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Abstract
This paper proposes a novel multi-label classification method for resolving the spacecraft

electrical characteristics problems which involve many unlabeled test data processing,

high-dimensional features, long computing time and identification of slow rate. Firstly, both

the fuzzy c-means (FCM) offline clustering and the principal component feature extraction

algorithms are applied for the feature selection process. Secondly, the approximate

weighted proximal support vector machine (WPSVM) online classification algorithms is

used to reduce the feature dimension and further improve the rate of recognition for electri-

cal characteristics spacecraft. Finally, the data capture contribution method by using thresh-

olds is proposed to guarantee the validity and consistency of the data selection. The

experimental results indicate that the method proposed can obtain better data features of

the spacecraft electrical characteristics, improve the accuracy of identification and shorten

the computing time effectively.

I. Introduction
Spacecraft electronic load systems are typically non-linear time-dependent systems, which are
complex and uncertain [1–6]. Internal load signal superposition and mutation happen fre-
quently, therefore, the causes of the accident may be intertwined when load system accident
occurs [7–12]. If there are no reliable information sources or analysis methods for interpreting
the processes of spacecraft electronic load systems, apart from assumptions and speculation, it
is challenge to detect the fault of load systems accurately [13–18]. In general, spacecraft electri-
cal characteristics are including voltage signals and current signals, which represent physical
processes such as roll, pitch, yaw, voltage fault and current fault [19–22]. During the operation
of spacecraft electronic load system, many complex signals could be produced. therefore, it is a
challenge problem to detect the fault from the large amount of data from the spacecraft elec-
tronic load system. Recently, extensive researches about the electrical characteristics signal
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identification problem have been conducted [23–27]. For example, Steven et al. analyses non-
linear power systems by using the power system voltage detection [28]. Wang, et al. integrated
the characteristics of the spacecraft thermal fault with the idea of artificial intelligence, and the
problem was resolved by using a suitable spacecraft fault diagnosis reasoning machine. Thus,
the expert system of spacecraft thermal fault diagnosis was established [29, 30]. However, these
methods aforementioned need a high precision signal, and thus it is difficult to guarantee the
accuracy of complex signal identification. And such methods need a high precision signal, and
it is difficult to guarantee the accuracy of complex signal recognition using classic method to
resolve multi-label problems [1–6][29, 30]. Additionally, few studies have focused on on-line
system classification. Fault identification remains a challenge problem in spacecraft electronic
load systems. Other problems including the spacecraft electrical characteristics identification
process unlabeled test data, the high dimensional characteristics, the slow computing speed
and the low recognition rate should also be solved.

This paper proposes an expert training method to assist the on-line identification system.
The method is including two parts: the off-line clustering and the on-line identification part.
Firstly, a dataset could be obtained from the off-line system by analyzing the historical data,
which the dataset combines objective clustering data and obtains preliminary category labels.
Secondly, the search space of these data can be reduced based on a priori information. Further-
more, the preliminary category label samples and filter operation are used to establish the
training dataset. Based on the training dataset, an on-line identification algorithm using princi-
pal component analysis (PCA) feature extraction and a weighted proximal support vector
machine (WPSVM) are proposed to build a better classification learning model. Finally, the
experimental data are used to validate the effectiveness of the proposed method.

This paper is organized as follows: Section II identifies the standard of similarity and intro-
duces the fuzzy clustering methods to obtain the training dataset. Next, Section III aims to
solve the high dimensional characteristics problems of the training dataset, the principal com-
ponent analysis is also introduced, and then the data capture contribution algorithm is dis-
cussed; And a better classification learning model by using a weighted proximal support vector
machine (WPSVM) is proposed. Experimental results are presented in Section IV. Finally, the
conclusion is given in Section V.

II. Off-line system and pretreatment algorithm
The essence of the spacecraft electrical characteristics identification is to contrast the test sig-
nal with the standard signal. Thus the error function can be used to evaluate the performance
of identification. How to contrast the test signal with the standard signal and how to obtain
the standard signal from complex signals are two primary problems in the identification of
spacecraft electrical characteristics. First of all, the standard should be defined to contrast
with the signals.

