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Abstract
This work builds upon previous efforts in online incremental learning, namely the Incremen-

tal Gaussian Mixture Network (IGMN). The IGMN is capable of learning from data streams

in a single-pass by improving its model after analyzing each data point and discarding it

thereafter. Nevertheless, it suffers from the scalability point-of-view, due to its asymptotic

time complexity of O(NKD3) for N data points, KGaussian components and D dimensions,

rendering it inadequate for high-dimensional data. In this work, we manage to reduce this

complexity to O(NKD2) by deriving formulas for working directly with precision matrices

instead of covariance matrices. The final result is a much faster and scalable algorithm

which can be applied to high dimensional tasks. This is confirmed by applying the modified

algorithm to high-dimensional classification datasets.

1 Introduction
The Incremental Gaussian Mixture Network (IGMN) [1, 2] is a supervised algorithm which
approximates the EM algorithm for Gaussian mixture models [3], as shown in [4]. It creates
and continually adjusts a probabilistic model of the joint input-output space consistent to all
sequentially presented data, after each data point presentation, and without the need to store
any past data points. Its learning process is aggressive, meaning that only a single scan through
the data is necessary to obtain a consistent model.

IGMN adopts a Gaussian mixture model of distribution components that can be expanded
to accommodate new information from an input data point, or reduced if spurious compo-
nents are identified along the learning process. Each data point assimilated by the model con-
tributes to the sequential update of the model parameters based on the maximization of the
likelihood of the data. The parameters are updated through the accumulation of relevant infor-
mation extracted from each data point. New points are added directly to existing Gaussian
components or new components are created when necessary, avoiding merge and split opera-
tions, much like what is seen in the Adaptive Resonance Theory (ART) algorithms [5]. It has
been previously shown in [6] that the algorithm is robust even when data is presented in ran-
dom order, having similar performance and producing similar number of clusters in any order.
Also, [4] has shown that the resulting models are very similar to the ones produced by the
batch EM algorithm.

The IGMN is capable of supervised learning, simply by assigning any of its input vector ele-
ments as outputs. In other words, any element can be used to predict any other element, like
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auto-associative neural networks [7] or missing data imputation [8]. This feature is useful for
simultaneous learning of forward and inverse kinematics [9], as well as for simultaneous learn-
ing of a value function and a policy in reinforcement learning [10].

Previous successful applications of the IGMN algorithm include time-series prediction [11–
13], reinforcement learning [2, 14], mobile robot control and mapping [1, 15, 16] and outlier
detection in data streams [17].

However, the IGMN suffers from cubic time complexity due to matrix inversion operations
and determinant computations. Its time complexity is of O(NKD3), where N is the number of
data points, K is the number of Gaussian components and D is the problem dimension. It
makes the algorithm prohibitive for high-dimensional tasks (like visual tasks) and thus of lim-
ited use. One solution would be to use diagonal covariance matrices, but this decreases the
quality of the results, as already reported in previous works [6, 11]. In this work, we propose
the use of rank-one updates for both inverse matrices and determinants applied to full covari-
ance matrices, thus reducing the time complexity to O(NKD2) for learning while keeping the
quality of a full covariance matrix solution.

For the specific case of the IGMN algorithm, to the best of our knowledge, this has not been
tried before, although we can find similar efforts for related algorithms. In [18], rank-one
updates were applied to an iterated linear discriminant analysis algorithm in order to decrease
the complexity of the algorithm. Rank-one updates were also used in [19], where Gaussian
models are employed for feature selection. Finally, in [20], the same kind of optimization was
applied to Maximum Likelihood Linear Transforms (MLLT).

The next Section describes the algorithm in more detail with the latest improvements to
date. Section 3 describes our improvements to the algorithm. Section 4 shows the experiments
and results obtained from both versions of the IGMN for comparison, and Section 5 finishes
this work with concluding remarks.

2 Incremental Gaussian Mixture Network
In the next subsections we describe the current version of the IGMN algorithm, a slightly
improved version of the one described in [15].

