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Abstract
Community detection is the process of assigning nodes and links in significant communities

(e.g. clusters, function modules) and its development has led to a better understanding of

complex networks. When applied to sizable networks, we argue that most detection algo-

rithms correctly identify prominent communities, but fail to do so across multiple scales. As

a result, a significant fraction of the network is left uncharted. We show that this problem

stems from larger or denser communities overshadowing smaller or sparser ones, and that

this effect accounts for most of the undetected communities and unassigned links. We pro-

pose a generic cascading approach to community detection that circumvents the problem.

Using real and artificial network datasets with three widely used community detection algo-

rithms, we show how a simple cascading procedure allows for the detection of the missing

communities. This work highlights a new detection limit of community structure, and we

hope that our approach can inspire better community detection algorithms.

Introduction
Over the course of the last decade, network science has attracted an ever growing interest since
it provides important insights on a large class of interacting complex systems. One of the fea-
tures that has drawn much attention is the structure of interactions highlighted by the network
representation. Indeed, it has become increasingly clear that global structural patterns emerge
in most real networks [1]. One such pattern, where links and nodes are aggregated into larger
groups, is called the community structure of a network.

While the exact definition of communities is still not agreed upon [2], the general consensus
is that these groups should be denser than the rest of the network. The notion that communities
form some sort of independent units (families, circles of friends, coworkers, protein complexes,
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etc.) within the network is thus embedded in that broader definition. It follows that communi-
ties represent functional modules, and that understanding their layout as well as their organiza-
tion on a global level is crucial to a fuller understanding of the system under scrutiny [3, 4].

By developing techniques to extract this organization, one assumes that communities are
encoded in the way nodes are interconnected, and that their structure may be recovered from
limited and/or incomplete topological information. Various algorithms and models have been
proposed to tackle the problem, each featuring a different definition of the community struc-
ture while sharing the same general objective. Although these tools have been used with success
in several different contexts [2, 5, 6], a number of shortcomings are still to be addressed.

The paper is organized as follows. First, we argue that current algorithms tend to overlook
small communities found in the neighborhood of larger, denser ones, under very general con-
ditions. In the following sections, we investigate the exact mechanisms that cause this so-called
shadowing phenomenon in 3 widely used algorithms. Then, we propose and develop a general
cascading approach to community detection that addresses this specific problem. Next, we vali-
date our first implementation of the cascading method by applying our algorithms to real com-
plex networks, and then to synthetic benchmark networks. The former set of calculations acts
as a proof of concept and shows that, despite its apparent simplicity, the algorithm detects sev-
eral shadowed communities. The latter set helps us determine under which conditions the
algorithm is expected to perform adequately. Finally, based on our results, we gather in the
Conclusion ways in which our method can be improved.

Resolution limit due to shadowing
It is known that a resolution limit exists for a large class of community detection algorithms
that rely on the optimization of a quality function over non-overlapping partitions of the net-
work. This resolution limit has been rigorously shown to affect modularity [7, 8], map equation
[9, 10] and description length [11] based methods. It stems from the fact that the number or
the size of the smallest detectable community, is related to the size of the network [8, 11, 12].
As a result, clearly separated clusters of nodes are sometimes considered as one larger commu-
nity, because they are too small to be resolved by the detecting algorithm. A suggested solution
[8] is to conduct a second analysis on all detected communities to verify that no smaller inter-
nal modules can be identified.

In the majority of real world applications, the optimal covering of a network should include
overlapping communities, since they capture the multiplicity of functions that a node might ful-
fill [5]. We argue that in the overlapping case, a different resolution limit arises in detection
algorithms that rely on some global resolution parameter, due to an effect that we refer to as
shadowing. The resolution parameter may be implicit or explicit, fixed or flexible.

In essence, shadowing occurs when large/dense communities act as screens preventing the
detection of smaller/sparser adjacent communities. To illustrate this phenomenon, we study
three detection algorithms based on two different paradigms of community structure, namely
nodes and links communities. Note that while improved versions of these algorithms have
been proposed [13–16], none raises, let alone addresses the shadowing problem.

Clique percolation algorithm
The clique percolation algorithm (CPA) [6] defines communities as maximal k-clique percola-
tion chains, where a k-clique is a fully connected subgraphs of k nodes, and where a percolation
chain is a group of cliques that can be reached from one adjacent k-clique to another [17]. Two
k-cliques are said to be adjacent if they share k − 1 nodes. The complete community structure
is obtained by detecting every maximal percolation chains for a given value of k. Because
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percolation chains consist of k-cliques sharing k − 1 nodes, overlapping communities occur
whenever two cliques share less than k−1 nodes. It is noteworthy that the definition of a com-
munity in this context is consistent with the general description of communities outlined in the
Introduction. Indeed, k-clique percolation chains are dense by definition, and a sparser neigh-
boring region is required to stop a k-clique percolation chain, ensuring that communities are
denser than their surroundings.

