. The
reproducibility of the results of direct and indirect tests for the γ-monomer 4 confirms this
conclusion.

Fig 2. Chromatographic profiles of the PNAmonomers (enantiomers). (A) Mixture of 4a and 4b (S- and R- enantiomers of the γ-monomer); (B) S-
entantiomer of the γ-monomer, 4a (Conditions: Diasphere column 110-Chirasel-E-PA, 7 μm; elution system: MeOH/CH3COOH = 96/4 (v/v); flow rate: 1 mL/
min; UV-detection at 254 nm; temperature: 20°C); (C) Mixture of 5a and 5b (R- and S-enantiomers of the α-monomer); (D) S-entantiomer of the α-monomer,
5a (Conditions: Diasphere column 110-Chirasel-E-PA, 7 μm; elution system: MeOH/CH3COOH/TEA = 100/0.1/0.1 (v/v/v); flow rate: 0.5 mL/min; UV-
detection at 254 nm; temperature: 20°C); R = CH2CH2COOBn.

doi:10.1371/journal.pone.0140468.g002
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Solid-phase oligosynthesis
Monomer 4 was used for the synthesis of oligomers 1 and 2.Monomer 5 was used for the syn-
thesis of oligomer 3. Solid-phase oligomerization was performed using a modified version of a
previously published Boc-protocol for the preparation of aeg-PNAs [53]. The resin load of 0.1–
0.2 mmol NH2-/g, the condensation reagent (HBTU), the Boc-cleavage mixture (TFA with 5%
m-cresol) and the mixture used for oligomer cleavage from the polymer support were in accor-
dance with the classical protocol. The modifications of the protocol were as follows: capping of
the amino groups was performed by treatment with Ac2O instead of Rapoport's reagent; [54] 3
(instead of 5) equivalents of the monomer were used at each condensation step; the resin was
washed with DMF/DCM instead of Py; and the coupling time was extended from 10–15 min-
utes to 2 hours.

The thymine oligomer 1 was synthesized on a MBHA-resin using the manual device for
solid-phase peptide synthesis (S2 Scheme,). Final deblocking and cleavage of decamer 1 from
the polymeric support were performed by the standard «low-high» TfOH method, [55] which
includes treating the loaded resin with solutions of various trifluoromethanesulfonic acid
(TfOH) contents for 1 hour at 0°C (the «low» solution (A): TFA−m-cresol:DMS:TfOH,
11:2:6:1, v/v/v/v; the «high» solution (B): TfOH:TFA:m-cresol, 1:8:1, v/v/v). The yield of deca-
mer 1 was 0.7%. The yield of decamer 2 was too low under such conditions; therefore, we intro-
duced several changes into the standard protocol. A glycine spacer between the resin and the

Fig 3. Chromatographic profiles of the PNAmonomer derivatives (diastereomers). (A) Mixture of diastereomers 7a and 7b; (B) Diastereomer 7a
(Conditions: Luna column, 5 μm, CN 100A, elution system: heptane/isopropanol (88/12), flow rate: 1 mL/min); (C) Mixture of diastereomers 8a and 8b; (D)
Diastereomer 8a (Conditions: Separon SGX RP-S C18 column, 5 μm, 4x150 mm, elution system: acetonitrile/water (1/1), flow rate: 1 mL/min); R =
-CH2CH2COOBn.

doi:10.1371/journal.pone.0140468.g003
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growing PNA chain was used in the case of decamer 2. The deblocking and cleavage of deca-
mer 2 from the support were performed by a previously described method [47]: the resin was
pre-cooled to -30°C and then treated with a mixture containing triisopropylsilane (TIS)—TFA:
TfOH:TIS (3:1:0.1, v/v/v)—for 1 h at 0°C. Decamer 2 was obtained at a yield of 5.4%.

The α-decamer (3) was obtained as a reference oligomer. Different methods were employed
for its deblocking and cleavage. Resin treatment with “low” and “high” TfOH solutions for 1 h
at 0°C resulted in complete degradation of the target oligomer according to MALDI-MS data.
Decreasing the deblocking and cleavage times from 1 hour to 15 and 20 minutes, respectively,
allowed us to obtain decamer 3 at a yield of 0.2%, but incomplete cleavage from the support
under such conditions is very likely. Resin treatment with a mixture containing triethylsilane
(TES)—TFA:TfOH:TES (3:1:0.1, v/v/v)—[56] lead to an insignificant increase in the yield of
decamer 3 (0.9%). The maximum yield (2.3%) was obtained upon cleavage with the TFA:
TfOH:TIS mixture (3:1:0.1, v/v/v, 1 hr, 0°C) [47].