2.1 Learning
The algorithm starts with no components, which are created as necessary (see subsection 2.2).
Given input x (a single instantaneous data point), the IGMN algorithm processing step is as
follows. First, the squared Mahalanobis distance d2(x, j) for each component j is computed:

d2
Mðx; jÞ ¼ ðx� μjÞTC�1j ðx� μjÞ ð1Þ

where μj is the j
th component mean, Cj its full covariance matrix. If any d2(x, j) is smaller

than than w2
D;1�b (the 1 − β percentile of a chi-squared distribution with D degrees-of-freedom,

where D is the input dimensionality and β is a user defined meta-parameter, e.g., 0.1), an
update will occur, and posterior probabilities are calculated for each component as follows:

pðxjjÞ ¼ 1

ð2pÞD=2
ffiffiffiffiffiffiffiffi
jCjj

q exp � 1

2
d2
Mðx; jÞ

� �
ð2Þ
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pðjjxÞ ¼ pðxjjÞpðjÞXK

k¼1
pðxjkÞpðkÞ

8j
ð3Þ

where K is the number of components. Now, parameters of the algorithm must be updated
according to the following equations:

vjðtÞ ¼ vjðt � 1Þ þ 1 ð4Þ

spjðtÞ ¼ spjðt � 1Þ þ pðjjxÞ ð5Þ

ej ¼ x� μjðt � 1Þ ð6Þ

oj ¼
pðjjxÞ
spj

ð7Þ

Dμj ¼ ojej ð8Þ

μjðtÞ ¼ μjðt � 1Þ þ Dμj ð9Þ

e�j ¼ x� μjðtÞ ð10Þ

CjðtÞ ¼ ð1� ojÞCjðt � 1Þ þ oje
�
j e
�T
j � DμjDμ

T
j ð11Þ

pðjÞ ¼ spjXM
q¼1

spq
ð12Þ

where spj and vj are the accumulator and the age of component j, respectively, and p(j) is its
prior probability. The equations are derived using the Robbins-Monro stochastic approxima-
tion [21] for maximizing the likelihood of the model. This derivation can be found in [4, 22].

2.2 Creating New Components
If the update condition in the previous subsection is not met, then a new component j is created
and initialized as follows:

μj ¼ x; spj ¼ 1; vj ¼ 1; pðjÞ ¼ 1XK
i¼1

spi

; Cj ¼ σ2
iniI

where K already includes the new component and σini can be obtained by:

σ ini ¼ dstdðxÞ ð13Þ

where δ is a manually chosen scaling factor (e.g., 0.01) and std is the standard deviation of
the dataset. Note that the IGMN is an online and incremental algorithm and therefore it may
be the case that we do not have the entire dataset to extract descriptive statistics. In this case
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the standard deviation can be just an estimation (e.g., based on sensor limits from a robotic
platform), without impacting the algorithm.

2.3 Removing Spurious Components
Optionally, a component j is removed whenever vj > vmin and spj < spmin, where vmin and spmin

are manually chosen (e.g., 5.0 and 3.0, respectively). In that case, also, p(k) must be adjusted for
all k 2 K, k 6¼ j, using Eq (12). In other words, each component is given some time vmin to show
its importance to the model in the form of an accumulation of its posterior probabilities spj.
Those components are entirely removed from the model instead of merged with other compo-
nents, because we assume they represent outliers. Since the removed components have small
accumulated activations, it also implies that their removal has almost no negative impact on
the model quality, often producing positive impact on generalization performance due to
model simplification (a more throughout analysis of parameter sensibility for the IGMN algo-
rithm can be found in [6]).

2.4 Inference
In the IGMN, any element can be predicted by any other element. In other words, inputs and tar-
gets are presented together as inputs during training. Thus, inference is done by reconstructing
data from the target elements (xt, a slice of the entire input vector x) by estimating the posterior
probabilities using only the given elements (xi, also a slice of the entire input vector x), as follows:

pðjjxiÞ ¼
pðxijjÞpðjÞXM

q¼1
pðxijqÞpðqÞ

8j
ð14Þ

It is similar to Eq (3), except that it uses a modified input vector xi with the target elements xt
removed from calculations. After that, xt can be reconstructed using the conditional mean equa-
tion:

x̂t ¼
XM
j¼1

pðjjxiÞðμj;t þCj;tiC
�1
j;i ðxi � μj;iÞÞ ð15Þ

where Cj,ti is the sub-matrix of the jth component covariance matrix associating the
unknown and known parts of the data, Cj,i is the sub-matrix corresponding to the known part
only and μj,i is the jth’s component mean without the element corresponding to the target ele-
ment. This division can be seen below:

