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Abstract
A systematic evaluation of nonlinear mixed-effect taper models for volume prediction was

performed. Of 21 taper equations with fewer than 5 parameters each, the best 4-parameter

fixed-effect model according to fitting statistics was then modified by comparing its values

for the parameters total height (H), diameter at breast height (DBH), and aboveground

height (h) to modeling data. Seven alternative prediction strategies were compared using

the best new equation in the absence of calibration data, which is often unavailable in for-

estry practice. The results of this study suggest that because calibration may sometimes be

a realistic option, though it is rarely used in practical applications, one of the best strategies

for improving the accuracy of volume prediction is the strategy with 7 calculated total heights

of 3, 6 and 9 trees in the largest, smallest and medium-size categories, respectively. We

cannot use the average trees or dominant trees for calculating the random parameter for fur-

ther predictions. The method described here will allow the user to make the best choices of

taper type and the best random-effect calculated strategy for each practical application and

situation at tree level.

Introduction
The ability to describe the stem form of a forest tree is important for practical and theoretical
reasons. Foresters require stem profile models for estimating the volume and the value of the
whole stem or a part of it [1], to various utilization limits [2, 3]. Such estimates are essential in
forest planning, for example in evaluating the economics of different management regimes [4].
A theoretical aspect of interest is the relationship between stem form, competition and tree
age for individual species, which calls for parameter-parsimonious models that can be used to
make general statements about the effect of silviculture and site conditions on stem form [5, 6].

Taper models can be classified into simple polynomial, segmented and variable-form mod-
els [7]. A comparison of these 3 types of models shows that although the simple polynomial
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taper models have a notably simple structure and easy convergence, they are not good at accu-
rately describing the stem. The segmented taper models are more complicated and have good
accuracy but are also more difficult to calculate. The variable-form taper models have good
structure, can accurately predict the stand volume, and are not overly complicated to calculate
[8–10]. Therefore, in contrast to the single taper and segmented taper models, the variable-
form taper model is widely used.

Because the data for stem taper have hierarchy and repeated measurement [11], many
researchers use Nonlinear Mixed-Effects (NLME) models to develop taper models. Compared
with the regression method, NLME models consist of fixed- and random-effect parameters and
have the advantage of enabling the modeling of the covariance matrix of correlated data. There
are 2 responsible variable components in the variance-covariance matrix: the random-effect
component and the within-subject component. Both components can be used to model the
heteroskedasticity and autocorrelation of a mixed-effect model [12–14].

However, previous studies have mostly considered the fitting of one variable exponent [15].
Many studies [15–21] used the segmented model of Max and Burkhart (1976) [22]. Further-
more, de-Miguel[4] compared the simple polynomial, segmented and variable-form taper
model types using both fixed- and random-effect approaches to predict the volume. Finally,
Kozak II with 9 parameters [13] was selected as the best taper model. However, the taper model
of Kozak II has 9 parameters and a complicated structure. Therefore, there is no systematic
comparison of the aforementioned taper models using fixed- and random-effect approaches
that has both simple structure and good accuracy.

For the mixed-effect model, the high cost of measuring additional upper-stem diameters
makes it difficult to calibrate the tree-specific taper functions in forestry practice. To solve this
problem, de-Miguel [23] compared 3 different prediction methods in model evaluation and
validation: (1) a fixed-effect model, (2) the fixed part of a mixed-effect model, and (3) Monte
Carlo simulation based on a randomized mixed-effect model. Their results suggest that fixed-
effect models should be used when the purpose of the model is prediction and calibration data
are not available. Crecente-Campogeneralized the NLME height—diameter model for Eucalyp-
tus globulus L. in northwestern Spain [24]; random parameters for particular plots were esti-
mated with different tree selections (5 options). Finally, the height—diameter relationships for
individual plots were obtained by calibrating the height measurements of the 3 smallest trees in
a plot.

First, this study aimed to perform a consistent analysis of the performance of taper models
with fewer than 5 parameters and to modify each of them for good accuracy. Using the best
model that was found, 7 strategies were compared for volume prediction using a taper model
in the absence of additional measurements for tree-specific calibration [25].