A.Identification of the standard similarity
Standardization of similarity can be converted to construct an error function between test data
and standard data. Both typical test sample and standard sample are shown to identify the stan-
dard similarity (Fig 1).

The error function can be used to hunt for the greatest similarity, which is given as follows:

min
W;T

b ¼ k WDt þ T� Ds k2 ð1Þ

where the test data Dt and the standard data Ds represent the input of the Spacecraft electrical
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characteristics,W is a mapping transformation, and T is translation. The mininum βmeans
the maximum similarity. The test data Dt and standard data Ds are provided in S1 Dataset.

B.The off-line system and fuzzy clustering methods
The identification system of spacecraft electrical characteristics is including: the off-line system
and the on-line system. Once the standard of similarity is identified, standard signals can be
obtained from a large and complex signal dataset, which is very complex and time-consuming.
an off-line fuzzy c-means clustering algorithm has been proposed for resolving these problems,
which have been discussed in our previous works [31, 32].

In the off-line identification system, the electrical characteristic data are as inputs to the first
pre-processing operation, which includes the down-sampling, filtering and event trigger
threshold. After the generation of pretreatment isometric data with FCM clustering, the off-
line system obtains a preliminary sample marked a labeled expert training dataset, which is an
online identification system with entering parameter.

In this section, the off-line system gets a large number of input signals. The historical origi-
nal signals are a long time series. Before the clustering algorithm is used to label the historical
original signals, a pre-process has been used for the original data, where the pre-process aims
to divide a time series into several events by threshold. If the signal is over threshold, an event
has been triggered, and then a sample will be cut out from the time series by using a fixed
length window. If the time series traversal is over, the off-line system will put all of these sam-
ples into the fuzzy c-means section. The historical original signal data are the inputs to the off-
line system, and the training set is the outputs of the off-line system. The off-line system flow
chart is given in Fig 2.

The fuzzy c-means clustering is applied to produce the training dataset. This process is
including the clusters with similar waveform data together and labels those waveforms to find
the same category, then a clustering center can be generated for each class. Finally, expert data
inputs for error correction can be obtained.

The fuzzy c-means clustering algorithm is an iterative process [33–37]. The flow chart of
FCM in this paper is shown in Fig 3. The steps of fuzzy c-means clustering are including: 1),

Fig 1. Test data and standard data. The essence of the spacecraft electrical characteristics identification is
to contrast the test signal with the standard signal. Comparing the test signal with the standard signal and
obtaining the standard signal frommultiple complex signals are two primary problems in the identification of
spacecraft electrical characteristics. The typical test data sample and a typical standard data sample
obtained from the electrical characteristics of the spacecraft are shown in the Fig.

doi:10.1371/journal.pone.0140395.g001
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the aim of fuzzy c-means clustering is to divide n samples into a fuzzy dataset; 2), each group
clustering center can be calculated by minimizing the error function; 3), fuzzy c-means gives
each sample a membership value between 0 and 1, which indicates its degree of membership to
each cluster.

Fig 2. Flow chart of the off-line system. The off-line system gets a large number of signal data as input.
These signal data are first processed by the pre-process procedure. The pre-process aims to divide a time
series into several events by threshold value. When the time series traversal is over, the off-line system will
put all of these samples into the fuzzy c-means section. The fuzzy c-means clustering is a process to produce
the training set. This process clusters similar waveform data together and labels those waveforms to find the
same category, then generates a clustering center for every class.

doi:10.1371/journal.pone.0140395.g002

Fig 3. Flow chart of the FCM used in our article. The steps of fuzzy c-means clustering have several
sections: first, the aim of fuzzy c-means clustering is to divide n samples into a fuzzy set. Second, each
group’s clustering center can be calculated by minimizing the value function. Third, fuzzy c-means gives each
sample a membership value between 0 and 1 to indicate its degree of membership to each cluster. It is a
typical iterative process. Through the clustering algorithm, the off-line system generates the spacecraft
electronic load historical data clustering, and gets the clustering center for events.

