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Abstract
MicroRNAs (miRNAs) play a crucial role in the maintenance of cellular homeostasis by reg-

ulating the expression of their target genes. As such, the dysregulation of miRNA expres-

sion has been frequently linked to cancer. With rapidly accumulating molecular data linked

to patient outcome, the need for identification of robust multi-omic molecular markers is criti-

cal in order to provide clinical impact. While previous bioinformatic tools have been devel-

oped to identify potential biomarkers in cancer, these methods do not allow for rapid

classification of oncogenes versus tumor suppressors taking into account robust differential

expression, cutoffs, p-values and non-normality of the data. Here, we propose a methodol-

ogy, Robust Selection Algorithm (RSA) that addresses these important problems in big data

omics analysis. The robustness of the survival analysis is ensured by identification of opti-

mal cutoff values of omics expression, strengthened by p-value computed through intensive

random resampling taking into account any non-normality in the data and integration into

multi-omic functional networks. Here we have analyzed pan-cancer miRNA patient data to

identify functional pathways involved in cancer progression that are associated with

selected miRNA identified by RSA. Our approach demonstrates the way in which existing

survival analysis techniques can be integrated with a functional network analysis framework

to efficiently identify promising biomarkers and novel therapeutic candidates across

diseases.
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Introduction
MicroRNAs (miRNAs) are small non-coding RNA regulators that bind to complementary
sequences on target messenger RNAs (mRNAs), resulting in the target mRNAs’ translational
suppression or degradation. MiRNAs may also bind to complementary sequences in the pro-
moter region of the target genes and cause transcriptional activation [1, 2]. Thus, changes in
miRNA expression affect gene regulation, which in turn leads to changes in cellular homeo-
static stability [3, 4].

Several miRNAs have been shown to play an important role in cancer [5–7]; and studies
have also shown that more than 50% of miRNA genes are located in cancer-associated genomic
regions [8]. Many miRNAs have been shown to play crucial roles as cancer-inducing oncomiRs
or as tumor suppressor miRs [9]. For instance, miR-21 is a well-studied oncomiR that is upre-
gulated in many different cancers, [10, 11]. and plays an important role in drug resistance [12].
Members of the miR-17-92 family also function as prominent oncomiRs [13] and can promote
cancer development by negatively regulating tumor suppressor genes. On the other hand, miR-
NAs such as those in the let-7 family function as tumor suppressor miRs [14–16] and can
inhibit cancer by inhibiting oncogenes and regulating functions such as apoptosis and cell
differentiation.

Several groups have studied the capacity of miRNAs to be used as biomarkers for specific
cancers [17–22]. In most of these studies, researchers used sequencing, microarrays or PCR–
based techniques for global profiling of miRNAs, and have thereby identified several miRNAs
that play important roles in cancer. However, these approaches suffer from multiple limita-
tions. As shown in our paper, current methods for the analysis of miRNA or other omics data
that rely on arbitrary choices such as picking thresholds for separating patients into high and
low expression groups can be very sensitive to small random changes in the patients group,
resulting in a high false discovery rate. Thus, we present an innovative robust systems analysis
in which miRNAs are coupled to patient survival outcomes across different cancer types to
more quickly and efficiently identify potential oncomiRs and tumor suppressor miRs.

A further limitation of current methodologies is the high number of identified miRNAs and
the associated difficulty in validating so many miRNAs experimentally. In order to further nar-
row down the number of miRNAs to those with the highest potential in multiple cancer types,
we additionally sought to integrate functional network analysis. The primary function of
miRNA is in regulating mRNA levels in the cell by binding to sequences in the 3’UTR of the
mRNA, resulting in a change in the steady state levels of the mRNA and subsequent change in
the functional output of the gene [23–25]. Therefore, we sought to identify functional miRNA-
mRNA networks based on the correlation of the miRNA and mRNA expression levels in
patient tumors in which miRNA showed clinical significance.