Oligomers 1, 2 and 3 were purified by reverse-phase HPLC, and their structures were con-
firmed by MALDI-MS (S1, S2 and S3 Figs).

Because the starting γ-monomer 4 is stereochemically more stable, its oligomerization
results in optically pure products, whereas in the case of the α–monomer (5) partial racemiza-
tion during the solid-phase synthesis is possible. To overcome this general problem of α-PNA
derivatives, a sub-monomeric approach has been proposed [57–58]; in this approach, carboxy-
methylated derivatives of the heterocycles are condensed with the pseudopeptide derivative
immobilized on the solid phase. Unfortunately, this approach is inapplicable in the case of L-
Glu-based monomers 4 and 5. (Monomolecular cyclization of the pseudopeptides would pri-
marily occur instead of the acylation of the secondary amino groups in the respective pseudo-
peptides with the carboxymethylated heterocycles [59]).

In the early studies on the preparation of α-oligomers, which preceded the emergence of the
sub-monomeric approach, the enantiomeric purity of the original monomers (α-S- and α-R) was
~ 90% according to the results of C-terminal derivatization tests [13]. Despite the relatively low
purity of the monomers, those studies convincingly demonstrated that the configuration of the
chiral centres determines the hybridization properties of α-oligomers to a significant extent.

Thus,γ-derivatives are preferable to α-analogues in terms of the solid-phase synthesis effi-
ciency and the stereochemical stability of the oligomers.

Hybridization of homothymine ce-PNAs with a homoadenine DNA
strand
The hybridization properties of γ- and α-thymine PNA decamers (1 and 3) were studied by
physicochemical methods. Natural oligonucleotides that were complementary (dA10) and iso-
sequential (T10) to α- and γ- PNAs were obtained. Their synthesis, purification and MAL-
DI-MS analysis were performed as described previously [60]. The thermal difference spectra
(TDS) from the subtraction of the 15°C spectrum from the 90°C spectrum, CD spectra and
UV-melting profiles of the PNA/DNA complexes (Fig 4) were compared with those of the iso-
sequential DNA duplex (dT10/dA10). The TDS data (Fig 4A) suggested that γ-PNA (1) may
form either a duplex with increased stability (high TDS amplitude at 260 nm) or a triplex with
dA10, but the α-PNA (3)/dA10 complex, if present, was relatively unstable. The TDS curve
shapes of both γ-PNA (1)/dA10 and α-PNA (3)/dA10 were rather similar to that of the DNA
duplex. However the slight bathochromic shift indicates the presence of PNA2dA10 triplexes
[61].

The UV-melting data (Fig 4B) also indicate the formation of an extremely stable γ-PNA/
dA10 complex (Tm

γ-PNA/dA10>80°C; Tm
dT10/dA10 = 25 ± 1°C) [62]. The melting profile of
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α-PNA/dA10 bears no resemblance to a sigma curve, which may be due to the presence of
high-order PNA/DNA structures, their non-cooperative melting or PNA self-aggregation.
Decreasing the PNA/DNA or salt concentration up to 5 fold did not change the shape of the α-
PNA/dA10 melting profile; therefore, it is unlikely that the complex is extremely stable. The CD
spectra of the single-stranded PNAs (Fig 4C) are relatively similar to that of dT10 in the 244–
300 nm wavelength range with the exception of having a decreased amplitude and presenting a
hypochromic shift of a negative band. CD spectra of the PNA/dA10 complexes (Fig 4C) are
substantially different from that of dT10/dA10, suggesting large differences in geometry or stoi-
chiometry. We prepared a J-plot to clarify the stoichiometry of the γ-ce-H-(T10)-Gly-NH2 (2)/
dA10 complex, as shown in Fig 5A, 5B and 5C. According to the J-Plot results, the PNA:DNA
ratio in this extremely stable complex is in the range of 65:35 to 70:30. Therefore, the complex
appears to be a PNA:DNA:PNA triplex. This finding agrees with the shape of the CD spectrum
of (γ-PNA)2dA10 (Fig 5D) because the negative band at approximately 210 nm is characteristic
of triple helices [63].

