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Abstract
Pseudomonas fluorescens PCL1751 is a rod-shaped Gram-negative bacterium isolated

from the rhizosphere of a greenhouse-grown tomato plant in Uzbekistan. It controls several

plant root diseases caused by Fusarium fungi through the mechanism of competition for

nutrients and niches (CNN). This mechanism does not rely on the production of antibiotics,

so it avoids the concerns of resistance development and is environmentally safe. Addition-

ally, this bacterium promotes plant growth by alleviating salt stress for its plant host. To

investigate the genetic mechanisms that may explain these observations, we determined

the complete genome sequence of this bacterium, examined its gene content, and per-

formed comparative genomics analysis with other Pseudomonas strains. The genome of

P. fluorescens PCL1751 consisted of one circular chromosome that is 6,143,950 base-

pairs (bp) in size; no plasmid was found. The annotation included 19 rRNA, 70 tRNA, and

5,534 protein-coding genes. The gene content analysis identified a large number of genes

involved in chemotaxis and motility, colonization of the rhizosphere, siderophore biosynthe-

sis, and osmoprotectant production. In contrast, the pathways involved in the biosynthesis

of phytohormones or antibiotics were not found. Comparison with other Pseudomonas
genomes revealed extensive variations in their genome size and gene content. The pres-

ence and absence of secretion system genes were highly variable. As expected, the syn-

teny conservation among strains decreased as a function of phylogenetic divergence. The

integration of prophages appeared to be an important driver for genome rearrangements.

The whole-genome gene content analysis of this plant growth-promoting rhizobacterium

(PGPR) provided some genetic explanations to its phenotypic characteristics. The exten-

sive and versatile substrate utilization pathways, together with the presence of many genes

involved in competitive root colonization, provided further support for the finding that this
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strain achieves biological control of pathogens through effective competition for nutrients

and niches.

Introduction
The bacterial genus Pseudomonas contains diverse species that inhabit soil, water, and plant
surfaces [1,2]. In addition, many Pseudomonas species isolated from saline soils were found to
exhibit beneficial effects on plant development [3–7]. These plant growth-promoting rhizobac-
teria (PGPR) use direct or indirect mechanisms to stimulate plant growth, to increase plant
stress tolerance, and to protect plants from pathogens [2,8,9]. These mechanisms include: (i)
promoting the nutrient availability, such as increasing phosphate solubility [10–12], (ii) pro-
duction of phytohormones, such as auxin, to stimulate growth [13,14], (iii) reduction of stress-
induced ethylene production [15,16], (iv) production of osmoprotectants [17], (v) production
of antifungal metabolites [1,18,19], (vi) induction of plant systemic resistance [20,21], and (vii)
competition for nutrients and niches (CNN) [22,23].

The strain P. fluorescens PCL1751 was isolated from a screen for rhizobacteria with
enhanced competitive plant root tip colonization [22]. Phenotypic characterization of this
strain revealed that it could provide protection against the disease foot and root rot in tomato
caused by the fungal pathogen Fusarium oxysporum [22] and in cucumber caused by F. solani
[23]. These biocontrol traits appeared to be the result of its strong competition ability for nutri-
ents and niches [22,23]. Because this CNN mechanism is based on multiple traits and does not
involve antibiotic production, it has the additional advantage that it does not raise the concern
of resistance development. Therefore, P. fluorescens PCL1751 was considered to be safer and
more practical than biocontrol strains that exhibit direct antagonistic activities against phyto-
pathogens. Moreover, P. fluorescens PCL1751 has the advantage that it is salt tolerant and sig-
nificantly promotes plant growth in salinated soil [23].

To better understand the biology of P. fluorescens PCL1751, the main goals of this study
were to determine the complete genome sequence of this bacterium, investigate its gene con-
tent, and infer the link between its gene content and biological traits. Additionally, comparative
genomics analysis within the P. fluorescens group may provide further insights into the genome
evolution among these diverse soil bacteria that often exhibit plant-growth promoting abilities
[24–31].