We expect shadowing since the size of the cliques, k, acts as a global resolution parameter.
Indeed, in principle, low values of k lead to a more flexible detection of communities as a smaller
clique size allows a wider range of configurations. However, low values of k often yield an exces-
sively coarse-grained community structure of the network since percolation chains may grow
almost unhindered and include a significant fraction of the nodes. In contrast, large values of k
may leave most of the network uncharted as only large and dense clusters of nodes are then
detected as communities. An optimal value corresponding to a compromise between these two
extreme outcomes must therefore be chosen. For the purpose of this study, we use the lowest
value of k such that no extensive community is detected. As suggested in [6], the largest commu-
nity is considered extensive if it contains about twice as many nodes as the second largest com-
munity. As this value of k attempts to balance two unwanted effects for the network as a whole,
a shadowing effect is expected to arise causing the algorithm to overlook smaller communities,
or to merge them with larger ones. See Fig 1 for an illustration of this effect.

Greedy clique expansion
The Greedy Clique Expansion (GCE) algorithm [18] is superficially similar to the CPA. Both
algorithms grow communities starting from a set of very dense initial communities, or seeds.
However, GCE relaxes the definition of communities used in CPA in two different ways. These
slight modifications propel GCE to the status of a “state of the art” algorithm that works well
even for hard detection problems [16]. First, GCE uses maximal cliques of at least k nodes as
seeds whereas CPA is seeded with cliques of a fixed number of nodes, which therefore does not

Fig 1. Shadowing effect for the CPA. Left panel: The yellow region is the sole detectable community with k = 4, 5, while its union with the black region
corresponds to the community detected with k = 3. This pathological example illustrates the two undesirable extreme effects mentioned in the main text:
either most of the network is detected as a single community, or only large and dense clusters are detected. No optimal value of k can be found in this case.
Right panel: The structure of this subgraph nevertheless suggests that it could be decomposed in a dense community in the middle, surrounded by smaller
communities. If the links involved in the dense community (detected with k = 4 or 5) were removed, a second iteration of the algorithm with k = 3 would lead to
the detection of several smaller communities that were overshadowed by the larger one.

doi:10.1371/journal.pone.0140133.g001

A Shadowing Problem in the Detection of Overlapping Communities

PLOS ONE | DOI:10.1371/journal.pone.0140133 October 13, 2015 3 / 19



exclude embedded cliques. Second, GCE uses a less stringent growth process: it maximizes a fit-
ness function instead of proceeding through strict clique percolation chains. Essentially, GCE
expands maximal cliques by sequentially incorporating the nodes that increase the fitness of a
community [19]. It follows that communities naturally overlap, because they are expanded
locally, independent of each other. In fact, the amount of overlap is so important that one must
discard the communities that are too similar [18].

The pervasive overlap and the fact that k acts as a resolution parameter both lead to shadow-
ing. Indeed, to avoid excessively large and redundant communities, one must typically use
maximal cliques of size k� 4 as starting seeds. Isolated triangle based communities that cannot
be reached by expanding a nearby seed are therefore overlooked. More interestingly, maximal-
cliques are sometimes discarded, since the algorithm ignores strongly overlapping communi-
ties. Both of these effects are illustrated in Fig 2.

Link clustering algorithm
The link clustering algorithm (LCA) [5] aggregates links—and hence the nodes they connect—
into communities based on the similarity of their respective neighborhood. Denoting eab the
link between nodes a and b, the similarity of two adjacent links eik and ejk (attached to a same
node k called the keystone) is quantified through a Jaccard index

Sðeik; ejkÞ ¼
jnþðiÞ

\
nþðjÞj

jnþðiÞ
[

nþðjÞj
; ð1Þ

where n+(q) is the set of node q and its neighbors, and jn+(q)j is the cardinality of the set. Fig 3
illustrates the calculation of S(eik, ejk).

Once the similarity has been calculated for all adjacent pairs of links, communities are built
by iteratively aggregating adjacent links whose similarity exceeds a given threshold Sc. This
algorithm naturally allows communities to overlap (to share nodes) since a node can belong to
as many communities as its degree.

Again, a shadowing effect is expected, since the similarity threshold Sc acts as a global reso-
lution parameter. To elucidate the global aspect of Sc, one must describe how its value is chosen

Fig 2. Shadowing effect in GCE. Left panel: The seeds (circled nodes) are expanded into two slightly
overlapping communities (blue and green nodes) with k = 4. The orange triangle is not merged with the blue
community, nor assigned, unless one select seeds of size k� 3, which is not always possible if most of the
network is dense. In such case. this value of k would lead to the detection of large, highly redundant and
meaningless communities. Right panel: GCE expands the green and blue seeds (circled) to include the four
nodes in the middle. The two communities are too similar, and one is discarded. This leaves the other
maximal clique unassigned.

doi:10.1371/journal.pone.0140133.g002
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(as proposed in [5]). Let us first define the density ρj of community j as

rj ¼
dj � ðnj � 1Þ

njðnj�1Þ
2

� ðnj � 1Þ
; ð2Þ

where dj and nj are the number of links and nodes in community j, respectively. Considering
that a community of n nodes must at least include n − 1 links, ρj computes the fraction of
potential “excess links” that are present in the community. The similarity threshold Sc is chosen
to maximize the overall density of the communities

rðScÞ ¼
1

D

X

j2CðScÞ
djrj ð3Þ

where CðScÞ is the set of communities detected for a given Sc, and where D is the total number
of assigned links. ρ(Sc) is typically a well-behaved function of Sc that displays a single maximal
plateau [5]. The value of Sc corresponding to this plateau is selected since it leads, on average,
to the denser set of communities, hence its global nature.

