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Abstract
From the perspective of systems science, tumorigenesis can be hypothesized as a critical

transition (an abrupt shift from one state to another) between proliferative and apoptotic

attractors on the state space of a molecular interaction network, for which an attractor is

defined as a stable state to which all initial states ultimately converge, and the region of con-

vergence is called the basin of attraction. Before the critical transition, a cellular state might

transit between the basin of attraction for an apoptotic attractor and that for a proliferative

attractor due to the noise induced by the inherent stochasticity in molecular interactions.

Such a flickering state transition (state transition between the basins of attraction for alterna-

tive attractors from the impact of noise) would become more frequent as the cellular state

approaches near the boundary of the basin of attraction, which can increase the variation in

the estimate of the respective basin size. To investigate this for colorectal tumorigenesis, we

have constructed a stochastic Boolean network model of the molecular interaction network

that contains an important set of proteins known to be involved in cancer. In particular, we

considered 100 representative sequences of 20 gene mutations that drive colorectal tumori-

genesis. We investigated the appearance of cancerous cells by examining the basin size of

apoptotic, quiescent, and proliferative attractors along with the sequential accumulation of

gene mutations during colorectal tumorigenesis. We introduced a measure to detect the flick-

ering state transition as the variation in the estimate of the basin sizes for three-phenotype

attractors from the impact of noise. Interestingly, we found that this measure abruptly

increases before a cell becomes cancerous during colorectal tumorigenesis in most of the

gene mutation sequences under a certain level of stochastic noise. This suggests that a fre-

quent flickering state transition can be a precritical phenomenon of colorectal tumorigenesis.

PLOS ONE | DOI:10.1371/journal.pone.0140172 October 6, 2015 1 / 12

OPEN ACCESS

Citation: Chu H, Lee D, Cho K-H (2015) Precritical
State Transition Dynamics in the Attractor Landscape
of a Molecular Interaction Network Underlying
Colorectal Tumorigenesis. PLoS ONE 10(10):
e0140172. doi:10.1371/journal.pone.0140172

Editor: Manuela Helmer-Citterich, University of
Rome Tor Vergata, ITALY

Received: April 19, 2015

Accepted: September 6, 2015

Published: October 6, 2015

Copyright: © 2015 Chu et al. This is an open access
article distributed under the terms of the Creative
Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any
medium, provided the original author and source are
credited.

Data Availability Statement: All relevant data are
within the paper and its Supporting Information files.

Funding: HC, DL and K-HC were supported by the
National Research Foundation of Korea (NRF) grants
funded by the Korea Government, the Ministry of
Science, ICTand Future Planning
(2014R1A2A1A10052404 and 2013M3A9A7046303).
It was also supported by a grant of the Korean Health
Technology R&D Project, Ministry of Health and
Welfare, Republic of Korea (HI13C2162), the GIST
Systems Biology Infrastructure Establishment Grant,
and the KAIST Future Systems Healthcare Project
from the Ministry of Science, ICTand Future

http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0140172&domain=pdf
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


Introduction
Cancer is a genetic disease driven by the accumulation of genetic mutations [1–3]. Genetic
mutations lead to a cell undergoing suppressed cell death and uncontrolled cell proliferation,
which are hall marks of cancer [4, 5]. From the view of systems science, tumorigenesis can be
hypothesized as a critical transition between proliferative and apoptotic attractors upon the
state space of a molecular interaction network, where an attractor is defined as a stable state to
which all initial states ultimately converge, and the region of convergence is called the basin of
attraction [6–9]. Creixell et al. [6] reviewed that the state space of dynamic cellular networks
can be represented as attractor landscapes, where stable steady states (attractors) and unstable
steady states are represented as valleys and mountains, respectively. They explained that cells
are constantly navigating this attractor landscape and are pushed from one state to another by
intracellular or different environmental cues, to drive biological decision processes. The
sequential accumulation of genetic mutations may reshape the attractor landscape so that a cell
is frequently attracted to proliferative attractors, resulting in tumorigenesis.