The formation of the (γ-PNA)2dA10 triplex agrees with the data presented in the literature.
Analogous PNA2DNA triplexes have been reported for homopyrimidine aeg-PNA [6] and
homothymine chimeric phosphono-PNAs/aeg-PNAs [33]. In a recent paper on homopyrimi-
dine decamers containing aeg-monomers and thymine monomers with a sulfomethyl substitu-
ent at the γ-position, similar triplexes has also been described [43]. The relative orientation of

Fig 4. UV-melting and CD spectra of PNA/DNA and DNA/DNA complexes. (A) Thermal difference spectra of the complexes; (B) Thermal denaturation
profiles of the complexes; (C) CD spectra of the single-stranded oligonucleotides and PNAs. The molar ellipticity was calculated per 1 nucleotide. (D) CD
spectra of the complexes. Conditions: 10 mMNa2HPO4 (pH 7.4), 140 mM KCl, 5 mMMgCl2. The concentration of each PNA or oligonucleotide was 2.5 μM.
The CD spectra were measured at 15°C.

doi:10.1371/journal.pone.0140468.g004
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the PNA strands in such complexes has not been unambiguously demonstrated. In DNA
homopyrimidine2homopurine triplexes [64], the homopyrimidine strands are antiparallel. We
hypothesize that this also is likely the case with our (γ-PNA)2dA10 triplex, considering its
remarkable stability. (A higher stability is characteristic of PNA2DNA triplexes that have the
Watson–Crick PNA strand in the antiparallel orientation and the Hoogsteen strand in the par-
allel orientation to the DNA strand [65]).

The sequence-specificity of triplex formation, which is the key aspect in the context of anti-
gen action, was studied. The sensitivity of our γ-PNA decamer to mismatches in a target ODN
(S4 Fig) appears to be at least comparable with the sensitivities of homothymine aeg-PNA [6]
and homothymine chimeric phosphono-PNA [33], although we were unable to estimate the
sensitivity of γ-PNA accurately because of the extreme stability of the (γ-PNA)2dA10 triplex
(even at relatively low ionic strength its Tm was> 80°C).

The stability of our (γ-ce-T10-PNAs)2d(A10) triplex is close to that described for aeg-PNAs
[6], which suggests that carboxymethyl groups in a fully charged γ-oligomer do not hamper
binding with an ODN target. At the same time, these negatively charged groups ensure PNA
compatibility with the conditions required for targeting genomic DNA in culture and poten-
tially in vivo (i.e., for PNA-mediated genome editing [66–68] or for gene expression regulation
[69–70]). While unmodified aeg-PNAs bind DNAmost efficiently at low salt concentrations
[71], the new polyanionic PNAs work well at both moderate and low ionic strength.

Conclusions
This study demonstrates the first synthesis of three L-Glu-based polyanionic nucleic acid mim-
ics. The steric structures of the new PNA oligomers were predetermined using chiral α- and γ-

Fig 5. J-Plots and CD spectra of γ-ce-H-(T10)-Gly-NH2 (2)/dA10. (A) Absorbance of the γ-ce-H-(T10)-Gly-OH (2)/dA10 mixtures with various PNA/DNA
ratios at 260 nm; (B) Absorbance of the mixtures at 275 nm; (C) Molar ellipticity at 263 nm. Conditions: 10 mM Na2HPO4 (pH 7.4), 140 mM KCl, 5 mMMgCl2.
The summed PNA and DNA concentration was 7 μM at each ratio; (D) CD spectra of the triplex. The molar ellipticity is given per 1 nucleotide in a strand.
Conditions: 10 mMNa2HPO4 (pH 5 or 7.4), 140 mM KCl, 5 mMMgCl2. The triplex concentration was 1.8 μM.

doi:10.1371/journal.pone.0140468.g005
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monomers. The synthesis and purification of the polyanionic PNAs as well as their physico-
chemical characteristics (particularly, their hybridization affinities toward complementary
DNA) were described for α- and γ-thymine decamers.

The results of the hybridization studies suggest that α-ce-T10-PNAs are not prone to form-
ing stable complexes with DNA and that γ-ce-T10-PNAs can form triplexes with high thermo-
dynamic stability, similarly to classical aeg-PNAs [6]. Our findings indicate the advantages of
γ-ce-PNAs over α-ce-PNAs with respect to complexation with DNA, efficiency of solid-phase
synthesis and stereochemical purity of the oligomers. Importantly, our results also suggest that
the preorganization of the PNA backbone, which is dependent on the positions and configura-
tions of the chiral centres, may be more significant for molecular recognition than the presence
of charged side residues.

In conclusion, it should be noted that further studies of the negatively charged PNAs would
require optimization of the solid-phase synthetic protocols. For a more detailed analysis of
such compounds, mixed-sequence polyanionic PNAs (i.e., containing different heterocyclic
bases) need to be obtained.