With the exponential increase in the amount of data that is generated from patient samples
measuring various molecular characteristics at the omics or global level from each patient, the
development of complementary bioinformatics and systems biology analysis tools is impera-
tive. We herein propose a workflow that integrates the survival analysis of omics data with
functional network analysis techniques to identify potential miRNA biomarkers and the path-
ways they influence across diverse cancer types. Since our approach takes into account the
potential non-linear functional relationships between potential markers’ expression levels and
patients’ survival outcomes, its performance exceeds that of traditional correlation analysis,
which is restricted to discovering approximately linear functional relationships. Moreover, we
propose non-parametric data analysis techniques for which no implicit normality assumptions
regarding the distribution of gene expression levels are required, since the majority of omics
data does not follow the normal distribution. In this study, we demonstrated the utility of this
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approach using patient datasets from The Cancer Genome Atlas (TCGA) to identify prognostic
biomarkers and further validated the proposed workflow using a previously published dataset.

Methods
Because we sought to identify miRNAs that act as either tumor suppressors or as oncomiRs, we
classified each miRNA with strong impact in terms of patient survivalas having either high
expression linked to good patient survival (GS miRNAs) or high expression linked to poor
patient survival (PS miRNAs). We reviewed patient data for clinical outcomes and miRNA
expression levels; we have developed a new Robust Selection Algorithm (RSA), which we used
to classify miRNAs as being associated with either good or poor survival. We introduced and
computed an innovative robust p-value to quantify the impact of each candidate miRNA on
good or poor survival (Fig 1A and Figure A and Figure B in S1 File). To demonstrate the pro-
posed workflow, we applied our RSA and the subsequent functional pathway analysis to TCGA
datasets for five cancer types: breast, ovarian, head and neck, lung, and kidney (information
useful for downloading this data is found in S1 Table).

Data and Pretreatment
TCGA contains various forms of omics data including miRNA expression, mRNA expression.
It also contains clinical data from these patients giving information about the survival of these
patients. Using different cancer patients’ RNA sequence data from TCGA, we extracted each
miRNA’s average mature and star strand expression separately. TCGA has data available in
miRNAseq form, and we were able to search 2092 miRNAs (the total miRNAs for which data is
available) to identify candidate miRNAs whose differential expression correlated with survival.

TCGA miRNA expression data are acquired using either the Illumina Hiseq or Illumina GA
platform. Running our initial analyses on these two platforms separately yielded disparate
results. We then investigated the two platforms’miRNA expression distributions to determine
whether we could combine the two platforms’ samples to obtain a larger number of patient
samples. To compare the two platforms’miRNA distributions, we applied the Kolmogorov-
Smirnov test using the null hypothesis that the two distributions are the same at 5% signifi-
cance. This helped us identify which miRNAs had similar (though respectively distinct) distri-
butions in both platforms.

We also downloaded clinical data for each of the 5 cancer types mentioned above from
TCGA. From this data, we extracted patients’ survival times until death or censoring. Several
patient data in TCGA were annotated as having no follow-up time and thus were systemati-
cally removed from our final dataset analysis. We then matched the patients for whom clinical
and RNA sequence data were available.

Homogenizing Data Across Platforms
TCGAmiRNA expression data for different cancer types were generally acquired using differ-
ent platforms. To normalize miRNA expression levels and correct for artefacts due to data gen-
eration using different acquisition modalities, we pooled all the available TCGA miRNA
expression data and subjected it to a homogenization step as explained further in this section.
We then used these normalized values for our final dataset analysis. This homogenization step
is important as it corrects for data artefacts due to data generation through different platforms
and acquisition modalities.

The two platforms’miRNA distributions were not very similar and thus could not be com-
bined using a standard median normalization step. Therefore, we performed the following
homogenization procedure to combine the platforms’miRNA expression distributions for

RSA for Multi-Omic Biomarker Discovery

PLOS ONE | DOI:10.1371/journal.pone.0140072 October 27, 2015 3 / 20



Fig 1. Workflow of our robust selection algorithm (RSA) and validation of the RSA using previously published datasets. (A) Schematic displaying
the overview of the RSA. The inputs are clinical data and miRNA expression data; the outcomes are candidate miRNAs correlated with either good or poor
survival. (B) Validation of the RSA using previously published gene signatures correlated with survival outcomes. We applied RSA to breast cancer dataset in
Martin et al. And looked at the overlap of genes correlated with good and poor survival computed by RSA and from their results. Heatmap of these
overlapping genes was drawn displaying the high gene intensity in yellow and low gene intensity in blue.

doi:10.1371/journal.pone.0140072.g001
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each cancer type. To obtain an identical cumulative distribution function (CDF) of the homog-
enized expression values obtained with both platforms, we homogenized the two miRNA
expression distributions derived from the two platforms. The “target” CDF is defined as the
average CDF of the two platforms, namely, F(x) = 0.5F1(x) + 0.5F2(x), where F1 and F2 are the
cdf’s of the two platforms respectively. Let G be the inverse function of F. Each expression
value x from platform 1 is matched to a homogenized expression value, z(x), which is calcu-
lated by inverting the function F at the value F1(x); thus, z(x) = G(F1(x)). Each expression value
from platform 2 is homogenized similarly, with z(y) = G(F2(y)).