Scheffer et al. explained that, in a wide range of natural systems, there are generic early-
warning signals before critical transitions, regardless of the differences in the details of each
system [10, 11]. Based on attractor dynamics, they suggested that “flickering to an alternative
state” could be one of the early-warning signals before critical transitions in stochastic systems
[10–12]. Fig 1 shows a flickering state transition before a critical transition in attractor dynam-
ics. The solid line in Fig 1(a) and 1(b) represents an attractor state. The dotted line in Fig 1(a)
and 1(b) indicates unstable states and the boundary between two basins of attraction for two
attractor states. Effectors in Fig 1(a) and 1(b) are factors changing the attractor landscape. Fig 1
(c), 1(d) and 1(e) indicates the attractor landscapes reflecting the stability properties of the sys-
tem in the region of (X), (Y), and (Z), respectively. Because lower potential means a higher
steady state probability, a state spontaneously transits to another state with a lower potential. A
critical transition to an alternative state ((A) in Fig 1(a) and 1(b)) occurs at a bifurcation point
(F1 or F2 in Fig 1(a) and 1(b)). The frequent flickering state transition is an observable phe-
nomenon in the vicinity of a bifurcation point in a noisy environment. In Fig 1, in the region of
(X) and (Z), the attractor of the state of a system is strong enough to capture the system from
the impact of noise, and a small variance appears in the estimate of the basin sizes of the attrac-
tors from the impact of noise. However, as the system enters the bistability region of (Y) before
settling more permanently into an alternative state, the attractor of the state of the system is
too weak to capture the system from the impact of noise, and the impact from noise causes the
state of the system to frequently transit ((B) in Fig 1(b)) between the basins of attraction for the
two alternative attractors. Such a flickering state transition leads the state within the basin of
attraction for an attractor to converge into another attractor and increases the variation in the
estimate of the basin sizes (the sizes of the basin of attraction) for the attractors. The frequent
flickering state transition in a system can be considered a warning that the system has left the
stable operating state space.

In colorectal cancer studies, gene mutations leading to colorectal tumorigenesis can corre-
spond to effectors changing the attractor landscape of a cell system. The sequential accumula-
tion of gene mutations can make the system of a normal cell enter the bistability region before
the system settles more permanently into a colorectal cancer cell. We investigated the existence
of a flickering state transition during colorectal tumorigenesis, resulting from some noise
induced by the inherent stochasticity in molecular interactions in cells [13–16], with a stochas-
tic Boolean network modeling and simulation approach.
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Fig 1. Flickering state transition before a critical transition in attractor dynamics. (a) and (b) represent critical transitions without and with noise in the
attractor dynamics, respectively. The x-axis represents the effector sequence, and the y-axis denotes the state of the system. A solid line indicates an
attractor, and the dotted line between the two solid lines represents an unstable state. A critical transition to an alternative attractor state (A) occurs at a
bifurcation point (F1 or F2). Effectors in (a) and (b) are factors changing the attractor landscape. (c), (d), and (e) indicate the attractor landscapes reflecting
the stability properties of the system in the region of (X), (Y), and (Z), respectively. Because a potential on the y-axis is inversely related to the steady state
probability of its state, the dynamics tends to converge to a state with lower potential. A ball (grey circle) represents the current state and its potential. (d) In
the region of (Y), the ball jumps back and forth between alternative basins of attraction from the impact of noise, namely the flickering state transition ((B) in
Fig 1(b)). Such a flickering state transition increases the variation in the estimate of the basin sizes (the sizes of the basin of attraction) for the attractors.