Materials and Methods
The following reagents were used: L-H-IleOMe, EDC•HCl, TFA, DMS, TfOH, (Aldrich, USA);
HBTU, MBHA-resin (polystyrene resin (4-metylbenzhydryl) amino containing 1% divinylben-
zene; 0.5–0.7 mmol/g), acetic anhydride, glacial acetic acid,m-cresol, (Acros, USA); DIEA, pyr-
idine (Lancaster, UK); water (Sigma LC-MS, USA); acetonitrile (for spectroscopy, Merck,
Germany); DMF, ethanol, methanol, methylene chloride, diethyl ether, ethyl acetate, isopropa-
nol, heptane, P2O5, EDTA, potassium hydrosulphate, sodium hydrocarbonate, sodium sul-
phate, ammonium acetate, chloroform-d1, sodium chloride, potassium chloride, MgCl2•6H2O,
NaH2PO4•2H2O and Na2HPO4•12H2O.

The following solvents were purified before use: dichloromethane for solid-phase synthesis
(washed twice with saturated NaHCO3 and twice with water, dried over CaCl2 and distilled
over P2O5), ethanol (refluxed with magnesium shavings in the presence of iodine crystals and
then distilled), DMF for solid-phase synthesis (maintained over 4-Å molecular sieves for 7
days and distilled over phthalic anhydride in vacuo), DIEA (distilled once over ninhydrin and
then over KOH), diethyl ether (distilled twice over KOH and, immediately before the reaction,
over LiAlH4), pyridine (distilled once over ninhydrin and then over KOH), acetonitrile
(refluxed over P2O5 for 2 h and then distilled over P2O5), triethylamine (distilled over KOH),
acetic anhydride (distilled in vacuo), trifluoroacetic acid (distilled under atmospheric pressure),
trifluoromethanesulfonic (distilled in vacuo),m-cresol (distilled in vacuo), and phenol (dis-
tilled in vacuo).

Natural oligonucleotides that were complementary (50-(dA)10−30 and analogues with mis-
matches) and isosequential (50-(dT)10−30) to α- and γ- PNAs were synthesized, purified and
characterized using MALDI-TOF MS, as described previously [60]. Prior to solid-phase PNA
synthesis, the MBHA-resin was prepared as follows: resin was soaked in methylene chloride
for 30 minutes and washed with methylene chloride (20 mL/g resin) in a funnel until a clear
line of separation appeared. The solvent was then filtered, and the resin was dried under vac-
uum (oil pump vacuum) and washed on the filter with 5% DIEA in DCM (2x20 mL/g resin)
and DCM (2x20 mL/g resin). The solvent was filtered, the resin was dried under vacuum and
the number of amino groups on the resin was determined using the quantitative Kaiser test
(0.62 mmol-NH2/g) [72].

Column chromatography was performed using Merck silica gel 60 (0.040–0.063 mm) with
eluents as described below. Thin-layer chromatography (TLC) was performed using Merck
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silica gel plates 60 F254. The TLC spots were visualized under UV light (254 nm), stained with
0.5% ninhydrin solution in ethanol or with a solution of Ce(SO4)2 and phosphomolybdic acid
in 10% aqueous H2SO4 and heated. The solvents were removed via rotary evaporation under
reduced pressure (15 mmHg). The compounds were dried in vacuo (2 mmHg).

The NMR spectra were obtained using a Bruker DPX-300 spectrometer. The chemical shifts
are given in parts per million (ppm) relative to the signal of the internal standard (tetramethyl-
silane). The coupling constants are reported in Hertz. The abbreviations used for describing
signal multiplicity in the 1H-NMR-spectra are the following: s—singlet, d—doublet, dd–double
doublet, t–triplet, q—quartet, m—multiplet.

HPLC conditions for separating enantiomers and diastereomers
The HPLC data were analysed using MicroCal (TM) Origin Version 6.0 (Serial Number
G73S4-9478-7000000).

HPLC analysis and purification of decamers 1, 2 and 3
Analytical HPLC of the PNA oligomers 1, 2 and 3 (see A, B and C, respectively) was performed as
follows: (A) A Nucleosil C18 (4.6×250 mm; 5 μm) column was used in an Agilent 1100 chroma-
tography system. Buffer A: 0.1 M AcNH4 in water; buffer B: 0.1 M AcNH4 in 50% acetonitrile; the
gradient of buffer B was 2–12% (linear) over 30 min at a flow rate of 0.85 mL/min, and the eluent
was monitored at 260 nm. Temperature: 45°C. (B) A Nucleosil C18 (4.6×250 mm; 5 μm) column
was used in an Agilent 1100 chromatography system. Buffer A: 0.1 M AcNH4 in water; buffer B:
0.1 M AcNH4 in 50% acetonitrile; the gradient of buffer B was 5–14% (linear) over 25 min at a
flow rate of 0.85 mL/min, and the eluent was monitored at 260 nm. Temperature: 45°C. (C) A
Nucleosil C18 (4.6×250 mm, 5 μm) column was used in an Agilent 1100 chromatography system.
Buffer A: 0.1 M AcNH4 in water. Buffer B: 0.1 M AcNH4 in 50% acetonitrile. The gradient of
buffer B was 4–20% (linear) over 25 min at a flow rate of 0.85 mL/min, and the eluent was moni-
tored at 260 nm. Temperature: 45°C.