Methods

Genome Sequencing, Assembly, and Annotation
The strain P. fluorescens PCL1751 was obtained from the collection of the Institute of Biology,
Leiden University, the Netherlands (contact: Prof. Ben Lugtenberg). The procedures for
genome sequencing, assembly, and annotation are based on those described in our previous
studies [32–36]. Briefly, the bacterium was cultured in standard Tryptic Soy Broth (Becton,
Dickinson and Company) medium prior to DNA extraction by using the Wizard Genomic
DNA purification Kit (Promega) according to manufacturer’s protocol. Two libraries were
constructed and sequenced by a commercial service provider (Yourgene Bioscience, New Tai-
pei City, Taiwan) using the Illumina MiSeq platform (Illumina), including one paired-end
library (~481 bp insert; 351 + 251 bp reads; ~5.0 Gb raw reads; deposited at the NCBI SRA
database under the accession number SRR2285883) and one mate-pair library (~4.2 kb insert;
251 bp � 2 reads; ~1.3 Gb raw reads; accession number SRR2285884).
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The de novo assembly was performed using ALLPATHS-LG release 42781 [37] according to
the user’s manual. The initial assembly was iteratively improved by mapping the raw reads to
the contigs using Burrows-Wheeler Aligner (BWA) version 0.6.2 [38], programmatically
checked using the MPILEUP program in SAMTOOLS package version 0.1.18 [39], and visually
inspected using Integrative Genomics Viewer (IGV) version 2.1.24 [40]. The scaffolding across
repetitive regions was confirmed by PCR and the gaps were filled using reads extending over
the contig ends. The sequence polymorphisms among rRNA operons were resolved using the
mate-pair reads anchored at adjacent unique regions. The iterative process was repeated until
the entire circular chromosome sequence was determined.

The programs RNAmmer [41], tRNAscan-SE [42], and PRODIGAL [43] were used for
gene prediction with the settings specified for bacterial genomes in the user’s manual. For each
protein-coding gene, the gene name and product description were initially annotated based on
the homologous genes in P. fluorescens SBW25 [25] as identified by OrthoMCL [44] with a
BLASTP [45] e-value cutoff of 1e-15 and an inflation value of 1.5. Subsequently, BLASTP
searches against the NCBI non-redundant (nr) protein database [46] and the Kyoto Encyclope-
dia of Genes and Genomes (KEGG) database [47,48] were used to assist manual curation of
the annotation. The final annotated chromosome was plotted using CIRCOS [49] to show gene
locations, GC-skew, and GC content. The pathway analysis was based on the categories defined
in the KEGG Pathway database and manual inspection of annotation evidences from NCBI
BLASTP search results, as well as the homologous genes in other Pseudomonas genomes and
their description in the literature (Table 1).

Table 1. Genome characteristics.

ID Strain GenBank
accession

Size (bp) G+C
(%)

rRNA
genes
(operons)

tRNA
genes

Protein-
coding
genes

Plasmids Property Reference

PCL1751 P. fluorescens
PCL1751

CP010896 6,143,950 60.4 19 (6) 70 5,534 - Biocontrol by competition for
nutrients and niches, plant growth-
promotion, and increase of plant
salt stress tolerance

This study

SBW25 P. fluorescens
SBW25

AM181176 6,722,539 60.5 16 (5) 68 5,921 - Plant growth-promotion [25]

A506 P. fluorescens
A506

CP003041 5,962,570 60.0 19 (6) 69 5,267 1 Biocontrol [26]

UK4 P. fluorescens
UK4

CP008896 6,064,456 60.1 19 (6) 68 5,178 - Biofilm-forming and amyloid-
producing

[29]

Pf0-1 P. fluorescens
Pf0-1

CP000094 6,438,405 60.5 19 (6) 73 5,722 - Soil-dwelling commensal [25]

UW4 P. sp. UW4 CP003880 6,183,388 60.1 22 (7) 72 5,423 - Plant growth-promotion [28]

F113 P. fluorescens
F113

CP003150 6,845,832 60.8 16 (5) 66 5,862 - Biocontrol by secondary
metabolites production

[27]

Pf-5 P. protegens
Pf-5

CP000076 7,074,893 63.3 16 (5) 71 6,108 - Biocontrol by antibiotics production [24]

CHA0 P. protegens
CHA0

CP003190 6,867,980 63.4 15 (5) 68 6,115 - Biocontrol by antibiotics production [30]

PA23 P.
chlororaphis
PA23

CP008696 7,122,173 62.6 16 (5) 68 6,179 - Biocontrol by antibiotics production [31]