doi:10.1371/journal.pone.0140172.g001
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Results and Discussion
Under various levels of noise intensity, we investigated the presence of a flickering state transi-
tion during colorectal tumorigenesis in a stochastic Boolean network model of a cell. The
model consists of 96 nodes and 246 edges. Ninety-one nodes represent an important subset of
proteins involved in cancer, and 5 input nodes represent carcinogens, growth factors, nutrient
supply, growth suppressors, and hypoxia that give distinct environmental stimuli and stresses
to a cell (i.e., 25 combinations for environmental conditions). The values of the nodes are syn-
chronously updated following the rules described in the S1 Text. A noise intensity parameter
NI is introduced so that the state of each node is randomly re-assigned at every time step: after
updating the values of the nodes, the state of each node is flipped with the probability of NI.
Colorectal tumorigenesis is driven by the sequential accumulation of 20 gene mutations with
100 representative sequences (S1 Table). In the constructed model, a mutation activating an
oncogene is represented as a permanent activation of the corresponding protein node, and a
mutation inactivating a tumor suppressor gene is expressed as a permanent inactivation of the
corresponding protein node. For every occurrence of a gene mutation, 10,000 initial states for
each environmental condition (i.e., a total of 320,000 initial states for 25 combinations of envi-
ronmental conditions) were randomly selected and analyzed to get the fractions of the basin
size of attractors. With a random procedure of NI6¼0, there was no fixed point or limit cyclic
attractors. Therefore, we tested all the randomly selected initial states, running them for 1,100
time steps, expecting to reach clean (NI = 0) or noisy (NI6¼0) attractors until 1,000 time steps in
the model (with NI = 0, all the randomly selected initial states converge to fixed point or limit
cyclic attractors within about 30 time steps). We decided the phenotype of an attractor in the
model, considering the states of 91 nodes except for the 5 environment nodes from 1,001 to
1,100 time steps in the model. The apoptosis phenotype is given when the activity (% of ‘1’s in
a given time window) of the apoptosis node in the model is more than 80%. The proliferative
phenotype is given when cyclins are correctly activated along the cell cycle (cyclin D! cyclin
E! cyclin A! cyclin B) at least 4 times (it avoids the decision of the proliferative phenotype
by a temporary increase in the frequency of the cell-cycle activation from noise, and cyclins are
correctly activated along the cell cycle 14 times with NI = 0). The quiescent phenotype is given
when both the proliferative phenotype and the apoptosis phenotype are not given.

In Fig 2, the simulation results show the appearance of the flickering state transition during
colorectal tumorigenesis in the conditions of NI = 0.03. Colorectal tumorigenesis is driven by
the sequential accumulation of 20 gene mutations (the sequence of No. 73 in the S1 Table). Fig
2(a) and 2(b) shows the fraction of the initial states converging into apoptotic, proliferative or
quiescent attractors for 320,000 initial states at every gene mutation with NI = 0 and 0.03,
respectively. The fraction of the initial states converging into attractors with a particular phe-
notype represents the estimate of the ratio of the basin size for attractors with this phenotype
to the sum of the basin sizes for the three-phenotype attractors. To check the flickering state
transition, we have introduced a measure, MF, to measure how many states switch back and
forth between the basins of attraction for the proliferative, apoptotic, and quiescent attractors
from the impact of noise:

MF ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðBAN � BA0Þ2 þ ðBPN � BP0Þ2 þ ðBQN � BQ0Þ2

q
; ð1Þ

where BA0, BP0, and BQ0 are the fractions of the basin sizes for the apoptotic, proliferative, and
quiescent attractors in the absence of noise, respectively, and BAN, BPN, and BQN are the frac-
tions of the basin sizes for the apoptotic, proliferative, and quiescent attractors in the presence
of noise, respectively. Fig 2(c) shows a graphical representation of MF. MF reflects the variation
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in the estimate of the basin sizes of the three-phenotype attractors due to the transitions of
states between the basins of attraction for the three-phenotype attractors from the impact of
noise. MF appears, as a state within the basin of attraction for an attractor with a phenotype
converges into another attractor with a different phenotype, due to the transition of the state
between the basins of attraction for these two attractors from the impact of noise. MF will
increase as the transitions of the states happen more actively between the basins of attraction
for the three-phenotype attractors from the impact of noise. Fig 2(d) shows the MF at every
mutation occurrence for NI = 0.03 as a result of Fig 2(a) and 2(b). In Fig 2(a) and 2(b), the
cancerous state occurs at the 11th mutation occurrence (the cancerous state means a state
where a cell shows uncontrolled proliferation which is believed to be malignant, and in this
study the cancerous state is defined as the state in which the fraction of the basin size for the
proliferative attractors is more than 0.35 and that of the apoptotic attractors is less than 0.05).
In Fig 2(d), the MF is relatively low until the 5th mutation occurrence, and increases sharply at
the 6th mutation occurrence, finally decreasing as the cancerous state begins, indicating the
existence of more frequent flickering state transitions before the critical transition to the
cancerous state. Looking at the implications, a cellular state transits between the basins of
attraction for the three-phenotype attractors from some noise induced by the inherent stochas-
ticity in molecular interactions [13–16]. Such flickering state transitions would be more fre-
quent before a cell becomes cancerous during colorectal tumorigenesis, indicating that the cell
has left its stable operating state space: the attractor landscape of the cell has been deformed, as
the potentials of existing attractors become higher (becoming unstable from the impact of
noise) or as new attractors begin to emerge.