For any value, 0� K� 1, {F(z(x))� K} iff {z(x)� G(K)} iff {G(F1(x))� G(K)} iff {F1(x)�
K}, and similarly, {F(z(y))� K} iff {z(y)� G(K)} iff {G(F2(y))� G(K)} iff {F2(y)� K}.

Thus, we match the quantiles x and y in the separate distributions with their quantiles z(x)
and z(y) in the combined distribution F.

Robust Selection Algorithm
A literature search was performed to identify a methodology that could be used to improve
existing methods of evaluating miRNAs and identifying the cancer-related pathways they influ-
ence. We identified one study that evaluated the prognostic values of specific miRNAs in sev-
eral cancer types [26]; however, we have checked that the methodology of [26] is potentially
quite sensitive to even small perturbations of the existing patients group, and we have validated
this instability by applying it to our data.

To test the sensitivity of the methodology to patient group, we used the kidney cancer data-
set downloaded from TCGA. From this dataset, we created 100 simulated datasets by randomly
dropping 2% patients in each simulated dataset. On each simulated dataset, we then used the
methodology of [26] to select miRs strongly correlated with patient survival. In this way, we
obtained 100 lists of selected miRNA. We then enumerated all those miRNA which appeared
in 99 or more of these 100 lists. The stability of the methodology was then characterized by
looking at the histogram of the fraction of the selected miRNA which were stable. Since 2% var-
iation in the patient groups is a small variation, we should require a robust methodology to
select similar miRNA repeatedly. However, our simulations suggest that the methodology in
[26] only selects 68% stable miRNA, with the rest being sensitive to the specific composition of
the patient group (see S30 Fig for a quantification of how small changes in the data can lead to
a large reduction in the stability of identified biomarkers).

Further, this and other such studies, often use a single threshold of expression data to com-
pare the survival curves, and gives results for candidate miRNAs for a cancer type at a time.
Therefore, we developed a robust selection algorithm (RSA) that uses a non-parametric statisti-
cal joint analysis of patient survival data and patient-specific miRNA expression levels to quan-
tify the prognostic value of each miRNA. In contrast to methods that use a single threshold to
compare survival data, our RSA eliminates the use of single threshold for Kaplan-Meier sur-
vival curve analysis, by choosing from a wide array of cutoffs from expression data using a
range of statistically relevant cutoff values. Thus, the performance of our RSA is quite resistant
to small random perturbations of the patients group.

Clinically, miRNAs whose expressions are associated with different actions are afforded dif-
ferent treatment. For instance, a miRNA whose high expression is correlated with longer sur-
vival (i.e., tumor suppressors) is treated differently from one whose high expression is correlated
with shorter survival (i.e., oncomiRs). Therefore, we first classify each miRNA as a GS miRNA
(high expression–good survival) or a PS miRNA (high expression–poor survival). This initial
classification step is performed by first computing the median survival time of all available
patients, from the Kaplan–Meier survival estimates and then classifying miRNAs as follows.
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Using TCGA data, we first compute the Kaplan-Meier estimates of the censored survival
time for the patients in which a miRNA is expressed. We then use the expression histogram
data to identify two groups of patients: patients with high miRNA expression and patients with
low miRNA expression. For each miRNA,mj, we separate patients into high miRNA expres-
sion or low miRNA expression groups using a finite grid of cut-offs,C, that range from the 45%
quantile to the 60% quantile of the distribution of the expression levels in increments of 1%. At
each such cut-off C we define

Ghigh = group of patients with high miRNA expression = group in which miRNA expression is
larger than the (C+4) quantile of the expression levels distribution

Glow = group of patients with low miRNA expression = group in which miRNA expression is
less than the C quantile of the expression levels distribution

The high miRNA expression and low miRNA expression groups are separated by a "neutral"
group in which miRNA expression levels are between C% and (C+ 4)%. This 4% margin can be
increased without impairing the analysis as long as the high miRNA expression and low
miRNA expression groups are reasonably large.