Following an analysis similar to that presented in the CPA case, we expect small communi-
ties to be left undetected as they are eclipsed by larger and denser ones. This is mainly due to
the use of a resolution parameter (Sc) that cannot be adjusted locally. For instance, links in a
small community could exhibit vanishing similarities because some of the associated nodes are
hubs (nodes of high degree). This is especially true in the vicinity of large and dense clusters
whose nodes are typically of high degree (see Fig 4 for an illustration).

Fig 3. Calculation of the similarity between two links. The sets n+(i) and n+(j) are respectively colored in
green and blue. From Eq (1), we have S(eik, ejk) = 6/13. Note that apart from nodes i and j, the neighboring
nodes of the keystone k (colored in yellow) are not considered in the calculation of S(eik, ejk).

doi:10.1371/journal.pone.0140133.g003
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Cascading detection
Figs 1 and 4 suggest that the inability to detect small or sparse communities in the vicinity of
larger or denser ones (the shadowing effect) could be circumvented by removing the obstruct-
ing structures from the networks. We formalize this idea and propose a cascading approach to
community detection that proceeds as follows:

1. identify large or dense communities by tuning the resolution parameter;

2. remove the internal links of the communities identified in step 1;

3. repeat until no new significant communities are found.

The first iteration of this algorithm detects the communities that are normally targeted by
detection algorithms, thus ensuring that the cascading approach retains the main features of
the “canonical” community structure. After removal of links involved in the detected commu-
nities, a new iteration of the detection algorithm is then performed on a sparser network in
which previously hidden communities are now apparent. This process is repeated until a final
and more thorough covering of the network into overlapping communities is obtained. Note
that the resulting cover is not necessarily hierarchical, but simply more complete.

For example, in the case of the CPA, a high value of k (which leads to the traditional com-
munity structure) is selected for the first iteration of the algorithm. The network then becomes
significantly sparser since all cliques of size k0 > k are destroyed by the removal of internal
links in step 2. Subsequent iterations of the detection algorithm can then be conducted at lower
k, unveiling finer structures, as the pathways formed by dense cluster are no longer available.
The process naturally comes to a halt at k = 3, since k = 2 only detects the disjoint components
of the network.

A similar strategy is employed to uncover hidden communities with GCE. Seeds of at least
k = 4 nodes are first used, until no seeds remain. Then, seeds of smaller size k = 3 are used.
Once again, the process halts when no seeds remain. In the case of the LCA, the detection is
stopped before the partition density reaches zero, because ρ(Sc)’ 0 only yields chains of links
(the keystone ensures a non-vanishing similarity), which in general are not classified as signifi-
cant communities.

It is worth mentioning that conducting this repeated analysis does not increase the compu-
tational cost significantly, because the cascading algorithm scales exactly like the community
detection algorithm used at each iteration, and because the number of iterations that can be
carried is small (typically less than 10). Moreover, the size of the networks (number of links
and nodes) effectively decreases after each iteration, further reducing the cost (numerical evi-
dences will be presented in the next Section).

Results and Discussions

Real networks
To investigate the efficiency and the behavior of the cascading detection, we first apply our
approach to 8 small real network datasets: arXiv cond-mat circa 2004 (hereafter: arXiv) [6],
University Rovira i Virgili email exchanges (Email) [20], Gnutella peer-to-peer data (Gnutella)
[21], internet autonomous systems (Internet) [4], Pretty-Good-Privacy data exchange (PGP)
[22], Western States Power Grid (Power) [23], Protein-protein interactions (Protein) [6] and
word associations (Words) [6]. Their properties are summarized in the Supporting Informa-
tion (S1 Table).

First and foremost, our results show that cascading detection always improves the thor-
oughness of the community structure detection. Fig 5 shows that while a traditional use of the
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Fig 4. Shadowing effect for the LCA. The pairwise unions of the three sets n+(a), n+(b) and n+(c) contain
considerably more elements that their corresponding intersections since nodes a, b and c all have high
degrees. According to Eq (1), this implies that eab, ebc and eac share lower similarities—namely S(eac, ebc) = S
(eab, ebc) = 3/22 and S(eab, eac) = 3/17—than if the triangle had been completely isolated (S(eac, ebc) = S(eab,
ebc) = S(eab, eac) = 1). It is therefore likely that these three links will be left unassigned.