Fig 2. Flickering state transition during colorectal tumorigenesis in the conditions of NI = 0.03.
Colorectal tumorigenesis is driven by the sequential accumulation of 20 gene mutations (the sequence of No.
73 in the S1 Table). Zero on the x-axis means no mutation. (a) and (b) the fraction of the initial states
converging into the apoptotic, proliferative or quiescent attractors for 320,000 initial states at every gene
mutation with NI = 0 and 0.03, respectively. (c) A graphical representation of MF (Eq (1)) to check the
flickering state transition. BA, BP, and BQ represent the fractions of the basin sizes for the apoptotic,
proliferative, and quiescent attractors, respectively. BA0, BP0, and BQ0 express the fractions of the basin sizes
for the apoptotic, proliferative, and quiescent attractors in the absence of noise, respectively, and BAN, BPN,
and BQN are the fraction of the basin sizes for the apoptotic, proliferative, and quiescent attractors in the
presence of noise, respectively. (d) MF at every mutation occurrence for NI = 0.03, as a result of Fig 2(a) and
(b).

doi:10.1371/journal.pone.0140172.g002
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To investigate the generality of the precancerous occurrence of the more frequent flickering
state transition during colorectal tumorigenesis (the precancerous occurrence means the occur-
rence before a cell becomes cancerous), we considered 100 representative sequences for 20
gene mutations to drive colorectal tumorigenesis (S1 Table), for which all gene mutations
occur toward colorectal tumorigenesis (tumor suppressor genes and oncogenes mutate to per-
manently inactivate and activate the corresponding protein nodes, respectively). Fig 3(a) and 3
(b) statistically shows when the cancerous state occurs, and MF significantly increases along
with these 100 sequences for various levels of noise intensity. Fig 3(a) shows the frequency dis-
tribution of the occurrence point for the cancerous state along with the sequences that drove
the cancerous state for the various levels of noise intensity. For the noise intensities of 0, 0.01,
0.02, and 0.03, the cancerous state occurs in 97, 99, 99, and 97 sequences of the 100 sequences,
respectively (Table 1). For the sequences that have driven the cancerous state, we investigated
when a significant increase of MF appears during colorectal tumorigenesis for the various levels
of noise intensity. We experimentally set the upper threshold of MF as follows: MFTH =
MF0+0.24 (MFTH: upper threshold of MF, MF0: MF at no mutation occurrence). It lets MFTH

exceed the sum of the mean and standard deviation of the values of MF greater than the MF0,
when the values of MF are measured along with random gene mutations. For random gene
mutations, we considered 100 sequences for 20 random gene mutations for which all the genes
were randomly selected, and the mutation states were randomly determined regardless of
tumorigenesis (S2 Table). When the MF was greater than MFTH, we decided that the MF has
increased more significantly than that which can be produced by random gene mutations, and
the flickering state transition becomes more frequent in the attractor landscape. Fig 3(b) shows
the frequency distribution of the MF greater than the MFTH at every mutation occurrence along
with the sequences that drove the cancerous state for the various levels of noise intensity. For
the noise intensities of 0.01, 0.02, and 0.03, an MF greater than the MFTH appears in 46, 80, and
81 sequences of the 99, 99, and 97 sequences that drove the cancerous state, respectively
(Table 1). The y-axis indicates how many sequences among the sequences that drove the
cancerous state have an MF greater than the MFTH at a particular mutation occurrence. An MF