Cj ¼
Cj;i

��� Cj;it

Cj;ti

��� Cj;t

0
@

1
A

3 Fast IGMN
One of the contributions of this work lies in the fact that Eq (1) (the squared Mahalanobis dis-
tance) requires a matrix inversion, which has a asymptotic time complexity of O(D3), for D
dimensions (O(Dlog27+O(1)) for the Strassen algorithm or at best O(D2.3728639) with the most
recent algorithms to date [23]). This renders the entire IGMN algorithm as impractical for
high-dimension tasks. Here we show how to work directly with the inverse of covariance
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matrix (also called the precision or concentration matrix) for the entire procedure, therefore
avoiding costly inversions.

Firstly, let us denote C−1 = Λ, the precision matrix. Our task is to adapt all equations involv-
ing C to instead use Λ.

We now proceed to adapt Eq (11) (covariance matrix update). This equation can be seen as
a sequence of two rank-one updates to the Cmatrix, as follows:

�C jðtÞ ¼ ð1� ojÞCjðt � 1Þ þ oje
�
j e
�T
j ð16Þ

CjðtÞ ¼ �C jðtÞ � DμjDμ
T
j ð17Þ

This allows us to apply the Sherman-Morrison formula [24]:

ðAþ uvTÞ�1 ¼ A�1 �A�1uvTA�1

1þ vTA�1u
ð18Þ

This formula shows how to update the inverse of a matrix plus a rank-one update. For the
second update, which subtracts, the formula becomes:

ðA� uvTÞ�1 ¼ A�1 þA�1uvTA�1

1� vTA�1u
ð19Þ

In the context of IGMN, we haveA ¼ ð1� oÞCjðt � 1Þ ¼ ð1� oÞΛ�1j ðt � 1Þ and u ¼
v ¼ ffiffiffiffi

o
p

e� for the first update, while for the second one we haveA ¼ �C jðtÞ and u = v = Δμj.

Rewriting Eqs (18) and (19) we get (for the sake of compactness, assume all subscripts for Λ
and Δμ to be j):

�ΛðtÞ ¼ Λðt � 1Þ
1� o

�
o

ð1�oÞ2 Λðt � 1Þe�e�TΛðt � 1Þ
1þ o

1�o e
�TΛðt � 1Þe� ð20Þ

ΛðtÞ ¼ �ΛðtÞ þ
�ΛðtÞDμDμT �ΛðtÞ
1� DμT �ΛðtÞDμ ð21Þ

These two equations allow us to update the precision matrix directly, eliminating the need
for the covariance matrix C. They have O(N2) complexity due to matrix-vector products.

Following on the adaptation of the IGMN equations, Eq (1) (the squared Mahalanobis dis-
tance) allows for a direct substituion, yielding the following new equation:

d2
Mðx; jÞ ¼ ðx� μjÞTΛjðx� μjÞ ð22Þ

which now has a O(N2) complexity, since there is no matrix inversion as the original equa-
tion. Note that the Sherman-Morrison identity is exact, thus the Mahalanobis computation
yields exactly the same result, as will be shown in the experiments. After removing the cubic
complexity from this step, the determinant computation will be dealt with next.

Since the determinant of the inverse of a matrix is simply the inverse of the determinant, it
is sufficient to invert the result. But computing the determinant itself is also a O(D3) operation,
so we will instead perform rank-one updates using the Matrix Determinant Lemma [25],
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which states the following:

jAþ uvT j ¼ jAjð1þ vTA�1uÞ ð23Þ

jA� uvT j ¼ jAjð1� vTA�1uÞ ð24Þ

Since the IGMN covariance matrix update involves a rank-two update, adding a term and
then subtracting one, both rules must be applied in sequence, similar to what has been done
with the Λ equations. Eqs (16) and (17) may be reused here, together with the same substitu-
tions previously showed, leaving us with the following new equations for updating the determi-
nant (again, j subscripts were dropped):

j �CðtÞj ¼ ð1� oÞDjCðt � 1Þj 1þ o
1� o

e�TΛðt � 1Þe�
� �

ð25Þ

jCðtÞj ¼ j �CðtÞjð1� DμT �ΛðtÞDμÞ ð26Þ

This was the last source of cubic complexity, which is now quadratic.
Finishing the adaptation in the learning part of the algorithm, we just need to define the ini-

tialization for Λ for each component. What previously wasCj ¼ σ2
iniI now becomes