doi:10.1371/journal.pone.0140133.g004

Fig 5. Fraction of remaining assignable links for real networks using the cascading approach. (Left) The number of unassigned links after one
iteration of the CPA (corresponding to a typical use) is shown in yellow, and the final state is shown in dark brown. Whenever more than 2 iterations were
performed, the intermediate results are shown in orange. For theGnutella network, the optimal value was k = 3 at the first iteration, leading to an immediate
complete detection of the community structure. For the purpose of selecting k, we consider that a cover contains an extensive community if the largest
community is twice as large as the second largest community. In the case of the Internet and Protein networks, which contains large unbreakable clique, we
used a looser criterion (c � nlargest < n2nd largest, with c = 0.25 and c = 0.30, respectively). (Center) Results of a canonical use of GCE are shown in beige and
shades of red correspond to subsequent iterations. The final state is shown in dark red. (Right) Results of a canonical use of the LCA are shown in white and
shades of blue correspond to subsequent iterations. The final state is shown in dark blue. Note that all results are normalized to the number of assignable
links in the original network. For the CPA, this corresponds to the number of links that belong to at least one 3-clique. For GCE, this corresponds to the
number of links that belong to a component that contains at least one k-clique (k� 3). For the LCA, a link is considered assignable if at least one of the two
nodes it joins have a degree greater than one. Numerical results are summarized in the Supporting Information (S2 Table).

doi:10.1371/journal.pone.0140133.g005
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algorithms yields partitions with high fractions of unassigned links, the cascading approach
leads to community structures where this fraction is significantly reduced. More precisely, the
percentage of remaining assignable links drops from 54.1% to 26.3% on average in the case of
CPA, from 57.8% to 27.7% in the case of GCE, and from 41.0% to 5.3% in the case of LCA.
Note how cascading detection is more efficient when applied to the LCA. This is due to the fact
that the effective network gets increasingly sparse with each iteration, and that link clustering
works equally well on sparse and dense networks, whereas clique based methods requires a
high level of clustering to yield any results. We partially account for this phenomenon by differ-
entiating between assignable and non-assignable links. Links that are not part of any triangles
cannot be assigned to a community by the CPA since they can never be part of a k-clique
(k� 3). Similarly, links that are not part of a component that contains at least one k-clique
(k� 3) can never be assigned by GCE, because the component contains no potential seed.

Although the increasing sparseness of the network hinders the performance of the CPA and
GCE, it also reduces the cost of the subsequent detection steps. Fig 6 presents the average rela-
tive increase in running time caused by a cascading approach, for all algorithms. Recall that the
cascading detection meta-algorithm belongs to the same complexity class as the original algo-
rithm, such that the total running time only differ by a multiplicative factor α. Even when
accounting for the overhead associated with file handling and other miscellaneous operations,
we find an average of α = 1.73 (CPA), α = 3.50 (GCE) and α = 1.39 (LCA) for this set of small
real networks. These values of α are heavily skewed by the results on the Power network; this
network is so small (N = 4 941 nodes, L = 6 594 links, L0 = 1 371 links in k-cliques) that the
majority of the time is spent dealing with file system operations. Gnutella is equally sparse,
with less than 5% of nodes belonging to at least one clique. This leads to a similar slowdown for
GCE (CPA cannot be applied more than once).

Fig 7 confirms that as the cascading detection proceeds, smaller and previously masked
communities are detected, regardless of the algorithm used. For instance, Fig 7 (left panel)
clearly shows how a significant number of 3-cliques are overlooked by the “traditional” use of
the CPA. However, large communities are also found after many iterations, suggesting that the
shadowing effect is not restricted to small communities.

Visual inspection of the detected communities not only verifies the quality of the hidden
communities, but also confirms our intuition of the shadowing effect. A look at Fig 8 (top left
panel) shows a triangle detected at the third iteration (out of five) of the LCA on theWords

Fig 6. Average relative increase in running time due to iterated application of detection algorithms on
real networks. (Left) Increase in running time for the CPA algorithm. (Center) Increase in running time for the
GCE algorithm. (Right) Increase in running time for the LCA algorithm. Numerical results are summarized in
the Supporting Information (S2 Table).

doi:10.1371/journal.pone.0140133.g006
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network. This structure was missed during the initial detection due to the high degree of its
three nodes, as speculated in Fig 4. Similarly, although k = 4 was initially chosen (according to
the previously discussed criterion) for the CPA on theWords network, a second iteration using
k = 3 has permitted the detection of other significant communities such as the one shown in
Fig 8 (bottom panel).

More complex structures and correlations are also brought to light using this approach. Fig
8 (top right panel) presents a star of high-degree nodes detected at the third iteration of the
LCA on the word association network. None of these nodes are directly connected to each
other, but they share many neighbors. Hence, once the main communities were removed—
here semantic fields related to toys, theater and music—the shadow was lifted such that this
correlated, but unconnected structure, could be detected. Whether this particular structure
should be defined as a relevant community is debatable. Keeping in mind that there are no con-
sensus on the definition of a proper community in complex networks, the role of algorithms,
and consequently of the cascading method, is to infer plausible significant structures.

Real networks with meta-information
Important insights can be gained by applying detection algorithms to networks that are accom-
panied by meta-information. In real networks, meta-information such as declared affiliations
(e.g. individuals in social networks) can be be used to define functional groups of nodes [24]. It
has been shown that, in general, functional communities do not correspond to the communi-
ties typically uncovered by detection algorithms. In other words, the traditional mathematical
definition of communities (relatively densely connected groups of nodes) seldom capture the
structure of the functional subunits of real complex networks [24, 25]. Regardless of this differ-
ence, identifying functional communities is often an implicit or explicit objective of detection
algorithms (see for example References [1, 2, 5, 7, 13, 16, 18, 26–28]). For comparison pur-
poses, we therefore apply our meta-algorithm to a few real networks with functional communi-
ties inferred from meta-information.