greater than the MFTH generally appears from the 4th mutation occurrence to the 8th mutation
occurrence before the occurrence of the cancerous state shown in Fig 3(a). We statistically esti-
mated the difference between two distributions for the occurrence point of the cancerous state
and an MF greater than the MFTH along with the following sequences: the sequences that drove
both the cancerous state and an MF greater than the MFTH are presented in S1 Table. By two-
sample Kolmogorov-Smirnov test [17, 18], for NI = 0.01, 0.02, and 0.03, the p-values were
2.29×10−15, 8.77×10−30, and 9.48×10−47, respectively. These results support the generality that
the flickering state transition becomes more frequent before a cell becomes cancerous during
colorectal tumorigenesis. To verify the possibility that the flickering state transition becomes
more frequent by chance, 100 sequences for 20 random gene mutations regardless of tumori-
genesis (S2 Table) were implemented in the stochastic Boolean network model of a cell. All 100
sequences did not drive the cancerous state (Table 1). This result means that the cancerous
state hardly occurs by random mutations because the biological system is very robust. For the
noise intensities of 0.01, 0.02, and 0.03, an MF greater than the MFTH appears in 3, 22, 22
sequences of these 100 sequences, respectively (Table 1). We statistically evaluated the differ-
ence between two distributions for an MF greater than the MFTH along with the following two
sequence sets: the sequences that drove the cancerous state in S1 Table, and the 100 sequences
listed in S2 Table. By two-sample Kolmogorov-Smirnov test, for NI = 0.01, 0.02, and 0.03, the
p-values were 2.42×10−6, 1.37×10−14, and 6.54×10−19, respectively. It implies that an MF greater
than the MFTH, along with the random mutation sequences, does not have precancerous char-
acteristics. In summary, the gene mutation sequence that drove the colorectal cancer has a
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superior chance to result in a significant increase of MF before the occurrence of the cancerous
state, compared to the random gene mutation sequence. This suggests that a more frequent
flickering state transition can be a precritical phenomenon in the attractor landscape of a
molecular interaction network underlying colorectal tumorigenesis.

In this study, we described that the interplay of genetic mutations and noise drive tumor
progression. The accumulation of genetic mutations during colorectal tumorigenesis plays a
mechanistic role of reshaping the attractor landscape (the basin sizes of proliferative and apo-
ptotic attractors increases and decreases, respectively), and it increases the chance of noise-
induced transitions toward cancerous states. There is a dichotomy of views on the perturba-
tions that drive tumor progression: genetic and non-genetic perturbations [19, 20]. From the
perspective of genetic perturbations, tumor progression is driven by the accumulation of
genetic mutations. On the other hand, from the perspective of non-genetic perturbations,

Fig 3. Generality of the more frequent flickering state transition before developing into colorectal cancer. Colorectal tumorigenesis is driven by the
sequential accumulation of 20 gene mutations for 100 representative sequences for 20 gene mutations that drive colorectal tumorigenesis (S1 Table). Zero
on the x-axis means no mutation. (a) The frequency distribution of the occurrence point of the cancerous state along with the sequences that drove the
cancerous state for the various levels of noise intensity. For the noise intensities of 0, 0.01, 0.02, and 0.03, the cancerous state occurs in 97, 99, 99, and 97
sequences of the 100 sequences, respectively (Table 1). (b) The frequency distribution of the MF greater than the MFTH at every mutation occurrence along
with the sequences that drove the cancerous state for the various levels of noise intensity. We defined the upper threshold of MF (MFTH) to investigate
whether the flickering state transition becomes more frequent in the attractor landscape. For the noise intensities of 0.01, 0.02, and 0.03, an MF greater than
the MFTH appears in 46, 80, and 81 sequences of 99, 99, and 97 sequences that drove the cancerous state, respectively (Table 1). The y-axis indicates how
many sequences among the sequences that drove the cancerous state have an MF greater than the MFTH at a particular mutation occurrence.

doi:10.1371/journal.pone.0140172.g003

Table 1. The number of sequences for gene mutations that resulted in an MF greater than the MFTH.

100 sequences for colorectal
tumorigenesis

(S1 Table)

100 sequences regardless of
tumorigenesis

(S2 Table)

A B C D A B C D

NI = 0 97 3 0 100

NI = 0.01 99 46 1 0 0 0 100 3

NI = 0.02 99 80 1 0 0 0 100 22

NI = 0.03 97 81 3 2 0 0 100 22

A: the number of sequences that drove the cancerous state.

B: the number of sequences that drove the cancerous state and had an MF greater than the MFTH.

C: the number of sequences that did not drive the cancerous state.