Λj ¼ σ�2ini I, the inverse of the variances of the dataset. Since this matrix is diagonal, there are no

costly inversions involved. And for initializing the determinant jCj, just set it toQσ2
ini, which

again takes advantage of the initial diagonal matrix to avoid costly operations. Note that we
keep the precision matrix Λ, but the determinant of the covariance matrix C instead. See algo-
rithms 1 to 3 for a summary of the new learning algorithm (excluding pruning, for brevity).

Algorithm 1 Fast IGMN Learning

Input: δ, β, X
K > 0, σ�1ini ¼ ðdstdðXÞÞ�1;M ¼ ;
for all input data vector x 2 X do
if K = 0 or 9j, d2

Mðx; jÞ < w2
D;1�b then

update(x)
else

M M [ create(x)
end if

end for

Finally, the inference Eq (15) must also be updated in order to allow the IGMN to work in
supervised mode. This can be accomplished by the use of a block matrix decomposition (note
that here C is just another sub-matrix, not the covariance matrix as used before):

Λ ¼
A B

C D

" #�1
¼

X Y

Z W

" #
¼

ðA�BD�1CÞ�1 �A�1BðD�CA�1BÞ�1

�D�1CðA�BD�1CÞ�1 ðD�CA�1BÞ�1

2
4

3
5

Here, according to Eq (15), we need C and A−1. But since the terms that constitute these
sub-matrices are relative to the original covariance matrix (which we do not have), they must
be extracted from the precision matrix directly. Looking at the decomposition, it is clear that
YW−1 = −A−1 B = −C A−1 (the terms between parenthesis in Y andW cancel each other, while
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B = CT due to symmetry). So Eq (15) can be rewritten as:

x̂t ¼
XM
j¼1

pðjjxiÞðμj;t �YW�1ðxi � μj;iÞÞ ð27Þ

where Y andW can be extracted directly from Λ. However, we still need to compute the
inverse ofW. So we can say that this particular implementation has O(NKD2) complexity for
learning and O(NKD3) for inference. The reason for us to not worry about that is that d = i + o,
where i is the number of inputs and o is the number of outputs. The inverse computation acts
only upon the output portion of the matrix. Since, in general, o� i (in many cases even o = 1),
the impact is minimal, and the same applies to the YW−1 product. In fact, Weka (the data min-
ing platform used in this work [26]) allows for only 1 output, leaving us with just scalar
operations.

Algorithm 2 update

Input: x
for all Gaussian componentS j 2 M do
d2
Mðx; jÞ ¼ ðx� μjÞTΛjðx� μjÞ
pðx j jÞ ¼ 1

ð2pÞD=2
ffiffiffiffiffi
jCj j
p exp � 1

2
d2
Mðx; jÞ

� 	
pðj j xÞ ¼ pðxjjÞpðjÞPK

k¼1 pðxjkÞpðkÞ
8j

vj(t) = vj(t − 1) + 1
spj(t) = spj(t − 1) + p(jjx)
ej = x − μj(t − 1)

oj ¼ pðjjxÞ
spj

Δμj = ωj ej
μj(t) = μj(t − 1) + Δμj
e�j ¼ x� μjðtÞ
�ΛðtÞ ¼ Λðt�1Þ

1�o �
o

ð1�oÞ2Λðt�1Þe
�e�TΛðt�1Þ

1þ o
1�oe�TΛðt�1Þe�

ΛðtÞ ¼ �ΛðtÞ þ �ΛðtÞDμDμT �ΛðtÞ
1�DμT �ΛðtÞDμ

pðjÞ ¼ spjPM

q¼1 spq

j �CðtÞ j¼ ð1� oÞD j Cðt � 1Þ j 1þ o
1�o e

�TΛðt � 1Þe�� 	
j CðtÞ j¼j �CðtÞ j ð1� DμT �ΛðtÞDμÞ

end for

Algorithm 3 create

Input: x
K K + 1
return new Gaussian component K with μK = x, ΛK ¼ σ�1ini I, jCKj = jΛKj−1, spj = 1, vj =