DC3000 P. syringae
DC3000

AE016853 6,397,126 58.4 15 (5) 63 5,482 2 Phytopathogenic [50]

doi:10.1371/journal.pone.0140231.t001
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Comparative Genomics Analyses
For comparative genomics analyses, we focused on the strains within the P. fluorescens group
of which the complete genome sequence is available (Table 1). Additionally, P. syringae pv.
tomato str. DC3000 [50] was included as the outgroup. For comparison of their gene content,
we utilized the original annotation included in the GenBank files downloaded from the NCBI
nucleotide database. The homologous gene clusters were identified by using OrthoMCL
with the same parameters as described above. Genes involved in secretion systems were man-
ually curated based on the KEGG nomenclatures as listed in the ‘Bacterial Secretion System’

page of the KEGG Pathway Maps. For analysis of prophages in these genomes, we utilized
the PHAST web server [51] to identify the putative prophages and curated the results
manually.

For molecular phylogenetic inference, we aligned the protein sequences of the 2,374 homol-
ogous gene clusters that contain exactly one orthologous gene from each of the 11 genomes
compared using MUSCLE version 3.8.31 [52] with the default settings. The final concatenated
alignment contains a total of 783,597 amino acid sites. A maximum likelihood phylogeny was
inferred using PHYML version 20120412 [53]. The proportion of invariable sites and the
gamma distribution parameter were estimated from the data set and the number of substitute
rate categories was set to four. Bootstrap supports were estimated based on 1,000 replicates
generated by the SEQBOOT program of PHYLIP v3.69 [54], followed by PHYML inference as
described above for each replicate and the extended majority rule (MRe) consensus phylogeny
inference by the CONSENSE program of PHYLIP.

For pairwise genome alignments, we utilized MUMmer version 3.23 [55]. To reduce spuri-
ous hits, we increased the minimummatch length (option ‘-l’) to 40 from the default setting of
20. The genome-wide sequence similarities were calculated based on the 2,374 conserved sin-
gle-copy genes using the DNADIST and PROTDIST programs of PHYLIP.

Substrate Utilization Test
Growth of P. fluorescens PCL1751 on various carbon sources was tested on solid BMmedium
[22] containing 0.2–0.4% of 16 different carbon sources. A Petri dish without the added carbon
source was included as a control. A small amount of P. fluorescens PCL1751 cells were streaked
to purity on the solid media and incubated at 28°C. The appearance of clearly visible single col-
onies was taken as the criterion for growth.

Results and Discussion

Genome Characteristics
The complete genome of P. fluorescens PCL1751 contains a circular chromosome that is
6,143,950 bp in size with a G+C content of 60.4% (Fig 1 and Table 1). No plasmid was found.
This sequence has been deposited at DDBJ/EMBL/GenBank under the accession number
CP010896. The first version of annotation includes 19 rRNA genes (organized into six operons,
the first of which contains an extra 5S rRNA gene), 70 tRNA genes, and 5,534 protein-coding
genes. The protein-coding genes have an average length of 995.6 bp and account for 89.5% of
the chromosome.

Chemotaxis, Motility, Adhesion, and Other Aspects of Root Colonization
As expected for a rhizobacterium that exhibits strong competitive colonization ability of plant
roots [22], we identified the genes required for chemotaxis, motility, and adhesion. Details on
the roles of motility and chemotaxis in root colonization have been reviewed previously
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[2,56,57]. For chemotaxis, both the Che (cheA, cheB, cheR, cheW, cheY, and cheZ) and the Wsp
(wspA, wspB, wspC, wspD, wspE, wspF, wspR) systems for signal transduction are present.
Notably, 33 copies of the methyl-accepting chemotaxis protein genes (mcp) were found, sug-
gesting that this bacterium has a wide range of trans-membrane sensor proteins for different
signals. For motility, the genes involved in the regulation (fleQ, fleR, and fleS), biosynthesis
(flhA, flhB, flhF, flhG, fliP, fliQ, and fliR), structure (flgA, flgB, flgC, flgD, flgE, flgF, flgG, flgH,
flgI, flgJ, flgK, flgL, fliC, fliD, fliE, fliF, fliG, fliH, fliI, fliJ, fliK, fliL, fliM, fliN, fliO, fliS, and fliT),
and motor (motA andmotB) components of flagella were found.