The molecular weight of each oligomer was determined through MALDI-TOF MS analysis.
The spectra were recorded using a MALDI-TOF MicroFlex mass spectrometer (Bruker, Ger-
many) in the reflectron mode with the detection of positive ions and an acceleration voltage
of +20 kV. For all mass spectrometry experiments, recrystallised α-cyano-4-hydroxycinnamic
acid (Fluka, USA) was used as the MALDI matrix at a concentration of 25 mM in 50% water/
acetonitrile and 0.1% TFA. The matrix and sample were mixed at a 1:1 (v/v) ratio prior to spot-
ting. A total volume of 0.6 μL of the analyte/matrix mixture was deposited for each spot and air
dried. A summary spectrum from 200 laser shots was accumulated for every PNA oligomer
with the laser intensity was maintained slightly above the ionization threshold.

Benzyl ester of (S) 4-((1S, 2R)-1-(methoxycarbonyl)-
2-methylbutylcarbamoyl)-4-(2-(N-tert-butyloxycarbonyl)aminoethyl
(thymine-1-acetyl))butyric acid (7a)
Monomer 4a 97 mg (0.178 mmol) was dissolved in 10 mL of DMF, and 44 mg (0.231mmol)
of EDC�HCl was added. After 30 min, 32 mg (0.178 mmol) of HCl�L-Ile-OMe (6), 31 mg
(0.231 mmol) of DhbtOH and 0.1 mL (0.445 mmol) of TEA were added to the reaction mix-
ture. The mixture was stirred overnight, and then the solvent was evaporated under vacuum.
Brine (10 mL) and ethyl acetate were added to the dry residue, and the mixture was extracted
with ethyl acetate (2×10 mL). Combined organic fractions were washed with 3 mL of 0.1 M
KHSO4, NaHCO3 (1×5 mL) and brine (1×5 mL), dried over Na2SO4 and concentrated. The
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residue was dried under high vacuum. TLC and column chromatography were performed
in ethyl acetate. Compound 7a was obtained at 45% yield (54 mg). Rf: 0.46;

1H-NMR
(CDCl3): δ = 9.09, 9.04 (1H, 2s, -NHThy); 7.55–7.28 (5H, m, -Ph); 7.24–7.17, 7.12–7.07
(1H, 2d, J = 7.8 and 8.1 Hz, -C = O-NH(Ile)); 7.00, 6.90 (1H, 2s, C6HThy); 5.80–5.73, 5.72–
5.65 (1H, 2t, J = 6.0 and 4.1 Hz, BocNH-); 5.15, 5.11 (2H, 2s, -COOCH2Ph); 5.08–4.63
(2H, m; -C = O-CH2-Thy); 4.52–4.33 (2H, m; 2αCH-); 3.77, 3.71 (3H, 2s, -OCH3); 3.67–3.54
(1H, m, -CH(Ile)); 3.42–3.08 (4H, m, BocNHCH2CH2); 2.54–2.12 (4H, m, -(γ, β)CH2Glu);
1.92, 1.89 (3H, 2s, -CH3Thy); 1.43 (9H, s, tBu-); 1.29–1.22 (2H, q, J = 3.5 Hz, -CH2CH3Ile);
0.98–0.84 (6H, m, -2CH3(Ile)).

13C-NMR (only for one rotamer) (CDCl3): δ = 172.9, 172.6,
170.9, 169.4, 164.4, 156.4, 151.1, 141.6, 135.7, 128.6, 128.4, 128.3, 110.5, 110.1, 79.8, 56.9,
52.2, 48.8, 43.7, 39.2, 36.9, 29.7, 28.4, 25.0, 24.3, 15.8, 12.3, 11.6; Anal. Calcd for
C33H47N5O10: C, 58.83; H, 7.03; N, 10.39. Found: C, 58.88; H, 7.00; N, 9.88.