Materials and Methods

Materials
The study area is in Jiangle state-own forest farm in Fujian province,China. Jiangle state-
owned forest farm provide the permission for each location. This forest farm has a compart-
ment as a study area, and these forest lands are all experimental plantation, this is a place for
Beijing Forestry University and Jiangle state-owned forest farm for forestry research. Jiangle
state-owned forest farm is a place for Chinese fir wood production, the forest area is very big,
study the taper is good for the wood trading. And this place has no specific permissions were
required for these locations/activities. So we choose this place for case. The main species of the
forest farm are Chinese fir, Masson pine, Moso bamboo. Using the data collected from Jiangle
state-owned forest farm have published many papers, there has no endangered or protected
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species. So we confirm that the field studies did not involve endangered or protected species.
The region is characterized by ferromagnesian (red) soils and has a mean annual precipitation
of approximately 1699 mm, a mean annual frost-free season of 287 days, and a mean annual
temperature of 18.7°C [26].

We sampled four regions, which were divided equally into 41 plots of Cunninghamia lan-
ceolata trees (Qiantan, 15 plots; Shuinan, 8 plots; Yuhua, 11 plots; and Yuandang, 9 plots) and
are represented by I, II, III and IV, respectively, in Fig 1. Established between 2010 and 2014,
the plots vary in size from 400 to 600 m2. In the plots, we measured the diameters at breast
height (DBHs) over the bark (at 1.3 m above ground) of fresh trees (height> 1.3 m) and the
total tree height of 41 trees that were felled for stem analysis. Before felling each tree, we mea-
sured two attributes: diameter at breast height (1.3 m above ground) and total tree height (H).
After felling, we measured the diameter at intervals of 1 m and 2 m above the breast height
depending on the total tree height. We further performed a laboratory analysis of the outer and
inner bark of each disc. These diameters were measured along the largest axis and smallest axis
(Table 1 and Fig 2).

Selection of candidate equations
The ranking and selection of the taper models were performed in three steps. First, 21 pub-
lished candidate equations are variable-form taper models with fewer than 5 parameters
(Tables 2 and 3) [27]. The best function was selected by applying 5 statistical criteria: Mean
Absolute Bias (MAB), root mean square error (RMSE), adjusted coefficient of determination
R2, Akaike’s information criterion (AIC), and Bayesian information criterion (BIC) [28].

Second, we modified the best model because building an equation with fewer parameters
while maintaining good accuracy in volume prediction was the main goal of this study. The
model was modified by comparing the relationships among the total height (H), diameter at
breast height (DBH), and height above ground level (h) against the modeling data. The best
taper model for d2 provides unbiased predictions for the cross-sectional area and volume [29–
30]. Therefore, all fitted candidate models used dki as the ith diameter measurement [4]:

d2
ki ¼ f ðhki;Dk;Hk; qÞ þ εki ð1Þ

where dki is the ith diameter measurement of tree k, which is measured at height hki, Dk and Hk

are the DBH and total height of tree k, respectively, q is the vector of 1–5 parameters, and εki is
the residual.

Volume calculation based on taper model
Based on taper model selected above, Formula (2) was used calculate the volume of trees.

p
40000

ðH

0

d2 � dh ð2Þ

where H is the total height, d is the diameter outside the bark at height h (cm), h is the height
above ground level.

Testing different prediction strategies using different random parameters
For the best taper model, the calibrated response was evaluated for different height sampling
designs and sampling sizes within all data to calculate the tree random parameter for different
heights diameter estimation. Randomly calculate the total height of different number trees
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Fig 1. 4 sites of Fujian province, Southeast China, where 41 trees were sampled.

doi:10.1371/journal.pone.0140095.g001
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from 1 to 10 for random parameter calculation in model calibration and using the remaining
trees for validation in 7 strategies. The 7 selected alternatives are as follows:

1. calculating a fixed-parameter model (with no random-effect parameter).