As an adhesive structure, pili play a crucial role in host-bacteria interactions [58,59]. The
genes for type IV pilus system (pilA, pilC, pilD, pilE, pilF, pilG, pilH, pilI, pilJ, pilM, pilN, pilO,
pilQ, pilT, pilV, pilX) were found in our gene content survey. Furthermore, several genes
involved in biofilm formation were found, including those responsible for polysaccharide
transport (pelA, pelB, pelC, pelD, pelF, pelF, and pelG), adhesin production (pgaA, pgaB, pgaC,
and pgaD), and 19 GGDEF domain proteins. The GGDEF domain is associated with diguany-
late cyclase activity, which is involved in cyclic di-GMP signaling for biofilm formation and
persistence [60]. Finally, the malate dehydrogenase gene (mqo) was also found in the genome
of P. fluorescens PCL1751. This gene is involved in growth on organic acids (including malic
acid, succinic acid, and citric acid) and is required for the colonization of the tomato root by
P. fluorescensWCS365 [56].

Utilization of Organic Carbon Sources
A visual summary of selected metabolic pathways inferred from the gene content analysis of
P. fluorescens PCL1751 is presented in Fig 2. This bacterium possesses a diverse array of genes
involved in the utilization of organic carbon sources available in the rhizosphere, which is con-
sistent with its superior growth on tomato root exudate compared to other strains [22]. Based

Fig 1. Genomemap of Pseudomonas fluorescens PCL1751. Rings from the outside in: (1) scale marks
(unit: Mb), (2 and 3), protein-coding genes on the forward and reverse strand, respectively (color-coded by
the functional categories), (4) rRNA gene clusters (green) and prophages (red), (5) GC skew (positive: purple;
negative: yellow), and (6) GC content (above average: orange; below average: blue).

doi:10.1371/journal.pone.0140231.g001
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on the previous characterization of tomato root exudates, citric acid, malic acid, and lactic acid
are the most abundant organic acids [61]. The metabolic pathway inference suggested that
these organic acids could be readily incorporated into the tricarboxylic acid (TCA) cycle. Fur-
thermore, P. fluorescens PCL1751 possesses genes for the uptake and conversion of other car-
bon sources, such as various sugars (trehalose, glucose, mannose, maltose, xylose, ribose, and
arabinose), sugar alcohols (sorbitol and mannitol),myo-inositol, and glycerol, to be utilized
through the pentose phosphate pathway and glycolysis (Fig 2).

These pathway predictions were validated through growth experiments. Positive growth of
P. fluorescens PCL1751 was recorded after 24 hours on casamino acids, lactic acid, and succinic
acid. After 48 hours, positive growth was observed on all other tested carbon sources, namely
arabinose, citric acid, glucose, glycerol, malic acid, maltose, mannitol, mannose,myo-inositol,
ribose, sorbitol, trehalose, and xylose. No growth was observed on the control plate.

Fig 2. Selectedmetabolic pathways of Pseudomonas fluorescens PCL1751. This figure provides a visual summary of the gene content analysis
described in the main text. Boxes drawn with dotted lines indicate the genes missing in the annotation.

doi:10.1371/journal.pone.0140231.g002
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Plant Growth Promotion and Protection
For phytohormone-related genes, one 1-aminocyclopropane-1-carboxylate (ACC) deaminase
gene (acdS) was found, indicating that this bacterium could act as a sink for ACC and lower
the level of the plant stress hormone ethylene. The indole-3-acetic acid (IAA) biosynthesis
pathway was not found, suggesting that the plant growth-promoting property of this bacterium
is not modulated through auxin production. This finding is consistent with the previous obser-
vation that the IAA production of this bacterium was not detectable [22,23].

P. fluorescens PCL1751 is able to utilize chrome azurol S (CAS) in the bioassay on detection
of siderophores. Consistent with this observation, several siderophore biosynthesis pathways
were found, such as those for pyoverdines (pvdA, pvdE, pvdF, pvdG, pvdH, pvdI, pvdJ, pvdM,
pvdN, pvdO, pvdP, pvdQ, and pvdS) and pyochelin (pchA, pchB, pchC, pchD, pchH, pchI, pchK,
pchP, and pchR). Pyoverdines are a diverse group of fluorescent siderophores produced by
pseudomonads and facilitate iron uptake of these bacteria [62,63]. Pyochelin facilitates the
acquisition of various metal ions, including iron, copper, and zinc [64]. Furthermore, we found
47 TonB-dependent receptors (TBDRs) and associated genes, indicating that P. fluorescens
PCL1751 may be highly effective in the competitive acquisition of iron and cofactors [65].
Finally, the genes for pyrroloquinoline quinone (PQQ) production (pqqA, pqqB, pqqC, pqqD,
pqqE, pqqF, pqqH, and pqqI) and PQQ-dependent glucose dehydrogenase were found. One
previous study on 118 P. fluorescens strains revealed that the ability for inorganic phosphate
solubilization within this species complex is linked to the phylogenetic affiliation [66]. The
presence of these genes, together with the close evolutionary relationship between P. fluorescens
PCL1751 and other strains exhibiting strong inorganic phosphate solubilization ability (Fig 3),
suggests that PCL1751 is likely to possess such ability as well.