For each cutoff C%, we separately compute the Kaplan-Meier estimates of the survival
curves for the Ghigh and Glow groups. The log-rank test is used to assess the difference between
the two Kaplan-Meier survival curves, and a p-value, pval(C), is computed. The null hypothesis
for the log rank test is that the two survival curves are the same. The optimal cut-off C% for
separating patients into Ghigh or Glow is chosen to minimize pval(C). Let qj be the optimal cho-
sen cut-off for each miRNAmj. For each miRNAmj, we compute the median survival times for
patients in the high miRNA expression group (Medhigh) and for patients in the low miRNA
expression group (Medlow) at the optimal cut-offqj. We then classify the miRNA into the fol-
lowing two groups:

GSifMedlow � Medall � Medhigh

PSifMedhigh � Medall � Medlow

Examples of this type of miRNA characterization are shown in Figure B of S1 File. For each
miRNA mj belonging to the GS or PS groups, the preceding computation also give us j = pval
(qj), which quantifies the significance of the potential link between miRNAmj and patient sur-
vival time. Kaplan-Meier survival plots for patients with the five significant candidate miRNAs
of interest across different cancer types along with the overall survival curve for patients with
that cancer type are shown in S27 and S28 Figs.

Generation of Robust p-Values
We have repeatedly noted that the p-values computed with the preceding method can be some-
what sensitive to the specific patients group. To eliminate this sensitivity, we introduce and
apply an innovative resampling procedure to generate robust p-values. The method described
in the preceding section is used to determine whether miRNA expression has a potential non-
linear significant correlation with survival. For each GS miRNA or PS miRNA, we introduce a
random resampling technique to compute a robust p-value, PV(Mj), to replace the preceding
p-value, pv(mj). To implement this resampling, for each cut-off C% and each fixed miRNAmj,
we randomly drop 1% of patients from each of the two groups Ghigh and Glow. and we compute
the Kaplan-Meier survival curves for these two perturbed patients groups.
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As above, we first compute the optimal cut-off that best separates the miRNA expression
distribution based on the perturbed Kaplan-Meier survival plots and then compute the p-value
pv(m) or survival at this optimal cut-off. For each fixed miRNAmj, repeating the randomized
perturbation process 500 times generates a set of 500 virtual p-values pv(m). To define a reli-
able upper-limit PV(mj) for the unknown p-value pvl(mj), we set PV(mj) to be equal to the 75

th

percentile of the 500 virtual p-values. We call PV(pj) the robust p-value for miRNAmj. The
miRNAsmj with significant robust p-values PV(mj) are then classified as candidate miRNAs
that are correlated with good or poor survival, thereby providing a list of miRNAs whose differ-
ential expression is correlated with either good or poor survival times. The schematic of the
algorithm is shown in S29 Fig.

For our analyses, we discard all miRNAs that have an average 0 expression over the patient
group. In addition, TCGA samples annotated as having no follow up time were not included in
our analysis.

Cancer Types
To identify candidate miRNAs whose differential expression is strongly linked with more than
one cancer type, we applied our RSA to multiple cancer patient datasets available in TCGA.
We applied our RSA to the datasets of cancer types represented by at least 400 samples and for
which matched clinical and miRNA expression data were available, namely, breast (BRCA),
ovarian (OVCA), head and neck (HNSC), lung (LUAD), and kidney (KIRC) cancer. The num-
bers of matched samples for each of these cancer types are shown in S1 Fig. Because breast can-
cer is a subtype-specific disease, we also investigated breast cancer subtypes individually to
determine whether a specific subtype was responsible for the strong link between differential
miRNA expression and patient survival.

Validation
Martin et al. [27, 28] pooled matched survival and gene expression data from six different
breast cancer patient datasets and found that pooling the data synergistically affected classifica-
tion performance and improved gene signature stability. The authors used the pooled dataset
to identify a gene expression signature correlated with patient survival. Because our RSA can
be used to analyze not only miRNA expression data but also gene or protein expression data,
we selected this dataset for validation. We used this dataset (accessible through the Gene
Expression Omnibus) to validate the performance of our RSA in identifying mRNA correlated
with patient survival. We applied our RSA to the pooled dataset fromMartin et al. to identify
genes whose differential expressions were correlated with patient survival. In their paper, they
identified clusters of genes strongly correlated with good and poor survival. Application of our
method RSA to their dataset also identified 1 cluster of genes whose high expression was
strongly linked with good survival and another cluster of genes whose high expression was
linked to poor survival. Moreover the two methods gave an overlap of 22 genes. A heatmap of
the common genes indicating their correlation with survival is displayed in Fig 1B.