We study 3 large networks downloaded from the SNAP database [24]: the Amazon product
network (Amazon), the DBLP computer science co-authorship network (DBLP), and the

Fig 7. Distribution of the size of the detected communities (in terms of nodes) at each iteration of the cascading approach. (Left panel) CPA, (Center
panel) GCE, and (Right panel) LCA applied to theWords network. The distributions obtained after the first iteration are shown using light gray square
markers, and subsequent iterations (whenever required) are respectively marked by circles, triangles, rhombuses, pentagons and inverted triangles. Filled
black markers indicate the last iteration. In the center panel, we omit for clarity the iterations that uncover very few communities (3rd, 4th, 7th and 8th).
Interestingly, the size of the detected communities roughly follows the same distribution at each iteration. Therefore, the final size distribution (blue line) has
also roughly the same shape as the one obtained with standard algorithms. Although this is not a direct proof, it suggests that the communities unveiled
through cascading are similar to the ones detected by a “traditional” use of the detection algorithm. In other words, these communities are significant and are
not simple artifacts of the cascading approach.

doi:10.1371/journal.pone.0140133.g007
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YouTube friendship social network (YouTube). The functional communities are determined
by categories of products, conferences and journals where authors publish, and user groups,
respectively. Their properties are summarized in the Supporting Information (S3 Table).

Because the considerable time and storage space requirements of clique based algorithms
make them unsuitable for such large (L* 106) and clustered networks, we have restricted our-
selves to the LCA algorithm for the remaining of the section. Fig 9 presents the complete results
of our numerical experiments.

First and most importantly, we find that the cascading approach either increases the nor-
malized mutual information (NMI) [19] significantly or does not affect it (see top left panel of
Fig 9). In essence, the NMI is an information theoretic measure that tells us how much infor-
mation two different sets of communities share. It penalizes over- and under-fitting, allows for
overlapping communities, and is limited to the interval [0, 1]; comparing a set of communities
to itself (i.e. a perfect match) yields a NMI of 1, whereas comparing a set of communities to a
random guess yields a NMI close to 0. Hence, the increase in NMI observed for Amazon and

Fig 8. Sample of the communities detected with the cascading approach on theWords network. (Top
left panel) Triangle detected with LCA at the third iteration. (Top right panel) Star detected with LCA at the
third iteration. (Bottom panel) Dense community detected with the CPA at the second iteration. The detected
communities are shown (red) as well as their neighboring nodes (grey). Red and grey labels identify
respectively semantic fields and individual words.

doi:10.1371/journal.pone.0140133.g008

A Shadowing Problem in the Detection of Overlapping Communities

PLOS ONE | DOI:10.1371/journal.pone.0140133 October 13, 2015 10 / 19



YouTubemeans that a cascading algorithm recovers functional communities much more effi-
ciently, whereas the quality of the description does not change significantly with subsequent
iterations of the algorithm on DBLP.

The nature of the functional communities can explain these 2 contrasting behaviors. Indeed,
the very definition of what qualifies as a link is closely related to the definition of the functional
communities of the Amazon and YouTube networks. Co-purchased products are likely to
belong to the same category (e.g. a shirt and matching pants, a cellphone and an extra charger).
Likewise, social groups are both encouraging new friendships and emerge from existing friend-
ships. Hence, it should be expected that Amazon’s and YouTube’s functional communities are
at least superficially similar to structural communities. This intuition is confirmed by the high
average density of their respective functional communities (hρi = 0.77 and hρi = 0.73,
respectively).

In contrast, the DBLP network is a prime example of systems where links and functional
communities are more loosely related. Scientific journals and conferences are large organiza-
tions. Many authors that never collaborated are thus regrouped in larger, sparser communities
(hρi = 0.52). However, these vast and sparse communities do not correspond to the typical
mathematical definition of a structural community. As a result, insignificant communities are
detected on average, especially since the cascading algorithm aims to uncover small and shad-
owed communities. Ultimately, our analysis suggests that even if they are not ubiquitous,

Fig 9. Case study of real networks with meta-information, using the cascading LCAmeta-algorithm.Complete detection is achieved with 6 iterations
for Amazon (black squares), 8 iterations for DBLP (orange circles), and 10 iterations for the YouTube (blue triangles). (Top left panel) Normalized mutual
information as a function of the number of iterations. (Top center panel) Selected similarity threshold at each iteration (cf. Eq (1)). (Top right panel) Density of
the optimal link partition, in the sparser network. (Bottom left panel) Elapsed fraction of the total running time, averaged over 10 independent realizations.
(Bottom center panel) Cumulative fraction of assigned edges. (Bottom right panel) Number of detected communities at each iteration. Numerical results are
summarized in the Supporting Information (S4 Table).

doi:10.1371/journal.pone.0140133.g009
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shadowed functional communities naturally occur in real networks and our cascading algo-
rithm can uncover some of them.