One notable property of P. fluorescens PCL1751 among PGPR is its high salt tolerance and
the ability to promote plant growth in salinated soil [23]. Consistent with these observations,
we identified a large number of genes related to osmoprotectant production. For example, algi-
nate is an exopolysaccharide that protects fluorescent Pseudomonas against desiccation [67]
and we found the associated genes (algA, algB, algC, algD, algE, algF, algG, algI, algJ, algK, algL,
algQ, algR, algU, algW, algX, algZ, and kinB). Additionally, genes involved in the biosynthesis
and accumulation of other osmoprotectants were found, such as those for carnitine (opuCA,
opuCB, and opuCC), choline (choV, choW, and choX), glycine betaine (gbsA), proline (laaA,
pip, proP, proV, proW, proX, proY, prpA, pupA, and pupP), and trehalose (treA, treB, treR, treS,
treY, and treZ).

Although P. fluorescens PCL1751 has been shown to be effective in protecting plants against
fungal pathogens, laboratory co-culture of P. fluorescens PCL1751 with various fungi found no
direct antagonistic activity [22,23]. Moreover, no production of chitinase, cellulose, glucanase,
or hydrogen cyanide (HCN) was detected for P. fluorescens PCL1751 [22,23]. These results
confirmed that the mechanism for fungal disease suppression by P. fluorescens PCL1751 does
not rely on the anti-fungal compound production pathways found in other closely related Pseu-
domonas strains, such as those related to pyoluteorin in strain Pf-5 [68] or 2,4-diacetylphloro-
glucinol and HCN in strains F113 [27] and CHA0 [69]. Indeed, we did not find those pathways
in the P. fluorescens PCL1751 genome.

Comparative Genomics of P. fluorescens and Related Species
Homologous gene identification among the strains belonging to the P. fluorescens group found
2,903 gene clusters conserved among these strains (Fig 3; including 2,546 clusters shared by all
11 genomes analyzed and 357 clusters absent in the outgroup P. syringae). The estimate is close
to that from a previous comparative genomics analysis of the P. fluorescens group [26]. These
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core genes accounted for only about half of the genes in each genome, suggesting that the
genetic diversity in terms of the gene content, rather than sequence divergence, is quite high
within this group of bacteria. Furthermore, the genome size also varied considerably with the
number of protein-coding genes ranged from 5,178 in UK4 to 6,179 in PA23. These observa-
tions suggest that the genomes of these rhizobacteria are highly dynamic and have been shaped
by extensive gene gains and losses. The P. putida group, which shared similar ecological niches
with the P. fluorescens group, was estimated to have a core genome of 3,185 genes, while the
estimates for the pathogenic species P. syringae and P. aeruginosa were 3,456 and 4,653, respec-
tively [26]. These differences may be partly explained by the complex issues involved in defin-
ing species boundaries in bacteria. Additionally, the degree of dependence on eukaryotic hosts
may also have contributed to the differences in the genome characteristics of these species
[70–72].

Of the genes that exhibited variable patterns of presence and absence in these bacteria, the
secretion systems are among the most notable ones due to their functional roles in the interac-
tion with other microbes and the plant hosts [73]. Our results indicated that the type III

Fig 3. Distribution pattern of homologous gene clusters. The maximum likelihood phylogeny was inferred from the concatenated protein alignment of
2,374 single-copy genes shared by all strains (with 783,597 aligned amino acids). All internal nodes received 100% bootstrap support based on 1,000 re-
sampling and maximum likelihood inference. The numbers above each branch and proceeded by a ‘+’ sign indicate the numbers of homologous gene
clusters that are uniquely present in all daughter lineages; the numbers below each branch and proceeded by a ‘-‘ sign indicate the numbers of homologous
gene clusters that are uniquely absent.