1, pðjÞ ¼ 1PK

k¼1 spi

4 Experiments
The first experiment was meant to verify that both IGMN implementations produce exactly
the same results. They were both applied to 7 standard datasets distributed with the Weka soft-
ware (Table 1). Parameters were set to δ = 0.5 (chosen by 2-fold cross-validation) and β = 4.9E
− 324, the smallest possible double precision number available for the Java Virtual Machine
(and also the default value for this implementation of the algorithm), such that Gaussian com-
ponents are created only when strictly necessary. The same parameters were used for all
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datasets. Results were obtained from 10-fold cross-validation (resulting in training sets with
90% of the data and test sets with the remaining 10%) and statistical significances came from
paired t-tests with p = 0.05. As can be seen in Table 2, both IGMN and FIGMN algorithms pro-
duced exactly the same results, confirming our expectations. The number of clusters created by
them was also the same, and the exact quantity for each dataset is shown in Table 3. The Weka
packages for both variations of the IGMN algorithm, as well as the datasets used in the experi-
ments can be found at [27]. The MNIST dataset can be found at http://yann.lecun.com/exdb/
mnist/, while the CIFAR10 dataset is available at http://www.cs.toronto.edu/~kriz/cifar.html.

Table 1. Datasets.

Dataset Instances (N) Attributes (D) Classes

breast-cancer 286 9 2

pima-diabetes 768 8 2

Glass 214 9 7

ionosphere 351 34 2

iris 150 4 3

labor-neg-data 57 16 2

soybean 683 35 19

MNIST [28] 70000 784 10

CIFAR-10 [29] 60000 3072 10

doi:10.1371/journal.pone.0139931.t001

Table 2. Accuracy of different algorithms on standard datasets.

Dataset RF NN Lin. SVM RBF SVM IGMN FIGMN

breast-cancer 69.6 ± 9.1 75.2 ± 6.5 69.3 ± 7.5 70.6 ± 1.5 71.4 ± 7.4 71.4 ± 7.4

pima-diabetes 75.8 ± 3.5 74.2 ± 4.9 77.5 ± 4.4 65.1 ± 0.4• 73.0 ± 4.5 73.0 ± 4.5

Glass 79.9 ± 5.0 53.8 ± 7.4• 62.7 ± 7.8• 68.8 ± 8.7• 65.4 ± 4.9• 65.4 ± 4.9•

ionosphere 92.9 ± 3.6 92.6 ± 2.4 88.0 ± 3.5 93.5 ± 3.0 92.6 ± 3.8 92.6 ± 3.8

iris 95.3 ± 4.5 95.3 ± 5.5 96.7 ± 4.7 96.7 ± 3.5 97.3 ± 3.4 97.3 ± 3.4

labor-neg-data 89.7 ± 14.3 89.7 ± 14.3 93.3 ± 11.7 93.3 ± 8.6 94.7 ± 8.6 94.7 ± 8.6

soybean 93.0 ± 3.1 93.0 ± 2.4 94.0 ± 2.2 88.7 ± 3.0• 91.5 ± 5.4 91.5 ± 5.4

Average 85.2 82.0 83.1 82.4 83.7 83.7

• statistically significant degradation

doi:10.1371/journal.pone.0139931.t002

Table 3. Number of Gaussian components created.