D: the number of sequences that did not drive the cancerous state but had an MF greater than the MFTH.

doi:10.1371/journal.pone.0140172.t001
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tumor progression is promoted by the perturbation-induced state transition to cancer attrac-
tors, regardless of mutations. Our study presents the confluence of genetic and non-genetic
perturbations (mutations and noise) to drive tumor progression.

Conclusions
Under a noisy environment, the frequent flickering state transition occurs before a critical tran-
sition to an alternative state; from the impact of noise, the state of a system frequently switches
back and forth between the basins of attraction for alternative attractors, and it increases the
variation in the estimate of the respective basin sizes. In this study, we constructed a stochastic
Boolean network model of a molecular interaction network that contains an important set of
proteins known to be involved in cancer, and investigated the existence of a flickering state
transition, driving colorectal tumorigenesis by the sequential accumulation of gene mutations.
As a result, we have found that the flickering state transition is more frequent before a cell
becomes cancerous during colorectal tumorigenesis for a certain level of noise intensity, imply-
ing that the cell has left its stable operating state space. This finding provides significant insight
into the relationship between a cell system and its stability to noise. In addition, this finding
can only be revealed when considering the interplay between the structural constraints
imposed by the underlying molecular interaction network and the effect of genetic and non-
genetic perturbations (mutation and noise). Furthermore, if the occurrences of other diseases
are considered critical transitions from normal states to diseases states in the attractor land-
scape, we expect that their flickering state transitions during pathogenesis could also provide
the precritical phenomenon of disease occurrences.

Methods

Boolean modeling of the molecular interaction network related to
colorectal tumorigenesis
For the modeling of colorectal tumorigenesis, we used the cancer Boolean network model
proposed by Fumiã et al. [21]. Because we were mainly concerned with the overall dynamic
properties and stability of the network to noise, we used a simplified dynamics on the net-
work, which treats the nodes and arrows as logic-like operations [22, 23]. Fumiã et al.
explained that the model integrated the main signaling pathways involved in cancer and was
constructed based on currently known literature [24, 25] and the molecular interaction net-
work reported in the KEGG database [26]. In particular, subgraphs of the PI3K-AKT,
mTOR, MAPK, HIF1, TGF-beta, WNT, NF-Kb, TNF, cell cycle, p53, and apoptosis KEGG
pathways were included in the model [27–35]. Randomly sampled initial states converge into
one of 62 attractors (36 fixed points and 26 limit cycles), and these attractors are classified
into three groups characterized by specific phenotypes: apoptotic, proliferative, and quies-
cent. Fumiã et al. proved the validity of the model, showing that the predictions of the three-
phenotype attractors from the model under the combinations of 5 environmental conditions
are consistent with experimental results reported in [36–38]. S1 Fig shows this network con-
sisting of 96 nodes and 246 edges.

To numerically analyze the dynamical behavior of the cell system under the noise induced
by the inherent stochasticity in molecular interactions [13–16], we modified the original model
to have a stochastic noise procedure. To this aim, we defined a random procedure for changing
the state of each node at every time step. A noise intensity parameter NI is introduced so that
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the state of each node is randomly re-assigned at every time step as follows [39, 40]:

Oiðtþ 1Þ ¼
gðOi1;Oi2; . . . ;OiPðiÞÞ with probability 1� NI

1� gðOi1;Oi2; . . . ;OiPðiÞÞ with probability NI

; ð2Þ
(

where Oi is the state of the i
th node of total M nodes: {Oi}i = 1,. . ., M. The i

th node is connected to
P(i) nodes of the network (0<P(i)�M), which define the states of the regulators of the ith node:
{Oij}j = 1,. . ., P(i). g(Oi1, Oi2,. . ., OiP(i)) represents the next state of the i

th node determined based
on the logic statement on the current states of its regulators without a stochastic noise proce-
dure. NI is between 0 and ½. For NI = 0, the dynamics are wholly deterministic and fully gov-
erned by the rules referred in the S1 Text, while for NI = ½, they are wholly random.