Integrating Joint miRNA-mRNA Expression Levels to Generate
Functional Networks
To identify the pathways regulated by each candidate miRNA our RSA selected, we gathered
patient-specific joint miRNA-mRNA expression data from TCGA and analyzed them to gener-
ate miRNA-mRNA correlation networks. Correlations were computed using a multivariate lin-
ear model that accounts for mRNA expression level variations induced by DNA copy number
alterations and promoter methylation at the gene locus. We computed ranked lists of genes
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and corresponding regression coefficients as described previously [29]. To reduce potential
misrepresentation of the data due to stromal contamination in the samples, we removed genes
associated with the extracellular matrix (S8 Fig). Instead of focusing on individual genes that
are strongly correlated with a given candidate miRNA, we used NetWalker [30], a software
suite that integrates gene expression data and molecular interaction data to score known inter-
actions, to identify whole interaction networks that were positively or negatively correlated
with the candidate miRNA. Using the miRNA-mRNA regression coefficients as input values
for NetWalker, we calculated edge flux values for the known molecular interactions, and we
used the interactions with the highest edge flux values (top 200 positive and top 200 negative
interactions) to generate the networks. The Log2 of the beta values is displayed for all the
networks.

We constructed miRNA-mRNA interaction networks for the five most robust candidate
miRNAs that were significantly correlated with survival outcomes in four cancer types (i.e.,
LUAD, HNSC, KIRC, and OVCA). These five candidate miRNAs’ networks, which include
genes that are either positively (yellow) or negatively (blue) correlated with high miRNA
expression, are shown in S9–S29 Figs. To identify pathways potentially regulated by these five
candidate miRNAs across diverse cancer types, we first identified the cancer types in which
these miRNAs were associated with the same prognosis (i.e., either good or poor survival) and
then analyzed the common gene ontology terms associated with the networks for these cancer
types.

Results
We applied our RSA to TCGA patient data that include miRNA expression levels and clinical
outcomes. After pre-treating the data, which included the homogenization procedure, to
remove effects of different platforms for extraction of miRNA expression, we first computed an
optimal threshold that would best separate the miRNA expression levels in terms of survival
outcomes computed using the Kaplan-Meier method and the log-rank test. We then clustered
the miRNAs into groups, miRNAs associated with good survival (GS miRNAs) and miRNAs
associated with poor survival (PS miRNAs), by comparing the median overall survival in opti-
mal groups with the median overall survival of the whole population. Using intensive random
sampling, we computed a robust p-value for each candidate miRNA to identify candidate GS
miRNAs or PS miRNAs for each cancer type.

Next, we characterized the identified candidate miRNAs by chromosome location and
genomic stability and constructed miRNA-mRNA functional networks. By analyzing the inter-
actions between prognostic miRNA markers and functional pathways involved in cancer pro-
gression, we determined the main pathways these miRNA prognostic markers affect.

miRNA–Disease Survival Network
For each cancer type, namely, breast (BRCA), ovarian (OVCA), head and neck (HNSC), lung
(LUAD), and kidney (KIRC) cancer, we identified candidate miRNAs whose differential
expression was strongly linked with patient survival in multiple cancer types. The GS miRNA
and PS miRNA candidates for which a significant robust p-value indicated a correlation with
survival in at least 3 different cancer types are shown in Fig 2A. We defined and constructed
miRNA–disease survival networks which encoded associations between miRNA and cancer
types (Fig 2B). Different circles contain miRNAs linked with prognosis in (from left to right)
one, two, or three cancer types. Below these 3 circles, the miRNAs significantly linked with
prognosis in four cancer types are indicated. Since our first priority was to identify targets that
are valid in multiple cancer types, we selected five miRNAs (miR-24-1�, miR-30e, miR-15b,
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Fig 2. Candidate miRNAs significantly correlated with survival across cancer types. (A) Candidate miRNAs from RSA significantly (robust p-
value < 0.01) correlated with good survival or poor survival in at least 3 cancer types. (B) MiRNA-disease survival network. The circles indicate the miRNAs
strongly linked with patient survival across diverse cancer types. Left to right: miRNAs linked to prognosis in one cancer type, 2 cancer types, and 3 cancer
types. White rectangles represent cancer types. Yellow rectangles represent miRNAs. The color of the edge between a miRNA and a cancer type, indicates
whether the miRNA is correlated with good (blue) or poor (orange) prognosis in a cancer type.

doi:10.1371/journal.pone.0140072.g002
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miR-485, and miR-487b) that were strongly linked with survival (robust p-value� 0.01) in
multiple cancer types.