Dataset # of Components

breast-cancer 14.2 ± 1.9

pima-diabetes 19.4 ± 1.3

Glass 15.9 ± 1.1

ionosphere 74.4 ± 1.4

iris 2.7 ± 0.7

labor-neg-data 12.0 ± 1.2

soybean 42.6 ± 2.2

doi:10.1371/journal.pone.0139931.t003
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Besides the confirmation we wanted, we could also compare the IGMN/FIGMN classifica-
tion accuracy for the referred datasets against other 4 algorithms: Random Forest (RF), Neural
Network (NN), Linear SVM and RBF SVM. The neural network is a parallel implementation
of a state-of-the-art Dropout Neural Network [30] with 100 hidden neurons, 50% dropout for
the hidden layer and 20% dropout for the input layer (this specific implementation can be
found at https://github.com/amten/NeuralNetwork). The 4 algorithms were kept with their
default parameters. The IGMN algorithms produced competitive results, with just one of them
(Glass) being statistically significant below the accuracy produced by the Random Forest algo-
rithm. This value was significantly inferior for all other algorithms too. On average, the IGMN
algorithms were the second best from the set, losing only to the Random Forest. Note, however,
that the Random Forest is a batch algorithm, while the IGMN learns incrementally from each
data point. Also, the resulting Random Forest model used 6 times more memory than the
IGMNmodel. We also tested the FIGMN accuracy on the MNIST dataset, but even after
parameter tuning, the results where not on par with the state-of-the-art (above 99%), reaching
a maximum of around 93% accuracy.

A second experiment was performed in order to evaluate the speed performance of the pro-
posed algorithm, both the original and improved IGMN algorithms, using the parameters δ =
1 and β = 0, such that a single component was created and we could focus on speedups due
only to dimensionality (this also made the algorithm highly insensitive to the δ parameter).
They were applied to the 2 highest dimensional datasets in Table 1, namely, the MNIST and
CIFAR-10 datasets. The MNIST dataset was split into a training set with 60000 data points and
a testing set containing 10000 data points, the standard procedure in the machine learning
community [28]. Similarlly, the CIFAR-10 dataset was split into 50000 training data points
and 10000 testing data points, also a standard procedure for this dataset [29].

Results can be seen in Table 4. Training time for the MNIST dataset was 20 times smaller
for the fast version while the testing time was 16 times smaller. It makes sense that the testing
time has shown a bit less improvement, since inference only takes advantage from the incre-
mental determinant computation but not from the incremental inverse computation. For the
CIFAR-10 dataset, it was impractical to run the original IGMN algorithm on the entire dataset,
requiring us to estimate the total time, linearly projecting it from 100 data points (note that,
since the model always uses only 1 Gaussian component during the entire training, the compu-
tation time per data point does not increase over time). It resulted in 32 days of CPU time esti-
mated for the original algorithm against 15545s (* 4h) for the improved algorithm, a speedup
above 2 orders of magnitude. Testing time is not available for the original algorithm on this
dataset, since the training could not be concluded. Additionally, we compared a pure clustering
version of the FIGMN algorithm on the MNIST training set against batch EM (the implemen-
tation found in the Weka software). While the FIGMN algorithm took* 7.5h hours to finish,

Table 4. Training and testing running times (in seconds).

Dataset IGMN Training FIGMN Training IGMN Testing FIGMN Testing

MNIST 32,544.69 1,629.81 3,836.06 230.92

CIFAR-10 2,758,252* 15,545.05 - 795.98

* estimated time projected from 100 data points

doi:10.1371/journal.pone.0139931.t004
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using 208 Gaussian components, the batch EM algorithm took* 1.3h to complete a single iter-
ation (we set the fixed number of components to 208 too) using 4 CPU cores. Besides generally
requiring more than one iteration to achieve best results, the batch algorithm required the
entire dataset in RAM. The FIGMNmemory requirements were much lower.

Finally, both versions of the IGMN algorithm with δ = 1 and β = 0 were compared on 11
synthetic datasets generated by Weka. All datasets have 1000 data points drawn from a single
Gaussian distribution (90% training, 10% testing) and an exponentially growing number of
dimensions: 1, 2, 4, 8, 16, 32, 64, 128, 256, 512 and 1024. This experiment was performed in
order to compare the scalability of both algorithms. Results for training and testing can be seen
in Fig 1:

5 Conclusion
We have shown how to work directly with precision matrices in the IGMN algorithm, avoiding
costly matrix inversions by performing rank-one updates. The determinant computations were
also avoided using a similar method, effectively eliminating any source of cubic complexity for
the learning algorithm. This resulted in substantial speedups for high-dimensional datasets,
turning the IGMN into a good option for this kind of tasks. The inference operation still has
cubic complexity, but we argue that it has a much smaller impact on the total runtime of the
algorithm, since the number of outputs is usually much smaller than the number of inputs.
This was confirmed in the experiments.

In general, we could see that the fast IGMN is a good option for supervised learning, with
low runtimes and good accuracy. It should be noted that this is achieved with a single-pass
through the data, making it also a valid option for data streams.
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