Second, the evolution of the structure under cascading detection is also of interest. In all
cases, the network shrinks rapidly, both in term of assignable edges (Fig 9, bottom center
panel) and number of detected communities (bottom right panel). In turn, this implies that
only a modest computational cost is associated to the cascading approach (bottom left panel).
The increasing sparseness of the networks (bottom center panel), resulting in a smaller similar-
ity between links (top center panel) and a rapidly decreasing density (top right panel), suggests
however that there is room for improvement. Internal link removal is destructive since infor-
mation about shadowed communities is lost in the process, as some of the internal links are
shared by more than one community [5]. Using more a more nuanced criterion for link
removal could enhance the quality of the detected communities while further reducing the
uncharted portion of the network [26, 27, 29]. Nevertheless, by using the simplest implementa-
tion of our cascading detection idea, we obtain surprisingly good results. Our results suggest
that shadowing is not only due to the density of the prominent communities but also to the
stiffness of the resolution parameter. In essence, by using a cascading approach, this parameter
is allowed to vary artificially from a region of the network to the other, as the algorithm is effec-
tively applied to a new network—partially retaining the structure of the original network—at
each iteration. A once rigid global parameter can now flexibly adapt to small changes in the
topology of the network to better reveal subtle structures.

Benchmark networks
The previous sub-section indicates that the cascading approach performs better when func-
tional communities are dense, i.e. similar to structural communities. This hypothesis can be
investigated with artificial networks generated specifically to exhibit known structural commu-
nities (called built-in communities). We apply the cascading LCA to Lancichinetti-Fortunato
[30] networks (LF networks). LF networks can be rather precisely parametrized: in particular,
one can specify the average degree hki, the mixing parameter μ, the overlap fraction f, the mem-
bership number O, and the scaling exponent τ2 of the community size distribution (the distri-
bution follows a power-law).

These parameters can be used to tune the difficulty of the community detection problem.
The mixing parameter dictates the fraction of external links. When μ< 0.5, the majority of
links occur within communities, whereas links are more likely to connect different communi-
ties for μ> 0.5. This latter case poses a harder challenge to detection algorithms, since commu-
nities are arguably no longer well-defined [30].

In the standard implementation of [30], the fraction f of overlapping nodes and the mem-
bership number O allow for a limited control of the membership distribution (the membership
m of a node is the number of communities to which it belongs) By construction, the (1 − f)N
non-overlapping nodes have a membership of one, while the fN overlapping nodes belong to O
communities, such that the membership distribution is of the form

pðmÞ ¼ d1;mð1� f Þ þ dO;mf : ð4Þ

For f = 0, the built-in community structure consists of non-overlapping communities, whereas
the system enters a highly overlapping regime when f! 1. The detection problem is not neces-
sarily more difficult at high value of f; it simply requires a different class of algorithms.

The last parameter of interest is τ2, the scale exponent of the community size distribution.
Since this distribution follows a power-law, its average is only well-defined for τ2 > 2, whereas
its variance goes to infinity whenever τ2 < 3. Thus, as τ2 decreases, increasingly large
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communities appear. Because LF networks do not control explicitly for size correlation in
neighboring communities, some of the large communities happen—through pure chance—to
share nodes with very small communities. In fact, it can be verified that some of these large
communities neighbor much smaller communities, despite some trace of assortative mixing
based on community sizes (See S2–S3 Figs).

In Fig 10, we investigate a wide spectrum of possible structures by generating LF networks
for f 2 [0, 1] and τ2 2 [1.25, 3.75], with N = 5 000 nodes of average degree hki = 20, member-
ship numberO = 2 and mixing parameters μ = 0.1 (left panel) and μ = 0.6 (right panel). A refer-
ence NMI is computed by comparing the built-in community structure with the communities
detected by the LCA (See S1 Fig). The cascading approach is then applied to the same set of
networks, and a new value of the NMI value is calculated. The relative change in normalized
mutual information ΔNMI can then be computed.

It is useful to split the joint f × τ2 space in 4 qualitative different regions of interest to analyze
the results of Fig 10:

1. high f, low τ2: overlapping with heterogeneous community sizes;

2. high f, high τ2: overlapping with homogeneous community sizes.

3. low f, low τ2: non-overlapping with heterogeneous community sizes;

4. low f, high τ2: non-overlapping with homogeneous community sizes;

Shadowing is possible in regions where the built-in communities overlap appreciably, i.e.
regions 1–2. However, it is more likely to occur when large community neighbors very small
communities, i.e. in region 1. This is where the cascading approach excels. Since region 1 is
where most real-world networks reside [5, 6], this further supports our claim that shadowed
communities are a common occurrence in complex networks, and that cascading detection is a
viable solution.