Copy Number Alterations
Each candidate miRNA strongly linked with patient survival in at least 4 different cancer types
was further investigated in terms of its chromosome location and expression pattern in
patients. The GISTIC scores in copy number alterations for each of the chromosome locations
of these miRNAs in each cancer type were obtained from the cBio data portal and are shown in
Fig 3A. miR-485 and miR-487b, which are located very close to each other on chromosome 14,
have similar relationships with prognosis in diverse cancer types and have similar copy number
alterations across these cancer types (Fig 3A). miR-15b is strongly linked with good survival in
HNSC and OVCA and displays similar copy number gains in these cancers. A gain in copy
number at a given chromosome location would indicate increased expression of the relevant
miRNA. For each selected miRNA, the patterns of its expression levels in normal and tumor
tissues are similar to the corresponding profiles of copy number alterations (Fig 3B). (We
could not make a similar comparison in OVCA, as we did not have data for normal tissue
samples.)

We also computed the correlation between the copy number alterations at the chromosome
location of each candidate miRNA and the changes in methylation levels for each cancer type
individually and for all 5 cancer types combined (S2–S6 Figs). We found significant correlation
between miRNA expression and copy number variation at those loci and between miRNA
expression and methylation levels in the relevant cancer types. When we analyzed the pooled
data from the 5 cancer types, we still observed significant correlations between miRNA expres-
sion and copy number variation and methylation levels. We could not perform a similar analy-
sis on the ovarian cancer dataset because no methylation data were available for ovarian cancer
patients in TCGA.

Breast Cancer Subtypes
Given the heterogeneity of breast cancer, we also applied our RSA to data from each of 4 breast
cancer subtypes (luminal A, luminal B, basal, or Her2-enriched based on the PAM50 panel).
The RSA identified miR-15b, miR-24-1�, and miR-30e as being strongly linked with poor sur-
vival for these breast cancer subtypes, particularly the luminal A subtype (S7 Fig). The expres-
sion levels of these miRNAs in the basal subtype were higher than those in the luminal A,
luminal B, and Her2-enriched subtypes.

Integrating Functional Networks
We found that miR-487b is strongly linked with poor survival across the 4 cancer types. The
regulatory functions of miR-487b that are preserved across these 4 cancer types and the genes
that are positively (yellow) or inversely (blue) correlated with this miRNA in these cancers are
shown in Fig 4A and 4B. The genes involved in angiogenesis and in receptor tyrosine kinase
signaling were positively correlated with miR-487b, whereas the genes involved in apoptosis
were negatively correlated with miR-487b.

We found miR-24-1-� to be linked with poor survival in BRCA and with good survival in
HNSC, KIRC, and LUAD. In BRCA, genes involved in cell cycle regulation were positively cor-
related with miR-24-1�, whereas genes involved in the regulation of cAMP signaling and
GTPase activity were negatively correlated with miR-24-1� (Fig 5A). In contrast, in HNSC,
KIRC, and LUAD, the genes involved in cell cycle regulation were inversely correlated with
miR-24-1�, whereas the genes involved in the regulation of cAMP signaling and GTPase

RSA for Multi-Omic Biomarker Discovery

PLOS ONE | DOI:10.1371/journal.pone.0140072 October 27, 2015 10 / 20



Fig 3. Characterization of miRNAs found to be strong candidate markers of prognosis based on copy number variation and expression. (A) Further
characterization of the 5 strong candidate miRNAs in terms of copy number variation and expression. The GISTIC-identified copy number alterations at each
of the chromosome loci for the miRNAs in different cancer types are displayed. The “GS” or “PS” inside each circle indicates the link with good (blue) or poor
(orange) prognosis. (B) Expression in tumor and normal tissue for each of the strong candidate miRNA. For OVCA, the normal tissue data were not available.