Benzyl ester of (R) 4-((1S, 2R)-1-(methoxycarbonyl)-
2-methylbutylcarbamoyl)-4-(2-(N-tert-butyloxycarbonyl)aminoethyl
(thymine-1-acetyl))butyric acid (7b)
Compound 7b was obtained analogously to 7a from 102 mg (0.187 mmol) of 4b, 46 mg (0.243
mmol) of EDC�HCl, 32 mg (0.178 mmol) of HCl�L-Ile-OMe (6), 33 mg (0.243 mmol) of DhbtOH
and 0.1 mL (0.468 mmol) of TEA. TLC and column chromatography were performed in ethyl ace-
tate. Yield 63 mg (50%). Rf: 0.46;

1H-NMR (CDCl3): δ = 8.94, 8.89 (1H, 2s, -NHThy); 7.44–7.28
(5H, m, -Ph); 7.24–7.18, 7.16–7.09 (1H, 2d, J = 8.2 and 7.1 Hz, -C = O-NH(Ile)); 6.99, 6.90 (1H, 2s,
C6HThy); 5.80–5.73, 5.72–5.64 (1H, 2t, J = 5.5 Hz, BocNH-); 5.15, 5.11 (2H, 2s, -COOCH2Ph);
5.08–5.02, 4.95–4.90, 4.88–4.81, 4.78–4.69 (2H, 4d, J = 14.6, 8.5, 8.4 and 16.8 Hz, -C =O-CH2-Thy);
4.50–4.33 (2H, m, 2αCH-); 3.77, 3.70 (3H, 2s, -OCH3); 3.66–3.53 (1H, m, -CH(Ile)); 3.48–3.05
(4H, m, BocNHCH2CH2); 2.63–2.50 (1H, m, -CH(Ile)); 2.49–2.02 (4H, m, -(γ, β)CH2Glu); 1.89,
1.88 (3H, 2s, -CH3Thy); 1.43 (9H, s,

tBu-); 1.29–1.22 (2H, q, J = 3.4 Hz, -CH2CH3Ile); 0.94–0.84
(6H, m, -2CH3(Ile)).

13C-NMR (only for one rotamer) (CDCl3): δ = 173.0, 172.5, 170.9, 169.4,
164.4, 156.4, 151.1, 141.1, 135.7, 128.6, 128.4, 128.3, 110.5, 79.8, 66.6, 56.9, 52.2, 48.8, 43.7, 39.2,
36.9, 29.3, 28.9, 25.0, 24.3, 15.8, 12.3, 11.6.

Benzyl ester of (S) 4-(N-tert-butyloxycarbonyl)amino-5-(carbamoyl-N-
(1S, 2R)-1-(methoxycarbonyl)-2-methylbutyl-N-(thymine-1-acetyl)
amino) pentanoic acid (8a)
Compound 8a was obtained analogously to 7a from 100 mg (0.183 mmol) of 5a, 53 mg
(0.277 mmol) of EDC�HCl, 33 mg (0.181 mmol) of HCl�L-Ile-OMe (6), 37 mg (0.274 mmol) of
DhbtOH and 0.1 mL (0.458 mmol) of TEA. TLC and column chromatography were performed
in ethyl acetate. Rf: 0.55, yield: 40 mg (43%); 1H-NMR (CDCl3): δ = 9.15 (1H, s, -NHThy);
7.41–7.28 (5H, m, Ph); 7.04 (1H, s, C6HThy); 6.89–6.82 (1H, d, J = 6.0 Hz, -C = O-NH(Ile));
5.70–5.55 (1H, m, BocNH-); 5.12, 5.10 (2H, 2s, -COOCH2Ph); 4.67–4.40 (2H, m, -C = O-CH2-
Thy); 4.31–4.10 (2H, m, -αCH2-(Gly)); 3.99–3.88 (1H, m, -αCH(Ile)); 3.85–3.79 (1H, m,
BocNHCHCH2-); 3.77, 3.68 (3H, 2s, -OCH3); 3.68–3.59 (1H, m, -CH(Ile)); 3.54–3.38 (2H, m,
BocNHCHCH2-); 2.55–2.40 (2H, m, -(γ)CH2Glu); 1.89 (5H, m, -CH3Thy, -(β)CH2Glu); 1.41,
1.39 (9H, 2s, tBu-); 1.22–1.10 (2H, m, -CH2CH3(Ile)); 0.99–0.84 (6H, m, -2CH3(Ile)).