doi:10.1371/journal.pone.0140395.g003
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In the process of clustering, the fuzzy c-means clustering function is:

minJðU ; c1; :::; ccÞ ¼
Xc

i¼1

Ji ¼
Xc

i¼1

Xn
j¼1

mm
ij d

2
ij ð2Þ

min�J ðU; c1; :::; cc; l1; :::; lnÞ ¼ JðU ; c1; :::; ccÞ þ
Xn

j¼1
ljð
Xc

i¼1

mij � 1Þ

¼
Xc

i¼1

Xn
j

mm
ij d

2
ij þ

Xn
j¼1

ljð
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i¼1

mij � 1Þ
ð3Þ

where Eq (2) is the transformation of Eq (3), the λij is Lagrange multiplier, minimizing the
function can be calculated as follows:

ci ¼

Xn
j¼1

mm
ij xj

Xn
j¼1

mm
ij

; mij ¼
1

Xc

k¼1

dij
dkj

 !2=ðm�1Þ

s:t:
Xc

i¼1

mij ¼ 1; 8j ¼ 1; :::; n

ð4Þ

where ci is the clustering center of fuzzy set i, μij is a member of membership matrix U, dij = ||ci
− yj|| is the Euclidean distance between the ci clustering center and the ci and yj sample data, xj
is an electrical characteristics input sample, andm is a weighted index.

Through the clustering algorithm, the off-line system generates the spacecraft electronic
load historical data clustering, and gets the clustering center for events. Compared with general
clustering methods, the fuzzy c-means clustering method obtains a membership matrix, which
means that no definite samples of historical data need to be error- corrected, which greatly
reduces the manual work.

III. On-line identifiction system

A.Summary
Once obtaining an expert training dataset from the off-line system, the training dataset is
regarded as one input to the on-line identification system. Another input to the on-line system
is a real time on-line data, which needs to be identified as well.

The PCA feature extraction and the WPSVM classifier method are proposed to provide
electrical characteristics identification in the spacecraft load system. An on-line electrical char-
acteristics identification is shown in Fig 4. The on-line identification process is used to the first
training dataset by generated offline and the online-generated test as input. The PCA
dimensionality of these data are reduced. After obtaining the PCA feature extraction vector,
the input feature vector classifier is used to provide classification. Vote treatment in the pres-
ence of multiple classifiers is used to obtain the final classification result.

This flow-chart is composed of several processes. The PCA feature extraction is firstly used
in the category model to reduce the feature vector, which could be used by WPSVM classifiers.
The n WPSVM classifiers are then used to obtain n results to identify the electrical characteris-
tics. Finally, a rank is used to summarize the n results into one, and thus the on-line signal data
are identified. The details of the method will give in the next section.
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B.PCA feature extraction method
PCA is also called feature extraction method of the primary component analysis, which is a
data dimension reduction process based by calculating the statistical covariance matrix of the
spacecraft’s electronic load electrical properties [38–40]. Its purpose is to find those elements
which contribute most to the features of the data. The little changed elements can be got rid of,
thus reducing the dimensionality so that the amount of calculation can be reduced [38, 39, 41–
43].

The flow chart of the PCA feature extraction method used in our article is detailed in Fig 5.
Define each section of the spacecraft electrical characteristics data as vectors in the form of:

X ¼ ½X1;X2; . . . . . . ;Xn� ð5Þ

Xk = (xk,1, xk,2, � � �, xk,r) (1� k� n) stands for the k samples, and r is the number of point of
the sample, n is the number of sample. Then, calculate the covariance matrix S is as follows:

S ¼ 1

n

Xn
k¼1

ðXk � �XÞðXk � �XÞT

s:t:�X ¼ 1

n

Xn
k¼1

Xk

ð6Þ

�X is the avenge value of samples. S is a r � rmatrix, by calculating the eigenvalues of S which
are [λ1, λ2, . . .. . ., λn](λ1� λ2� . . .. . .�λn), then the eigenvector T = [u1, u2, . . .. . ., un] should
be obtained, the eigenvector is the orthogonal basis for the spacecraft electrical data [43].
Greater feature value can make greater contribution. Calculating the contribution using nor-
malized methods, the contribution Pk could be measured as follows:

Pk ¼ lk
Xn
i¼1

li

 !�1

ð7Þ

Those eigenvectors that have tiny feature value should be ignored. Using the first d vectors of

Fig 4. On-line electrical characteristics identification general flow-chart. The method using PCA feature
extraction and theWPSVM classifier to providing electrical characteristics identification in the spacecraft load
system is proposed. The on-line identification process uses the first training set generated off-line and the
online-generated test as input. The PCA dimensionality of these data are reduced. After obtaining the PCA
feature extraction vector, the input feature vector classifier is used to provide classification. Vote treatment in
the presence of multiple classifiers is used to obtain the final classification result.

doi:10.1371/journal.pone.0140395.g004
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the matrix X to restore the model, where
Pd
i¼1

Pi � P, the restore matrix X̂ is as follows:

X̂ ¼
Xd
i¼1

uT
i Xui ð8Þ

By calculating the covariance matrix to identify the elements that have larger covariance, these
elements have much more weight on the spacecraft electrical property data than elements
which have smaller covariance. This provides a way to realize dimensionality reduction, thus
greatly accelerating the computation speed.

Fig 5. Flow chart of PCA in article. The steps of PCA feature extraction method have several sections: first,
there are electrical data matrix X as input. Second, through the data dimension reduction, then output the
principal components. Third, entering the principal components into online system, then output the result.
PCA is a data dimension reduction process based on calculating the statistical covariance matrix of the
spacecraft’s electronic load electrical properties. Its purpose is to find those elements which contribute most
to the features of the data. The little changed elements can be got rid of, thus reducing the dimensionality so
that the amount of calculation can be reduced.

doi:10.1371/journal.pone.0140395.g005
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C.Weighed proximal support vector machine
In our experiments, we use the following method to train and to verify the accuracy of the clas-
sifier. This method divides the data set into two different sets referred as the training set and
the test set. Then, the classification model is trained using the training set, which means we can
use the test set for validation. In the process of our experiments, the training set is the feature
extraction of expert data, and the test set is the feature extraction of online data.

The SVM classifier is the classifier we used in the identification process, which is based on
statistical learning VC dimension theory and the structure risk minimum principle [44, 45]. In
the process of recognition, by mapping the spacecraft electrical properties data to achieve linear
classification, the aim of the SVMmodel is to maximize the interval. The weighed proximal
support vector machine algorithm is as follows:

max dm ¼ 1

joj
s:t:yi o � x̂ i þ bð Þ � 1 � 0ði ¼ 1; 2; . . . . . . lÞ

ð9Þ

δm is the hyperplane interval, x̂ i is the sample characteristics obtained, ω and b are respectively,
the normal vector and displacement of the hyperplane.

Using WPSVM to identify the spacecraft electrical characteristics, and comparing SVM
with WPSVM, it changes the problem to another function as follows:

min
1

2
joj2 þ 1

2

Xd
i¼1

Cisix
2

i

 !

s:t:yi o � x̂ i þ bð Þ � 1þ xi ¼ 0ði ¼ 1; 2; . . . . . . lÞ
ð10Þ

Ci represents a parameter that is different to positive and negative classes; ξi is the slack vari-
able; d is the sample size; ω is the normal vector of the optimal hyperplane; b is the displace-
ment; x̂ i is a sample vector; yi is the x̂ i category id. si is the value of an adjustable parameter for
each training sample, standing for the contribution of each type, 0� si � 1.