doi:10.1371/journal.pone.0140072.g003
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Fig 4. miRNA-mRNA interaction networks for miR-487b, whose functions are conserved across cancer types.miR-487bmiRNA-mRNA interaction
networks. mRNA networks that were positively (yellow) or inversely (blue) correlated with miR-487b in OVCA and involved in functions conserved across
cancer types are shown.

doi:10.1371/journal.pone.0140072.g004
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Fig 5. miRNA-mRNA interaction networks for miR-24-1*, whose functions are conserved across cancer types. (A) miR-24-1*miRNA-mRNA
interaction networks. Networks of positively (yellow) and inversely (blue) correlated mRNA and associated functions in BRCA, in which miR-24-1* is
correlated with poor survival. (B) Common functions associated with the miRNA-mRNA correlation networks when miR-24-1* is correlated with good survival
in three different cancer types. The log of the beta values in KIRC is displayed.

doi:10.1371/journal.pone.0140072.g005

RSA for Multi-Omic Biomarker Discovery

PLOS ONE | DOI:10.1371/journal.pone.0140072 October 27, 2015 13 / 20



activity were positively correlated with miR-24-1� (Fig 5B), which suggests that these functions
are also positively correlated with good survival.

Finally, we found miR-15b to be correlated with good survival in HNSC and OVCA but cor-
related with poor survival in KIRC and BRCA. The pathways associated with high miR-15b
expression in these 4 cancer types are shown in Fig 6. Genes involved in different phases of cell
cycle regulation and genes involved in DNA repair and centrosome organization were posi-
tively correlated with miR-15b in all 4 cancer types. Moreover, receptor tyrosine kinase signal-
ing and calcium signaling were inversely correlated with miR-15b in all cancer types (Fig 6A).

Discussion
Our approach identifies biomarkers that are strongly and robustly associated with patient sur-
vival. Herein, we describe an approach to the quantitative evaluation of molecular markers’
impact on specific patient outcomes that take into account the potential non-linear functional
relationships between miRNA expression levels and patient outcomes. Our approach goes well
beyond traditional correlation analysis, which is restricted to discover approximately linear
functional relationships. Moreover, because our approach is non-parametric, one need not
make an implicit Gaussian assumption about the distributions of genes’ expression levels.

The introduction of robust p-values, computed by intensive simulations of randomly per-
turbed survival data, is an innovative feature of this approach. By intensive simulations of
small random perturbations of our patients groups and efficient pooling of these virtual data
analyses, we generate robust p-values which are strongly resistant to actual perturbation of the
data by noise in the expression levels or by variations in patient samples. Our methods are in
fact applicable to any molecularly measured expression data (for instance, mRNA, miRNA,
protein expression) and to any measured patient outcome data, including survival and disease
progression data.

In contrast to previously published methods [26] for comparing survival times between two
miRNA expression groups, in which a single threshold is used to compare significantly differ-
ent groups, our method eliminates this choice by sampling data over a range of statistically rel-
evant cut-off values and identifying the best cut-off for significantly comparing two sets of
survival data groups. Moreover our robust p-values computation strengthens the identification
of good miRNA candidates, primarily because it automatically enforces increased consistency
with respect to small changes in the patients group. To further strengthen these analyses, we
are currently preparing a companion paper analyzing in depth several statistical variants of this
new method through theory combined with very intensive simulations, in order to determine
the confidence level and the detection capacity of this robust p-value technique.

After identifying clinically relevant miRNA targets across multiple cancer types, we also fur-
ther characterize these miRNA targets in terms of copy number variation, expression and
methylation. The identification of correlated functional networks that may play a role in these
processes is also very important to our understanding of complex disease processes such as
cancer. Here we have analyzed genes expression levels data in patient tumors to determine
functional miRNA-mRNA regulation networks that may impact cell proliferation and/or
patient survival. These sub-networks may either be of therapeutic value or could serve as
important functional multi-omic biomarkers.