2. calculating the fixed part of a mixed-effect model (random-effect parameter is 0).

3. calculating the heights of the randomly selected trees (total heights of 1–10 randomly
selected trees to calculate the parameters).

4. calculating the heights of the largest selected trees (calculating the total heights of 1–10 larg-
est trees to calculate the parameter).

5. calculating the heights of the smallest selected trees (total heights of 1–10 smallest trees to
calculate the parameters).

Table 1. Summary of tree attributes for theCunninghamia lanceolate.

DBH(cm) Total height(m) Disk dob (cm) Disk height(m)

Mean 17.3 17.3 12.0 7.7

SD 5.8 5.5 6.0 5.9

Minimum 4.9 4.1 0.7 0.0

Maximum 28.4 25.5 30.4 25.0

doi:10.1371/journal.pone.0140095.t001

Fig 2. Diameter and total height distribution of the 466 h-d data used from 41 trees to model the taper
equations.

doi:10.1371/journal.pone.0140095.g002
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6. calculating the heights of the medium-size selected trees (total heights of 1–10 medium-size
trees to calculate the parameters).

7. calculating the heights of a mix of selected trees (calculating the total heights of 3, 6 and 9
trees in the largest, smallest and medium-size categories) [4, 22,24].

Table 2. List of 21 candidate taper models, which were classified according to the number of parame-
ters (NP) developed in this study.

NP Models evaluated

1 Kozak et al. (a) (1969)[31],Ormerod(1973)[32], Demearchalk (a) (1972)[33]

2 Kozak et al. (b) (1969)[31],Biging(1984)[34], Newberry and Burkhart (a) (1986)[35], Newberry and
Burkhart (b) (1986), Reed and Green[36], Forslund (1990)[37]

3 Coffre(1982)[38], Kozak1969(c)[31], Real and Moore (1986)[39], Manuel(2015) [40]

4 Bennett and Swindel(1972)[41], Demaerschalk (b) (1972)[33], Demaerschalk (b)(1973)[42],Zeng
Weisheng(1997)[43], Sharma(2009)[44], Goulding and Murray (1976)[45]

5 Lee et al. (2003)[46], Cervera (1973)[47]

doi:10.1371/journal.pone.0140095.t002

Table 3. The 21 candidate equations and their correspondingmathematical expressions.

Eq. Model Expression

1 Zeng Weisheng (1997) d=D ¼ Xðb1þb2z0:25þb3z0:5þb4ðD=HÞÞ

2 Sharma (2009) d=D ¼ b1ððH� hÞ=ðH� 1:37ÞÞðH=1:37Þb2þb3zþb4z2

3 Lee (2003) d ¼ b1ðDb2Þð1� zÞðb3z2þb4zþb5Þ

4 Ormerod (1973) d/D = Xb1

5 Demearchalk (a)(1972) d2 ¼ ð40000=piÞVðH� hÞðb1�1Þb1=Hb1

6 Cervera (1973) d/D = b1+b2X+b3X2+b4X3+b5X4

7 Goulding and Murray (1976) d2KH/V−2T = (b1(3T2−2T)+b2(4T3−2T)+b3(5T4−2T)+b4(6T5−2T)

8 Real and Moore (1986) d2/D2 = X2+b1(X3
−X2)+b2(X8

−X2)+b3(X40
−X2)