13C-NMR
(only for one rotamer) (CDCl3): δ = 173.2, 172.8, 172.4, 168.5, 164.3, 156.0, 151.1, 141.3, 135.8,
128.6, 128.2, 110.6, 79.9, 66.5, 56.7, 52.3, 51.4, 49.5, 48.0, 37.3, 30.8, 28.3, 27.5, 25.2, 15.5, 12.3,
11.5.
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Benzyl ester of (R) 4-(N-tert-butyloxycarbonyl)amino-5-(carbamoyl-N-
(1S, 2R)-1-(methoxycarbonyl)-2-methylbutyl-N-(thymine-1-acetyl)
amino) pentanoic acid (8b)
Compound 8b was obtained analogously to 7a from 76 mg (0.139 mmol) of 5b, 35 mg (0.181
mmol) of EDC�HCl, 25 mg (0.139 mmol) of HCl�L-Ile-OMe (6), 24 mg (0.181 mmol) of
DhbtOH and 0.1 mL (0.348 mmol) of TEA. TLC and column chromatography were performed
in ethyl acetate. Rf: 0.55, yield: 86 mg (70%). 1H-NMR (CDCl3): δ = 9.15 (1H, s, -NHThy);
7.42–7.28 (5H, m, Ph); 7.06 (1H, s, C6HThy); 6.86–6.79 (1H, d, J = 6.3 Hz, -C = O-NH(Ile));
5.51–5.35 (1H, m, BocNH-); 5.12, 5.10 (2H, 2s, -COOCH2Ph); 4.61–4.45 (2H, m, -C = O-CH2-
Thy); 4.28–4.15 (2H, m, -αCH2(Gly)); 3.99–3.89 (1H, m, -αCH(Ile)); 3.88–3.78 (1H, m,
BocNHCHCH2-); 3.76, 3.70 (3H, 2s, -OCH3); 3.66–3.55 (1H, m, -CH(Ile)); 3.53–3.37 (2H, m,
BocNHCHCH2-); 2.54–2.51 (2H, m, -(γ)CH2Glu); 1.89 (5H, m, -CH3Thy, -(β)CH2Glu);
1.40,1.39 (9H, 2s, tBu-); 1.20–0.82 (8H, m, -CH2CH3(Ile), -2CH3(Ile)).

13C-NMR (only for one
rotamer) (CDCl3): δ = 173.1, 172.9, 172.3, 168.5, 164.3, 156.1, 151.1, 141.3, 135.8, 128.6, 128.2,
110.6, 79.9, 66.5, 56.6, 52.3, 51.2, 49.3, 48.0, 37.3, 30.8, 28.3, 27.5, 25.1, 15.5, 12.3, 11.5.

Oligomer synthesis
Manual solid-phase Boc-protocol synthesis (general procedure). The negatively charged

chiral PNA decamers were prepared on a MBHA resin (0.62 mmol/g) by the Boc-protocol
from the C-terminus to N-terminus in the apparatus for manual solid-phase synthesis. All
steps were performed at room temperature in a fluid bed. Agitation was performed using inert
gas. The procedure included the following steps. 1) Washing the resin twice with DMF/DCM
(1:1, v/v) for 2 min, and twice with DMF for 2 min. 2) Coupling with in situ neutralization:
0.085 M solution of HBTU (1 eq. per monomer) in DMF was added to a solution of PNA
monomer (3 eq.) and DIEA (2 eq. per monomer) in DMF to obtain a final monomer concen-
tration of 0.05 M. Pre-activation was performed for 5 min. The activated solution was trans-
ferred to the reactor, and coupling was allowed to proceed for 2 h. 3) Washing with DMF twice
for 2 min and twice with DMF/DCM (1:1, v/v) for 2 min. 4) Monitoring coupling using Kaiser
tests: if negative, continuing to the next step [72]. Otherwise, repeated coupling was performed
under the same conditions. 5) Boc-deprotection with TFA/m-cresol (95:5, v/v), 1×10 min,
1×20 min. Steps 1–5 were repeated until the required sequence was obtained.

Deprotection and cleavage of oligomers from resin
Method A—«low-high» TfOH method (general procedure). The oligomer-resin was

dried in vacuo (0.1 mm Hg) and cooled on an ice bath for 5 min. Freshly prepared «low» TfOH
solution (TFA:DMS:m-cresol:TfOH, 11:6:2:1) (10 μL per 1 mg resin) was then added at 0°C,
and the mixture was allowed to react at ambient temperature for 1 h for PNA deprotection.
The solution was filtered, and the resin was washed with TFA (2×4 ml) on the filter. The oligo-
mer was then cleaved from the solid support at 0°C for 1 h using freshly prepared «high» TfOH
solution (TfOH:TFA:m-cresol, 1:8:1) (10 μL per 1 mg resin). The filtrate was separated from
the resin by filtration. The resin was washed with TFA (4×4 ml). The filtrate was evaporated
and dried for 5 min in vacuo (0.1 mm Hg). The product was precipitated with anhydrous
diethyl ether and then solubilised in water. The water phase was analysed through HPLC and
mass spectrometry.

Method B–mild «low-high» TfOHmethod. The only difference from the general proce-
dure (method A) is that the time of resin treatment with «low» and «high» TfOH solutions was
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reduced (from 1 h to 15 min for the «low» solution and from 1 h to 20 min for the «high»
solution).