Overall, our results demonstrate that enforcing robustness when using standard statistical
techniques and extending the bioinformatics framework by incorporating functional network
and pathway analyses more quickly and efficiently identifies potential miRNA biomarkers for
the development of anticancer therapies. In addition RSA allows for the automated determina-
tion of optimal cutoffs taking into account the non-normality of the data and data obtained
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Fig 6. miRNA-mRNA interaction networks for miR-15b, whose functions are conserved across cancer types. (A) Inversely correlated miRNA-mRNA
network in BRCA showing conserved functions across 4 cancer types. (B) Positively correlated miRNA-mRNA network in BRCA showing conserved
functions across 4 cancer types.

doi:10.1371/journal.pone.0140072.g006
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across different platforms and sources. The miRNA biomarkers our RSA selects and these
markers’ effects on specific functional pathways make them promising candidates for the
development of therapeutic strategies for diverse cancer types. A user friendly web based GUI
of RSA is currently being developed enabling a pipeline for rapid analysis of multi-omics
patient outcome data. Experimental testing of these biomarkers in an independent patient
cohort from MD Anderson will be performed in the near future. In addition, experiments to
determine the molecular mechanisms of the identified biomarkers and their functional regula-
tion are future avenues of study.

Supporting Information
S1 Fig. The cancer types and numbers of patient samples for which miRNA expression and
survival information were available from TCGA.
(PDF)

S2 Fig. Plots showing correlation between miR-15b expression and copy number alter-
ations and methylation at this chromosome location in different cancer types and across all
cancers.
(PDF)

S3 Fig. Plots showing correlation between miR-487b expression and copy number alter-
ations and methylation at this chromosome location in different cancer types and across all
cancers.
(PDF)

S4 Fig. Plots showing correlation between miR-485 expression and copy number alter-
ations and methylation at this chromosome location in different cancer types and across all
cancers.
(PDF)

S5 Fig. Plots showing correlation between miR-24-1� expression and copy number alter-
ations and methylation at this chromosome location in different cancer types and across all
cancers.
(PDF)

S6 Fig. Plots showing correlation between miR-30e expression and copy number alter-
ations and methylation at this chromosome location in different cancer types and across all
cancers.
(PDF)

S7 Fig. Breast cancer subtype–specific expression of miRNAs correlated with survival in
BRCA.
(PDF)

S8 Fig. Extracellular matrix–associated genes that were discarded from the network analy-
sis.
(PDF)

S9 Fig. Networks downregulated in the presence of high miR-487b expression in different
cancer types
(PDF)

RSA for Multi-Omic Biomarker Discovery

PLOS ONE | DOI:10.1371/journal.pone.0140072 October 27, 2015 16 / 20

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0140072.s001
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0140072.s002
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0140072.s003
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0140072.s004
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0140072.s005
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0140072.s006
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0140072.s007
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0140072.s008
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0140072.s009


S10 Fig. Networks upregulated in the presence of high miR-487b expression in different
cancer types.
(PDF)

S11 Fig. Networks upregulated in the presence of high miR-487b expression in different
cancer types.
(PDF)

S12 Fig. Networks downregulated in the presence of high miR-15b expression in different
cancer types.
(PDF)

S13 Fig. Networks downregulated in the presence of high miR-15b expression in different
cancer types.
(PDF)

S14 Fig. Networks upregulated in the presence of high miR-15b expression in different can-
cer types.
(PDF)

S15 Fig. Networks upregulated in the presence of high miR-15b expression in different can-
cer types.
(PDF)

S16 Fig. Networks downregulated in the presence of high miR-24-1� expression in different
cancer types.
(PDF)

S17 Fig. Networks downregulated in the presence of high miR-24-1� expression in different
cancer types.
(PDF)

S18 Fig. Networks upregulated in the presence of high miR-24-1� expression in different
cancer types.
(PDF)

S19 Fig. Networks upregulated in the presence of high miR-24-1� expression in different
cancer types.
(PDF)

S20 Fig. Networks downregulated in the presence of high miR-485 expression in different
cancer types.
(PDF)

S21 Fig. Networks downregulated in the presence of high miR-485 expression in different
cancer types.
(PDF)

S22 Fig. Networks upregulated in the presence of high miR-485 expression in different can-
cer types.
(PDF)

S23 Fig. Networks upregulated in the presence of high miR-485 expression in different can-
cer types.
(PDF)

RSA for Multi-Omic Biomarker Discovery

PLOS ONE | DOI:10.1371/journal.pone.0140072 October 27, 2015 17 / 20

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0140072.s011
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0140072.s011
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0140072.s012
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0140072.s013
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0140072.s014
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0140072.s015
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0140072.s016
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0140072.s017
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0140072.s018
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0140072.s019
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0140072.s020
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0140072.s021
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0140072.s022
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0140072.s023


S24 Fig. Networks down or upregulated in the presence of high miR-30e expression in
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