9 Biging (1984) d = D(b1+b2log(1−z1/3))(1−exp(−b1/b2))

10 Kozak(a) (1969) d2/D2 = b1(1−2z+z2)

11 Kozak(b) (1969) d2/D2 = b1(z–1)+b2(z2−1)

12 Kozak(c) (1969) d2/D2 = b1+b2z+b3z2

13 Newberry and Burkhart (a)(1986) d = b1D(H−h)b2

14 Newberry and Burkhart(b)(1986) d = b1DXb2

15 Reed and Green(1984) d2/D2 = b1D(1−z)b2

16 Forslund(1990) d/D = (1−zb1)1/b2

17 Demaerschalk (b) (1972) d = b1Db2(H−h)b3Hb4

18 Demaerschalk (1973) d2/D2 = b1(1/(D2H))((H−h)b2/H)+b3((H−h)/H)b4

19 Bennett and Swindel (1972) d/D = b1X+b2W/D+b3WH/D+b4W(H+h+1.3)/D

20 Coffre(1982) d2/D2 = b1X+b2X2+b3X3

21 Manuel(2015)[40]

d ¼ 2

ðb1DÞ=ð1� expðb3SÞÞ þ ðD=2� b1DÞ
ð1� ð1=ð1� expðb2SÞÞÞÞ þ ðexpð�b2hÞÞ
ðððD=2� b1DÞexpð1:3b2ÞÞ=ð1� expðb2SÞÞÞ
�expðb3hÞððb1Dexpð�b3HÞÞ=ð1� expðb3SÞÞÞ

0
BBBBB@

1
CCCCCA

Note: V = 0.00005806*(D1.955335)*(H0.894033); W = (H-h)*(h–1.3); T = (H-h)/(H); z = h/H; K = π/40000;

S = 1.3-H; X = ((H-h)/(H–1.3)); H: total height (m); h: height above ground level (m); D: diameter at breast

height outside the bark (cm); d: diameter outside the bark at height h (cm); b1, b2, b3, b4, and b5 are

parameters.

doi:10.1371/journal.pone.0140095.t003
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Results

Analyzing the candidate taper model to select the best model
The performance of 5 stem taper functions shows that the function has the form of ((H-h)/(H–
1.3))b0, except for the model of (16) and (21), which does not have that structure for Cunning-
hamia lanceolata. The Model (1) has the best accuracy (Table 4) and is therefore the best candi-
date model.

The comparison of parameter b0 with H, D and h shows that b0 significantly correlates
with h, correlates with D and exhibits only a normal relationship with H. The above b0 equa-
tion can be rewritten as follows Eq (3):

b0 ¼ f ðhÞ ¼ b1þ b2ðhÞ ð3Þ

where b0, b1, b2 is the parameter, h is the height above ground level.
From the results in Fig 3, we deduce that parameters H, D and b0 are not suitable for

increasing the accuracy of the model.
We found that the new taper model with two parameters has a smaller residual than Eq (1)

with 4 parameters (Table 5). Because including too many parameters is unsuitable for the
model’s convergence, the new taper model is the simplest model that is suitable for volume
prediction.

Amixed-effect taper model based on the new taper model
Fitting with the NLME function [48] of R using ML was successful with one to three tree-spe-
cific random parameters and with a higher number of parameters in some cases. However, we
restricted the analysis to the models with one or two random parameters. The model did not
converge for parameter (b1, b2) or (b1) with the random parameter β, and the model only con-
verged for (b1) with the random parameter β. Thus, the best model according to the likelihood
ratio tests was Formula (4).

d2 ¼ D2 ðH � hÞ
ðH � 1:3Þ

� �ððb1þbÞþb2h0:007Þ
þ εki ð4Þ

where the fixed parameter is b1[44], β is the random parameter, H is the total height, d is the
diameter outside the bark at height h (cm), h is the height above ground level, D is the diameter
at breast height.

The residual variance was assumed to follow the following Model (5):

dðεiÞ ¼ d2ðd1 þ Di
d2Þ2 ð5Þ

Table 4. Fitting statistics for 5 selectedmodels for detailed analyses.

Model NP R2 RMSE MAB ΔAIC ΔBIC

Ormerod(1973)[29] 1 0.965 1.142 0.734 107 94

Forslund(1990)[33] 2 0.954 1.315 0.862 341 333

Manuel(2015) [48] 3 0.963 1.176 0.809 2805 2800

Zeng Weisheng(1997)[38] 4 0.970 1.061 0.677 0 0

Cervera(1973)[42] 5 0.969 1.077 0.754 20 24

Note: ΔAIC and ΔBIC represent the difference in AIC or BIC as compared with the best equation. The best model is the one presenting the lowest ΔAIC or

ΔBIC.

doi:10.1371/journal.pone.0140095.t004
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where σ2 is within-tree residual variance, Di is the ith tree diameter at breast height,δ1 and δ2 is
variance—covariance parameters for random effects.