To solve the above optimization problem, the Lagrange theorem is introduced. The problem
can be converted as follows:

min
o;b;x;a

L o; b; x; að Þ ¼ 1

2
joj2 þ 1

2

Xd
i¼1

Cisix
2

i

�
Xd
i¼1

ai yi o � x̂ i þ bð Þ � 1þ xi½ �
ð11Þ

α = (α1, α2, . . .. . . αd) is the Lagrange multiplier. By using Wolfe Duality theorem [41, 42] to
calculate the minimum L(ω, b, ξ, α) define by ω, b, ξ, α as follows:

@L
@o

¼ o�
Xd
i¼1

aiyix̂ i ¼ 0 ð12Þ

@L
@b

¼
Xd
i¼1

aiyi ¼ 0 ð13Þ

@L
@x

¼
Xd
i¼1

Cisix
2

i �
Xd
i¼1

ai ¼ 0 ð14Þ
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@L
@a

¼ yi o � x̂ i þ bð Þ � 1þ xi ¼ 0 ð15Þ

Using δi = Ci si to Eqs (12)–(15) and solving the problem, it follows that:

o ¼
Xd
i¼1

aiyix̂ i

Xd
i¼1

aiyi ¼ 0

Xd
i¼1

dix
2

i ¼
Xd
i¼1

ai

yi o � x̂ i þ bð Þ � 1þ xi ¼ 0

ð16Þ

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

Making Eq (13) into Eq (8) to solve the dual problem, and obtaining the optimal solution
a� ¼ ða1

�; a2
�; . . . . . . a�dÞ, choosing a positive α� where α� > 0, then the solution of original

problem can be represented as follows:

o� ¼
Xd
i¼1

a� iyix̂ i ð17Þ

b� ¼ yj 1� ai
di

� �
�
Xd
i¼1

a� iyiK x̂i; x̂jð Þ ¼ 0 ð18Þ

Kðx̂ i; x̂jÞmeans kernel function, which is used for mapping the input space to the correspond-
ing high dimensional dimensional feature space. Using different kernel functions may make a
small difference. The final decision function is:

Fðx̂Þ ¼ sgn o� � x̂ þ b�ð Þ ð19Þ
In this paper, we employ the radial basis kernel function as the Gauss kernel function [46, 47],
which is given as follows:

Kðx; xf Þ ¼ exp
jjx � xf jj2
ð2dÞ2

 !
ð20Þ

Based on the WPSVM, we can identify a classifier model for spacecraft electrical characteristics
identification.

D.Similarity calculation formula

f
P

Dt � Dsj j � sgnTð Þ
SizeDt

g ð21Þ

Similarity using the formula is shown in the prompt box. Dt representative test samples, and Ds

represents the standard sample. To sign function that set the threshold T is sgn(T). The sample
Size (Ds) represents the number of sample data points, that is, the dimension.

IV.Experiment Results
Simulation data comes from the spacecraft electronic load for a typical experiment, the original
data for each section are 1000 data points waveforms (Fig 6). Typical data combine motor

Classification Method Based on FCM andWPSVM
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speed, order turning angle, bearing temperature, motor current, top and spinning (Fig 7). The
simulation data and typical dataset are provided in S1 Dataset

The experiments can be briefly summarized as follows. First, the FCM clustering algorithm
is used to preliminarily label samples, whereby standard data can be obtained as the training
set. Second, the feature extraction method based on PCA is used to reduce the big data dimen-
sion. Finally, the WPSVM classifier is used to obtain the identification test set and improve cal-
culation accuracy.

The experiments are conducted using Matlab on an Intel (R) Core (TM) i7-3520M CPU @
2.90 GHz, 8.0 GB.

A.Comparision of the training speed using PCA and without PCA
Before the on-line algorithm test, the FCM algorithm was used to obtain the clustering centers
and to obtain the membership matrix U at the same time.

An example of a roll event during the spacecraft load test experiment is detailed in Fig 8.
The membership matrix U is shown in Fig 9. Compared with k-means algorithm, the FCM

Fig 6. Typical electrical characteristics data. Simulation experimental data comes from the spacecraft
electronic load for a typical experiment, the original data for each section are 1000 data points’ waveforms.

doi:10.1371/journal.pone.0140395.g006

Fig 7. Random electrical characteristics data sample. There are 10, 50, 100, and 500 samples randomly
extracted from the real data set, combining six elements of the physical process: (a)motor speed, (b)order
turning angle, (c)bearing temperature, (d)motor current, (e)top and (f)spinning.

doi:10.1371/journal.pone.0140395.g007
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algorithm offered an extra matrix U which uses a threshold set by us. Only the elements of the
matrix U which are less than the threshold need to be corrected by humans. The matrix U will
save much human error correction time in the off-line system.