Method C—TES method. The oligomer-resin was dried in vacuo (0.1 mm Hg). A TFA:
TfOH:TES (3:1:0.1) solution (10 μL per 1 mg resin) was then added and allowed to react at 0°C
for 1 h. The filtrate was separated from the resin by filtration. The resin was washed with TFA
(3×1 ml). The filtrate was evaporated and dried for 5 min in vacuo (0.1 mm Hg). The product
was precipitated with anhydrous diethyl ether and then solubilised in water. The water phase
was analysed through HPLC and mass spectrometry.

Method D—TIS method. The oligomer-resin was dried in vacuo (0.1 mm Hg) and cooled
to -30°C. A TFA:TfOH:TIS (3:1:0.1) solution (10 μL per 1 mg resin) was added and allowed to
react at 0°C for 1 h. The filtrate was separated from the resin by filtration. The resin was washed
with TFA (3×1 ml). The filtrate was evaporated and dried for 5 min in vacuo (0.1 mm Hg). The
product was precipitated with anhydrous diethyl ether and then solubilised in water. The water
phase was analysed through HPLC and mass spectrometry.

H-[Thy-(L-GluψGly)]10-NH2 (1)
This negatively charged PNA decamer was assembled analogously to H-[Thy-(GlyψL-Glu)]10-
NH2 (1). The synthesis was initiated on 150 mg of MBHA resin with a polymer loading of 0.20
mmol/g. All of the Kaiser tests were negative. The sample was purified by reverse-phase HPLC
(B) and dried in a SpeedVac: white powder; MS (MALDI-TOF)m/z: 3400.0 (calcd. for
C140H183N41O60: 3399.3). The decamer was cleaved from 57.9 mg of resin by method A. Yield:
257.0 μg (0.7%).

H-[Thy-(L-GluψGly)]10-Gly (2)
This negatively charged PNA decamer was assembled analogously to H-[Thy-(L-GluψGly)]10-
NH2 (2). The synthesis was initiated on 142 mg of MBHA resin with polymer loading of 0.20
mmol/g. The coupling reactions were monitored with Kaiser tests, all of which were negative
with the exception of the T-1 and T-7 monomer coupling reactions (double coupling for 2 hr).
The sample was purified by reverse-phase HPLC (C) and dried in a SpeedVac: white powder;
MS (MALDI-TOF)m/z: 3457.0 (calcd. for C142H186N42O61: 3455.3). The decamer was cleaved
from 38.4 mg of resin by method D. Yield: 1.24 mg (5.4%).

H-[Thy-(GlyψL-Glu)]10-NH2 (3)
The protected negatively charged PNA decamer was assembled on MBHA resin (150 mg) with
a polymer loading of 0.14 mmol/g (determined by quantitative ninhydrin reaction). The cou-
pling reactions were monitored through Kaiser tests, all of which were negative (green-yellow
colour with no coloration of the beads) with the exception of the T-2, T-4, T-7 and T-8 mono-
mer coupling reactions (double coupling for 2 h). The sample was purified by reverse-phase
HPLC (A) and dried in a SpeedVac: white powder; MS (MALDI-TOF)m/z: 3400.0 (calcd. for
C140H183N41O60: 3399.3). The decamer was cleaved from 11 mg of resin by method A (com-
plete degradation), from 9.0 mg of resin by method B with a yield of 7.8 μg (0.2%); from 10.2
mg of resin by method C with a yield of 38.3 μg (0.9%) and from 14.5 mg of resin by method D
with a yield of 141.2 μg (2.3%).

Hybridization studies
The UV-spectra and thermal denaturation profiles of the PNA/DNA complexes and the DNA
duplex were recorded with a Jasco UV 750 spectrophotometer (Japan) and a temperature
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controlled cell in 5 mM sodium phosphate buffer, 140 mM KCl, 5 mMMgCl2 (pH 7.46). The
concentration of each oligonucleotide or PNA was 5 μM. The samples were denatured at 95°C
for 5 min and slowly cooled to 20°C prior to analysis. The absorbance at 260 nm was measured
as a function of temperature. The data were recorded every 0.5°C from 5 to 90°C. The melting
temperature of the DNA duplex and the mismatched PNA2DNA triplexes were defined as the
maxima of the first derivatives of absorption from temperature using MicroCal (TM) Origin
Version 6.0 (Serial Number G73S4-9478-7000000). Circular dichroism (CD) spectra were
obtained with a Jasco J-715 spectropolarimeter at 15°C. The samples were annealed in the
same buffer and under the same conditions as used in thermal denaturation studies. The CD
values (Δε) are provided per mole of nucleotide.
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