The results of regions 2, 3 and 4 highlight the fact that the cascading approach is not a silver
bullet. Because shadowing happens less frequently in regions 3 and 4 (no or little overlap),
repeated applications of the detection algorithm sometimes decrease the quality of the final

Fig 10. Comparison of the communities detected with the pure LCA and a cascading version of the
LCA, for LF networks. Relative change in normalized mutual information obtained by comparing the
structure detected by the pure LCA and the cascading LCA, when applied to LF networks. All results are
discrete points, but solid curves are added to guide the eye. (Left panel) Lightly mixed LF networks with a
mixing parameter μ = 0.1. (Right panel) Heavily mixed LF networks μ = 0.6. We use networks of N = 5 000
nodes of average degree hki = 20, that belongs toΩ = 2 communities (if they overlap). The fraction of
overlapping nodes goes from 0 to 1 (y-axis). The value of the exponent of the community size distribution τ2
ranges from 1.25 to 3.75 (x-axis). Averaged data is shown on the color map (10 different networks for each
point), while the distribution of raw data is shown in the plots to the right and bellow (black dots). Within raw
data plots, the solid curve shows the average and the gray area indicates the standard deviation.

doi:10.1371/journal.pone.0140133.g010
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partition, through overfitting. Furthermore, since the effects of shadowing are more pro-
nounced when community sizes are heterogeneous, the cascading detection approach is also
prone to overfitting in regions 2 and 4. Nonetheless, it is important to realize that the changes
in NMI are relative, and that improvements in quality are more frequent and more pronounced
than their opposites (See S5 Table).

In a normal situation, where built-in communities are not known, the results shown in Fig
10 call for caution, because one cannot verify the quality of the detected communities a posteri-
ori. However, since we have found that the cascading approach works well on networks with
overlapping communities of heterogeneous sizes, the communities detected on the first itera-
tion can give support for the decision to cascade or not. More precisely, if communities of
homogeneous sizes are detected on the first iteration, we have no reason to expect shadowing
effects to be present. Further detection might only cause the algorithm to simply group random
links together. Conversely, if a heterogeneous community structure is detected, than one can
expect shadowing to have occurred. In these cases, the algorithm can find remaining relevant
correlations and structures to compute. Fig 11 formalizes this intuition. We confirm that the
first iteration LCA captures the variability in community sizes of the built-in structure. More
importantly, we find that high heterogeneity correlates with an increase in NMI. In general, the
heterogeneity in size can be quantified by the coefficient of variation cv of the size distribution,
i.e. the ratio of its standard deviation to its mean. If we maximize the average NMI of the final
outcome based on the variability of the size distribution detected at the first iteration, then cv�
1.15 is the optimal threshold for the low mixing (μ = 0.1) case, whereas the optimum threshold
lies in a wide range [0, 0.82] for the high mixing case. A precise and general criterion cannot be
formulated, because its specifics depends on the hidden parameters of the network and algo-
rithm of choice, as illustrated by this example.

Nonetheless, we can assess the prevalence of shadowed structural communities in real net-
works based on the above qualitative criterion, because their detected community structure is
similar to that of LF networks (See S6 Table for detailed results) Summarily, LCA uncovers
weakly mixed community structures (hμi = 0.13) with average memberships number (hOi =
2.06), and network densities (hρi = 0.002) that all roughly correspond to the parameters used in
the left panel of Fig 10. The coefficient of variations cv suggests that shadowing of structural
communities definitely occurs in the Email (cv = 5.51), and Internet networks (cv = 2.42). No
definitive conclusion can be drawn for the other networks, since their calculated variability of cv
> 0.7 lie slightly below the optimal threshold for lowmixing cases, except for the Power network
(cv = 0.48). These results must be considered with care since LF networks do not capture all the

Fig 11. Heterogeneous community sizes at the initial iteration of the LCA to LF networks.Coefficient of
variation cv of the community size distribution for (left panel) lightly mixed LF networks with a mixing
parameter μ = 0.1 and (right panel) heavily mixed LF networks μ = 0.6. The coefficient of variation is the ratio
of the standard deviation over the mean. See the caption of Fig 10 for explanations of the layout of this figure.

doi:10.1371/journal.pone.0140133.g011
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structural complexity of real networks [30]. Other qualitative indicator such as the change in
remaining assignable edges (Fig 5), and the correlation between the size of neighboring commu-
nities pairs (See S3 Fig and analysis therein) suggest that shadowing occurs in all cases.

Finally, we find once again that the cascading approach involves modest increase in running
time (See Fig 12). Interestingly, we find that the cascading approach involves a larger increase
in running time whenever the detected communities are relevant. The Pearson correlation
coefficient of the relative increase in NMI and running time amounts to 0.254 and 0.292 for μ
= 0.1 and μ = 0.6. The density of the remaining structures explains nicely both the increase in
running time and the quality of the detected communities. If the remaining structure is dense
enough, the costly operation of detecting structural communities boosts the running time of
the remaining iterations. Conversely, if the remaining structure is sparse and uninteresting, the
remaining detection steps are spent agglomerating random links together, a fast operation.

Conclusion and Perspective
In conclusion, we have defined the shadowing effect in community detection and have illus-
trated the types of scenarios where it might arise. This effect calls for a simple solution: a cas-
cading use of detection algorithms. This meta-approach has been shown to reduce the hidden
portion of a network, and to find relevant communities in real and benchmark networks when
shadowing does occur.

We have shown that a simple implementation of the cascading philosophy can indeed
unveil communities that were initially overshadowed by larger and/or denser communities.
Interestingly, in both real datasets and benchmarks, cascading approach appears more likely to
detect meaningful remaining communities whenever subsequent iterations of the detection
algorithm still required significant computing time. As observed in the LF benchmarks, this sit-
uation occurs with networks that we know more sensitive to shadowing effects (per definition):
strongly overlapping communities with heterogeneous sizes.