The sample that has high membership can be confirmed directly; other samples which
belong to multiple categories with similar membership require further revision by human
experts. After FCM and human error correction, the basic training data are ready for use.
These data are referred to as expert training data. The category model proposed by this article
has two inputs, training data and test data, aiming to identify the test data. In this category
model, we use PCA feature extraction to make a dimension reduction at first. In this experi-
ment, the first 21 component represented over 90% of the weights. Therefore, using 21 compo-
nents as features is adequate and feasible.

The testing of the training time with PCA and without PCA by using different number of
samples such as 10, 50, 100 and 500 is detailed in (Table 1). The results shows that with the
PCA feature extraction the calculation time is obviously reduced (Table 1). In this way, the cal-
culation speed can satisfied within the design requirements and can enable on-line identifica-
tion. The identification results of several methods will be shown in the following paragraph.

Fig 8. Spacecraft electronic load typical experimental data and the category clustering center. Before
the on-line algorithm test, the FCM algorithm was used to obtain the clustering centers. An example of a roll
event during the spacecraft load test experiment is detailed in the Fig.

doi:10.1371/journal.pone.0140395.g008

Fig 9. Membership matrix U. The sample that has high membership can be confirmed directly; other
samples which belong to multiple categories with similar membership require further revision by human
experts. Compared with k-means algorithm, the FCM algorithm offered an extra matrix U which uses a
threshold set by us. Only the elements of the matrix U which are less than the threshold need to be corrected
by humans. The matrix U will save much human error correction time in the off-line system.

doi:10.1371/journal.pone.0140395.g009
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B.The accuracy and speed by using WPSVM in this article
After completion of clustering and PCA feature extraction, the clustering center has been
found and can be used in identification. Use of the WPSVM classifier is the next step in the cat-
egory model. The WPSVM classifier has a two category classifier; to make a multi-class classi-
fier, we must use several WPSVM classifiers. There are two solutions to this multi-class
problem. Those two solutions are named one-to-one methods and one-to-the-other methods.
One-to-one methods means that every pair of categories has a WPSVM classifier; for n catego-
ries, there are n(n − 1)/2 classifiers. In this model, each classifier will vote on one category; the
category which obtain the most votes is the final category.

One-to-the-other methods means one category and the other category each have a WPSVM
classifier; for n categories there are n classifiers. In this model, if there is only one category that
received votes, this category is the final category. If more than one category received votes,
comparing the outputs o� � x̂ þ b�, the biggest output is the result.

The experiment in this paper used 10, 50, 100, and 500 samples randomly extracted from
the real data set, combining six elements of the physical process: motor speed, order turning
angle, bearing temperature, motor current, top and spinning (Fig 7), and three categories of
typical fault signals are shown in Fig 10. We recorded the training time and the accuracy of
each method. We changed the parameters of each method, and the highest accuracy was
recorded as the result for each method. Finally, the results of each method are compared with
each other. The typical fault signals of randomly chosen real data sample and the samples’s
dimension reduction by PCA are detailed in Figs 11 and 12, on which the threshold is set as 0.1
and the similarity result is 95%. These data are the input to the next simulation experiments.

We can see that, for multi-label classification, using the SVM algorithm has higher accuracy
than the Bayesian algorithm and the KNN algorithm (Table 2). And compared with the SVM
algorithm, the WPSVM algorithm has obvious accuracy improvement. The one-to-one
WPSVM algorithm has better results is than the one to other WPSVM algorithm. However,
each algorithm has difficulty solving the problem of identification, with greater difficulty for
the samples with higher tensile.

Table 1. The calculate time comparison.