Sampling procedure
To get the fractions of the basin size of attractors, 10,000 initial states for each environmental
condition (i.e., a total of 320,000 initial states for 25 combinations of environmental conditions)
were randomly sampled following a uniform distribution over the state space after having fixed
the given mutations and the environmental conditions. In the sampling procedure, each of the
91 nodes except for the 5 input nodes has an independent probability of ½ to be in either the
ON state or the OFF state (with the fixed input nodes, it ensures that sampling of each state for
all 291 states is uniformly made with the probability of (½)91). The random sampling of the
appropriate number of initial states produces fairly robust estimates of the basin sizes. S3 Table
shows the estimates of the basin sizes as the sampling size increases. Simulation results using
the random sampling of 10,000, 100,000, and 1,000,000 initial states for each environmental
condition (i.e., a total of 320,000, 3,200,000, and 32,000,000 initial states for 25 combinations of
environmental conditions, respectively) were compared, repeating the estimation procedure 3
times for each sample size, respectively. The results show that the random sampling of 10,000
initial states for each environmental condition is appropriate for these fairly robust estimates of
the basin sizes. In the S2 Text, the relative effects on the observed variation in the estimate of
the basin size by the genetic perturbation (mutation), the non-genetic perturbation (noise),
and the sampling procedure used in this study are discussed.

Gene mutation sequence
Colorectal tumorigenesis is driven by the sequential accumulation of somatic mutations in
oncogenes and tumor suppressor genes [2, 41–44]. Fearon summarized the types of somatic
mutations per gene in colorectal tumorigenesis: point mutation (nonsense, missense, and
frameshift), gene amplification, allele loss, and deletion [42]. On average, colorectal cancer can
have about 60 to 70 protein-altering mutations, of which about 3 to 7 may be driver gene muta-
tions, and the remaining ones may be passenger gene mutations [1, 45]. A driver gene mutation
directly or indirectly gives a selective growth advantage to a cell [46]. On the other hand, a pas-
senger gene mutation does not increase the selective growth advantage of a cell. In this study,
the number of gene mutations during colorectal tumorigenesis is defined as 20. In a sequence
of 20 gene mutations, the number of driver gene mutations and additional gene mutations are
defined as 5 and 15, respectively. They are sequentially accumulated to drive colorectal tumori-
genesis in the constructed model. The 5 driver genes [24, 41, 42, 47, 48] and the order of their
mutations [41, 42] for colorectal tumorigenesis are defined as APC, RAS, PTEN, SMAD, and
p53. The 15 genes are randomly selected from the protein nodes in the constructed model. In
particular, the RAF does not mutate because mutations of RAS and RAF rarely co-occur
together in the same patient with colorectal cancer [49]. Because a tumor is initiated by a driver

Precritical State Transition Dynamics in Colorectal Tumorigenesis

PLOS ONE | DOI:10.1371/journal.pone.0140172 October 6, 2015 9 / 12



gene mutation [2] and colorectal tumorigenesis is mostly initiated by an APC mutation [41],
an APC mutation is always added first, and the other 19 gene mutations are added in random
order, maintaining the order of the driver gene mutations. We generated 100 representative
sequences of 20 gene mutations to drive colorectal tumorigenesis (S1 Table).

Supporting Information
S1 Fig. Boolean network model for colorectal tumorigenesis. The model was proposed by
Fumiã et al. [21]. It consists of 96 nodes and 246 edges. Ninety-one nodes represent an impor-
tant subset of proteins involved in cancer, and 5 input nodes, represented as yellow circles,
express carcinogens, growth factors, nutrient supply, growth suppressors, and hypoxia that
give distinct environmental stimuli and stresses to a cell. Activating and inhibiting interactions
between nodes are expressed by blue arrows and red lines with a bar, respectively.
(TIF)

S2 Fig. The Euclidean distance between two vectors of (BA, BP, BQ), indicating the variation
in the estimate of the basin size by the sampling procedure.
(TIF)

S1 Table. 100 sequences for 20 gene mutations that drive colorectal tumorigenesis.
(XLSX)

S2 Table. 100 sequences for 20 gene mutations for which all the genes were randomly
selected and the mutations randomly occurred regardless of tumorigenesis.
(XLSX)

S3 Table. The estimate of the basin size according to the variation of the sample size.
(XLSX)

S1 Text. The update rules for the 96 nodes in the cancer Boolean network.
(PDF)

S2 Text. Relative effects on the observed variation in the estimate of the basin size by the
mutation, the noise, and the sampling procedure.
(PDF)
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