doi:10.1371/journal.pone.0140231.g003
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secretion system (T3SS) genes are entirely absent in strains Pf0-1, CHA0, and Pf-5 (Fig 4; also
see ref. [26]). Although the genes yscI, yscO, yscP, yscX, and yscK were not found in any of the
Pseudomonas genomes examined, the T3SS in P. syringae DC3000 has been shown to be func-
tional [50], suggesting that these genes are not essential or have been functionally replaced by
other genes. In the previous characterization of SBW25-derived strains, the T3SS mutant
Rhi19 (hrcR::Tn5; KEGG Orthology ID K03226; alternative gene names: yscR, sctR, or rscR)
was shown to be normal in tomato root tip colonization when tested alone but exhibited
10-fold reduction when competing against the parental strain. The authors explained this result
by hypothesizing that the wild type cells use the T3SS needle to suck nutrients from the plant
host [74]. Because the T3SS gene yscR are also present in PCL1751, this hypothesis can be
extended to this strain.

The type VI secretion system (T6SS) has been shown to be important for competition
between Agrobacterium and Pseudomonas [75]. Most of the Pseudomonas genomes examined
here possess the complete gene set for the T6SS, suggesting that this secretion system may be
important for their ecological niches. Finally, the type I, IV, and V secretion system genes
appeared to be incomplete in these genomes.

Based on the molecular phylogeny inferred using the 2,374 single-copy genes shared by all
strains, P. fluorescens PCL1751 is most closely related to SBW25 (Fig 3). This result places
PCL1751 in the third sub-clade within the P. fluorescens group [26]. Our genome alignments
(Fig 5) indicated that the chromosomal organization was largely conserved within this subclade

Fig 4. Secretion system gene clusters. The figure provides a visual summary of the presence (filled circles) and absence (empty circles) of genes involved
in secretion systems in these genomes. Multi-copy genes are labeled by their copy number inside the filled circles.

doi:10.1371/journal.pone.0140231.g004
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Fig 5. Genome alignments. Pairwise genome alignments between Pseudomonas fluorescens PCL1751 and other related strains. The nucleotide (nt) and
amino acid (aa) sequence similarities are calculated based on the concatenated alignment of 2,374 single-copy genes shared by all strains.

doi:10.1371/journal.pone.0140231.g005
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Fig 6. Synteny of prophage insertion sites.Gene organization near the three prophage insertion sites in the Pseudomonas fluorescens PCL1751
genome and the syntenic regions in the two closely related strains. Putative homologs are linked by thin gray lines.

doi:10.1371/journal.pone.0140231.g006
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(i.e., among strains PCL1751, SBW25, and A506), which share genome-wide sequence similari-
ties of ~89% and ~95% at the nucleotide (nt) and amino acid (aa) level, respectively. Strain
UK4 appeared to fall outside of this sub-clade and exhibited a lower level of synteny
conservation.

For more detailed comparisons of the chromosomal organization among PCL1751, SBW25,
and A506, we found several types of prophage insertions. In the first example (Fig 6A), one
prophage appeared to have integrated into the common ancestor of these three strains and
remained stable, thus the syntenic region involving the phage sequence and neighboring genes
are highly conserved among the three genomes. In the second example (Fig 6B), one ~50 kb
prophage insertion was specific to PCL1751 and absent in SBW25. Intriguingly, in the corre-
sponding region of the A506 genome, we found one ~70 kb segment of DNA that lacks identi-
fiable homology to the other genomes, suggesting that this site may be an insertional hotspot.
In the third example (Fig 6C), one prophage was found in all three genomes yet was located in
different regions in each, suggesting that this prophage may had been active in transposition
after the initial integration or had been acquired independently. Taken together, these findings
indicate that prophage insertions have contributed to the evolution of chromosomal organiza-
tion in these bacteria.

Conclusions
By determining the complete genome sequence of P. fluorescens PCL1751, this study allowed
for the investigation of its entire gene content. The genes that are present in the genome corre-
spond well with previous phenotypic characterizations with respect to biocontrol of plant path-
ogens and plant growth promotion. Furthermore, the absence of certain genes (e.g., production
of auxin or antibiotics) could be confirmed and are equally informative. The comparative geno-
mics analyses with other related strains revealed extensive genetic variations among these
diverse plant-associated rhizobacteria with the potential for biotechnology applications.
Finally, this study provides a foundation for future genetic investigation of this bacterium and
its molecular interactions with the plant hosts.
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