Feature extraction methods 10 samples/s 50 samples/s 100 samples/s 500 samples/s

PCA 0.12292 0.313488 0.532109 1.020358

WithoutPCA 1.73184 3.833223 7.583167 19.364252

doi:10.1371/journal.pone.0140395.t001

Fig 10. Random electrical characteristics data sample. There are 10, 50, 100, and 500 samples randomly
extracted from the real data set, combining three categories of typical fault signals, (a)Fault one, (b) Fault two,
(c)Fault three.

doi:10.1371/journal.pone.0140395.g010
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The feature extraction simulation experiment is conducted similar to the PCA simulation
experiments. The identification of accuracy for test data in the on-line system using different
methods are given (Fig 13), which include the naive-Bayes algorithm, the KNN algorithm,
one-to-one SVM, one-to-the-other SVM, one-to-one WPSVM and one-to-the-other WPSVM.
The conclusion is that the WPSVM algorithm that we propose has better accuracy than the
classical algorithms. When the sample number is 100, the classification performance is more
obvious.

We further observe the registration situation of SVM andWPSM for identification accuracy
(Fig 13). It can be seen that SVM andWPSVM have the same accuracy in the first stage of 10
samples, but when the sample sets are large enough, the SVM algorithm will give a lower accu-
racy thanWPSVM. In the WPSVMmethod, the more effective points can obtain greater
weights. In contrast, the points which are noise can obtain smaller weight. In this way, it effec-
tively reduces the impact of noise on the identification results and makes the final identification

Fig 12. A typical example of calculating the similarity. The standard of similarity is identified. We recorded
the training time and the accuracy of each method. We changed the parameters of each method, and the
highest accuracy was recorded as the result for each method. which the threshold is set as 0.1 and the
similarity result is 95%.

doi:10.1371/journal.pone.0140395.g012

Table 2. The comparison of calculate time.

Feature extraction methods 10 samples 50 samples 100 samples 500 samples

Bayes 0.6 0.64 0.66 0.65

KNN 0.7 0.70 0.72 0.71

ONE TO ONE SVM 0.9 0.88 0.9 0.9

ONE TO ONE WPSVM 0.9 0.92 0.93 0.93

ONE TO OTHERS SVM 0.9 0.88 0.89 0.89

ONE TO OTHER WPSVM 0.9 0.90 0.92 0.91

doi:10.1371/journal.pone.0140395.t002

Fig 11. Random electrical characteristics data sample dimension reduction by PCA. The typical fault
signals of randomly chosen real data sample and the samples’ dimension reduction by PCA are detailed in
the Fig. (a)Fault one, (b) Fault two, (c)Fault three.

doi:10.1371/journal.pone.0140395.g011
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result more accurate. The result of the WPSVM algorithm compared with the classical naive
Bayes algorithm, the SVM algorithm, and the KNN algorithm are detailed in Fig 13 and
Table 2. It also can be seen that, using the WPSVM, the recognition accuracy has obviously
improved.

V.Conclusion
This article used unsupervised clustering that is not dependent on the predefined categories of
classes, proposed an improved fuzzy c-means clustering algorithm to label initial data and then
obtained the clustering center by error correction. After using PCA feature extraction and the
weighted proximal support vector machine (WSVM) algorithm proposed in this article to
resolve the problem of electrical characteristics identification, eventually we improved the pre-
cision of identification, and further enhanced the performance of the classifier.

For this model, the method proposed solves the problems of large amounts of unlabeled test
data, high dimension characteristics, slow computing speed and low recognition rate during
the process. Our further work is to solve the sensitive problem of abnormal overlay events,
which are also difficult to identify. Other problems are minimizing the influence of dispersion
data or isolated points, reducing artificial intervention and not adding too much computational
complexity at the same time. We propose to test the effectiveness of our proposed method with
different large scale data sets, in order to construct a classifier with better performance in a
spacecraft electrical characteristics identification system. The results of this research can be
used in spacecraft fault diagnosis systems in the future.

Supporting Information
S1 Dataset. Including the Standard Data, Test Data, Simulation Data and Typical Data.
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Fig 13. Classification accuracy use different algorithm.Naive-Bayes algorithm, the KNN algorithm, one-
to-one SVM, one-to-the-other SVM, one-to-oneWPSVM and one-to-the-other WPSVM are used in the on-
line system. It shows the accuracy of test data identification.
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