Evaluation of the prediction strategies based on the best model
Based on the random parameters for all developing trees, which were estimated to predict the
volume, the MAB was 0.0108, the R2 was 0.9981, and the RMSE was 0.0119.

Strategie 7 calculated the total height of 3, 6 and 9 trees in the largest, smallest and medium-
size categories and obtained the smallest MAB (0.0119), an adjusted coefficient of determina-
tion R2 of 0.9900, and the smallest RMSE, of 0.0185. Strategies 1, 2 and 5 produced similar val-
ues for MAB, RMSE, and R2. Strategie 2 calculated the fixed part of a mixed-effect model better
than strategie 1, which calculated a fixed-parameter model with MAB 0.0006 m3, R2 0.0003,
and RMSE 0.0003 m3, and strategie 5, which calculated the total height of the 1–10 smallest
trees with MAB 0.0001 m3, R2 0.0002, and RMSE 0.0002 m3. Strategie 3, which calculated the
total height of 1–10 randomly selected trees, and strategie 4, which calculated the total height
of the 1–10 largest trees, had low accuracy. The worst strategie is strategie 6, which calculated

Fig 3. Relationship between the aboveground height, total height, diameter at breast height and the parameter b0.

doi:10.1371/journal.pone.0140095.g003

Table 5. Comparison between the new taper model and the best taper model.

Models R2 RMSE MAB NP

(1) 0.970 1.065 0.677 4

d2 ¼ D2 ðH�hÞ
ðH�1:3Þ

� �ðb1þb2h0:007Þ 0.971 1.048 0.675 2

doi:10.1371/journal.pone.0140095.t005
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the total height of 1–10 medium-size trees; its R2 is only 0.9480, which is substantially poorer
than the best R2 of 0.0420.

Discussion
This paper provides a thorough generalization of many published taper equations with fewer
than 5 parameters. The accuracy of the models in an independent data set shows that the sam-
ple size and design were sufficient [50–51]. In general, taper models with more parameters pro-
duce better fit than those with fewer parameters. However, we found that the models with
fewer parameters performed better than certain models with more parameters; for example,

the equation d2 ¼ D2 ðH�hÞ
ðH�1:3Þ

� �ððb1þbÞþb2h0:007Þ
with two parameters performs better than Eq 1 with

four parameters or the equations with five parameters (Table 6). We also know that including
too many parameters in nonlinear mixed-effect models is not good for convergence. Thus,
under some conditions, the modified model in this paper may be better than other models with
more parameters for Cunninghamia lanceolata in Fujian Province, China, or for other trees
worldwide.

In the taper Model (1), in parameter b0, a larger height corresponds to a smaller b0. Thus,
we choose parameter h as the only parameter in b0 to modify the taper, and the validation pro-
cess demonstrates that this method is accurate.

Several strategies were compared in this study using the model that was considered the best
based on ease of convergence and a small number of parameters. Seven prediction strategies
are readily used in forestry practice. Strategie 7, which calculates the total height of 3, 6 and 9
trees in the largest, smallest and medium-size categories, respectively, has the best accuracy
(Fig 4), which suggests that the largest and smallest trees show substantial differences in stem
form. The numbers for the 3, 6 and 9 trees large, small and medium-size categories form a
nearly normal distribution. Thus, computing the random-effect parameters of the largest,
smallest, and medium-size trees clearly improves the predictive accuracy. The calibrated taper
model allows the acquisition of accurate results with a notably small sampling effort, which
makes this method extremely effective and useful (Table 7).

Strategie 1, which calculates a fixed-parameter model, and strategie 2, which calculates the
fixed part of a mixed-effect model, have good accuracy with nearly random parameters for all
developing trees. In other words, when the purpose of the model is prediction and calibration
data are not available, strategies 1 and 2 should be used based on the best taper model that was
modified in this paper. These results are similar to those of de-Miguel [4, 23].