The current implementation is meant to be the first level of cascading approaches, opening
the way to more subtle meta-algorithms. For instance, one could construct an extreme version,
where communities are detected one by one (in the spirit of Ref. [26]). Such an approach
would enable a perfect adaptation of the resolution parameter to the situation at hand. And
while it would certainly come with significant computational cost, it could lead to the mapping
of the community detection problem unto simpler problems. If we accept to detect communi-
ties one at a time, the detection of the most significant ones can be done through well

Fig 12. Relative increase in running time caused by the cascading approach. Raw running times are
computed to the millisecond precision and averaged over 10 independent and complete iterations. The
network generating process is not included in the total running time. (Left panel) Lightly mixed LF networks
with a mixing parameter μ = 0.1. (Right panel) Heavily mixed LF networks μ = 0.6. See the caption of Fig 10
for explanations of the layout of this figure.

doi:10.1371/journal.pone.0140133.g012
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optimized methods, such as modularity optimization [28], which would otherwise be incapable
of detecting overlapping communities. We could also envision cascades involving more than
one algorithm to best suit the structure remaining after each iteration, or cascades correlating
the community structure obtained at one iteration with those obtained previously. The possi-
bilities for further developments are thus numerous, and we are hopeful that the present ver-
sion may serve as a benchmark for future work. In fact, recent work [27] has already expanded
upon the implementation of the cascading philosophy based on an earlier pre-print version of
our paper.

Any significant improvement in community detection will help shrink the gap between ana-
lytical models and their real network counterparts. The difficult problem of accurately model-
ing the dynamical properties of real networks might be better tackled if one includes complex
community structure through comprehensive distributions or solved motifs [31, 32], two
applications for which a reliable and complete partition is fundamental.

Finally, in addition to the technical developments presented in this paper, perhaps the most
insightful observation can be simply stated: since community structure occurs at all scales,
global partitioning of overlapping communities must be done sequentially, cascading through
the organizational layers of the network.

Supporting Information
S1 Table. Description and properties of real networks without meta-information used in
this study.
(PDF)

S2 Table. Detailed summary of the numerical results presented in Figs 5 and 6.
(PDF)

S3 Table. Description and properties of real networks with meta-information used in this
study.
(PDF)

S4 Table. Detailed summary of the numerical results presented in Fig 9.
(PDF)

S5 Table. Detailed summary of the numerical results presented in Fig 10.
(PDF)

S6 Table. Estimated characteristics of the community structure of real networks, as
detected by a standard use of detection algorithms. The mixing parameter is given by the

average of the ratio 1� kðinÞ
i =ki taken over all nodes i, where kðinÞ

i is the number of neighbors of
node i which share at least a community with i, and where ki is the degree of node i[30]. The
coefficient of variation cv is defined as the standard deviation of a distribution, normalized by
the mean.
(PDF)

S1 Fig. Absolute value of the normalized mutual influence for a normal use of LCA on LF
networks. This figure shows the average value of the NMI before any further detection steps
are performed, i.e. it illustrates the results of the pure LCA. (Left panel) Lightly mixed LF net-
works with a mixing parameter μ = 0.1. (Right panel) Heavily mixed LF networks μ = 0.6. We
use networks of N = 5 000 nodes of average degree hki = 20, that belongs to O = 2 communities
(if they overlap).
(PDF)
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S2 Fig. Correlation between the size of neighboring built-in communities in LF benchmark
networks. This array samples 25 points of the parameter space, i.e. fractions of overlapping
nodes set to f = [1/5, 2/5, 3/5, 4/5, 1] (bottom to top) and size distribution exponents set to τ2 =
[1.5, 2, 2.5, 3, 3.5] (left to right). All networks consists of N = 5 000 nodes of average degree hki
= 20, that belongs to O = 2 communities (if they overlap), with a mixing parameter μ = 0.1.
Each subplot shows the number of communities of x nodes in the neighborhood of communi-
ties of y nodes, for all x, y� 100. Communities that share at least one node are defined as
neighbors. In all cases, large communities are found in the vicinity of smaller communities of
all sizes (off-diagonal elements are present). This pattern is however more pronounced in the
highly heterogeneous region (right-hand side of the figure), where shadowing occurs (See Fig
10 of main text). The correlation patterns are essentially the same in the high mixing case μ =
0.6 (not shown).
(PDF)

S3 Fig. Correlation between the size of neighboring communities in real networks. For each
network, correlations are computed using the community structure detected by the cascading
version of CPA (left), GCE (center) and LCA (right). Each subplot shows the number of com-
munities of x nodes in the neighborhood of communities of y nodes, for all x, y� 100. Com-
munities that share at least one node are defined as neighbors. To identify the possibility of
shadowed communities, one must look for large communities in the vicinity of small ones, i.e.
for off diagonal elements in the rows / columns corresponding to community sizes that are
present in the network. For CPA, one need not look far away from the diagonal, since small
communities can shadow even smaller communities (see Fig 1 of the main text). For the other
two algorithms, larger differences in sizes are required (see Figs 2 and 4 of the main text).
These observations suggests that shadowing occurs in all cases (well populated correlation dia-
grams).
(PDF)
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