Strategies 6 and 4 calculate the heights of medium-size selected trees (total height of 1–10
medium-size trees to calculate the parameters) and the largest selected trees (total height of
1–10 largest trees to calculate the parameters), respectively. Based on the bias results (Fig 5), we
find that strategies 6 and 4 were the poorest approaches: strategie 4, using the largest trees, has

Table 6. Estimates of two fixed regression coefficients and the random parameter of the mixed-effect model based on the modified taper model.

Parameters Estimates Std.Error p-value t-value

b1 3.4667 0.1038 <0.001 27.9762

b2 -2.1537 0.09153 <0.001 -18.1601

Var(β) 0.2399

σ2 0.1822

δ1 17.5855

δ2 0.8472

doi:10.1371/journal.pone.0140095.t006

AMixed-Effects Model with Different Strategies for Modeling Volume

PLOSONE | DOI:10.1371/journal.pone.0140095 October 7, 2015 9 / 14



a larger bias than the other strategies, and strategie 6, using medium-size trees, has a smaller
bias than the other strategies. In forest practice, the sample trees are usually average trees, and
the medium-size trees are always the average tree in a sample plot (medium-size tree as analytic
trees with the average diameter at breast height). Similarly, the largest trees are always the dom-
inant tree in a sample plot, in which they have the largest DBH or total height. Thus, when we

Fig 4. Predictions with the Xia’s volume equations and strategie 7 vs. the measured stem volume [49].

doi:10.1371/journal.pone.0140095.g004

Table 7. Results of model evaluation and validation in volume prediction (m3) according to different prediction strategies without calibration.

Data Strategies MAB R2 RMSE

Modeling data Strategy 1 0.0121 0.9900 0.0185

Strategy 2 0.0127 0.9897 0.0188

Strategy 3 0.0131 0.9881 0.0202

Strategy 4 0.0138 0.9866 0.0215

Strategy 5 0.0122 0.9898 0.0187

Strategy 6 0.0283 0.9480 0.0428

Strategy 7 0.0119 0.9900 0.0185

Validation data Strategy 1 0.0121 0.9902 0.0171

Strategy 2 0.0116 0.9915 0.0168

Strategy 3 0.0133 0.9899 0.0202

Strategy 4 0.0147 0.9846 0.0222

Strategy 5 0.0135 0.9874 0.0198

Strategy 6 0.0246 0.9680 0.0247

Strategy 7 0.0114 0.9918 0.0163

doi:10.1371/journal.pone.0140095.t007
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use the NLME to predict the volume in a forest stand, we cannot use the average trees or domi-
nant trees to calculate the random parameter to estimate the stand volume; those approaches
would produce the lowest accuracy.

Conclusion
The taper model developed in this paper is the best taper model for describing stands of Cun-
ninghamia lanceolata. It has the advantage of easy convergence and simple structure, is a useful
tool for predicting the volume of Cunninghamia lanceolata and may also be useful for analyz-
ing the taper of other trees worldwide.

In forest practice, when we use the NLME to estimate the stand volume, we cannot use the
average trees or dominant trees to calculate the random parameter as the stand random param-
eter. We should sample some small trees in a mixed approach (strategie 7) to obtain good
accuracy.

The results of this study show that when the purpose of the taper model is prediction and
calibration data are not available, fixed-effect (with no random parameter) or mixed-effect
(random parameter is 0) models should be used. However, because calibration may sometimes
be performed for some but not all types of wood, strategie 7 is one of the best strategies to
improve the volume prediction accuracy at tree level. This strategie helps the user make the
best selection in random-effects calculation for practical applications and scenarios.

Fig 5. Residuals for the calibratedmodel with different tree sampling designs and sampling sizes to calculate the random parameters. Note: All:
calculate all trees; no: with no random parameter; zero: random parameter is 0; large: largest trees; medium: medium-size trees, small: smallest trees; mixed:
a mix of large, medium and small trees; random: randomly selected trees.

doi:10.1371/journal.pone.0140095.g005
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