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Abstract

Gene-set-based analysis (GSA), which uses the relative importance of functional gene-
sets, or molecular signatures, as units for analysis of genome-wide gene expression data,
has exhibited major advantages with respect to greater accuracy, robustness, and biologi-
cal relevance, over individual gene analysis (IGA), which uses log-ratios of individual genes
for analysis. Yet IGA remains the dominant mode of analysis of gene expression data. The
Connectivity Map (CMap), an extensive database on genomic profiles of effects of drugs
and small molecules and widely used for studies related to repurposed drug discovery, has
been mostly employed in IGA mode. Here, we constructed a GSA-based version of CMap,
Gene-Set Connectivity Map (GSCMap), in which all the genomic profiles in CMap are con-
verted, using gene-sets from the Molecular Signatures Database, to functional profiles. We
showed that GSCMap essentially eliminated cell-type dependence, a weakness of CMap in
IGA mode, and yielded significantly better performance on sample clustering and drug-tar-
get association. As a first application of GSCMap we constructed the platform Gene-Set
Local Hierarchical Clustering (GSLHC) for discovering insights on coordinated actions of
biological functions and facilitating classification of heterogeneous subtypes on drug-driven
responses. GSLHC was shown to tightly clustered drugs of known similar properties. We
used GSLHC to identify the therapeutic properties and putative targets of 18 compounds of
previously unknown characteristics listed in CMap, eight of which suggest anti-cancer activ-
ities. The GSLHC website http://cloudr.ncu.edu.tw/gslhc/ contains 1,857 local hierarchical
clusters accessible by querying 555 of the 1,309 drugs and small molecules listed in CMap.
We expect GSCMap and GSLHC to be widely useful in providing new insights in the biologi-
cal effect of bioactive compounds, in drug repurposing, and in function-based classification
of complex diseases.

PLOS ONE | DOI:10.1371/journal.pone.0139889 October 16,2015

1/23


http://cloudr.ncu.edu.tw/gslhc/
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0139889&domain=pdf
http://creativecommons.org/licenses/by/4.0/
http://cloudr.ncu.edu.tw/gslhc/
http://figshare.com/download/file/2288071
http://figshare.com/download/file/2288071
http://figshare.com/download/file/2288072

@' PLOS ‘ ONE

GSLHC for the Therapeutic Characterization of Bioactive Compounds

Technology (Republic of China) http://www.most.gov.
tw/; Grants 100CGH-NCU-A5, 101CGH-NCU-AS5,
Ministry of Education Republic of China) http://
english.moe.gov.tw/; Grants 10110021-5, 10210061-
5, National Central University http://www.ncu.edu.tw/?
hi=en; and Cathay General Hospital http://www.cgh.
org.tw/en/index.html. The funders had no role in study
design, data collection and analysis, decision to
publish, or preparation of the manuscript.

Competing Interests: The authors have declared
that no competing interests exist.

Introduction

Microarray technique has been a powerful tool for profiling gene expression on a genome-wide
scale and to study associations between gene expression and the pathology of common dis-
eases, including various cancers and Alzheimer's disease [1, 2]. A common practice, the Indi-
vidual Gene Analysis (IGA) of microarrays, focuses on statistics-based identification of
differentially expressed genes (DEGs) between two phenotypes. Standard and popular methods
of this type include student -test, z-test, SAM, Limma, and ANOVA [3-7]. While most biolog-
ical processes, including metabolic process, signal transduction, and regulation of transcrip-
tion, typically involve the collaborative activation of large sets of genes, IGA methods
emphasize the independence of individual genes and neglect the expected correlations in gene
expression.

An improvement on IGA is to explore whether, among IGA-selected DEGs, functionally
related gene sets, such as those given by Gene Ontology [8] and KEGG [9], are significantly
expressed. An example of this approach is Fisher's exact test [10]. A drawback in this approach
is that genes not among DEGs, namely the vast majority of genes, are excluded from the con-
sideration. In the event when the DEG set is large, the correspondingly long list of sets of func-
tionally related genes makes it cumbersome to compare results between studies. Most
importantly, this approach tends to be dominated by large gene-sets, such as those of immune
response and metabolic pathways, and results in the neglect of possibly important functions
represented by smaller gene-sets.

The Connectivity map (CMap) was first developed as a generic solution for identifying the
functional associations between diseases, genes, and drugs [11]. This approach provides a com-
mon analytical platform using genomic profiles as a shared language to connect diseases, gene
functions, and drug activities. Many studies have employed disease-defined gene-sets to query
CMap for the discovery of repurposed drug activities against common diseases, including dia-
betes [12] and Alzheimer's disease [13, 14], and solid tumours such as colon cancer [15], breast
cancer [16], lung adenocarcinoma [17], and Inflammatory Bowel Disease [18]. CMap has also
used to study drug-induced differential expression of drug target mRNA [19] and, in combina-
tion of public repositories of gene expression data characterizing diseases, to construct a data-
base that connects input genomic profiles with CMap drugs and diseases [20]. The standard
application of CMap has been IGA based [17]. However, results of IGA-based application of
CMap on human samples tend to be dominated by cell types (Supporting Information in [11]).
One way to overcome this tendency is to generate a consensus genomic profile for each drug
by merging CMap data from different cell-lines [21]. In another approach, transcriptional
response data (i.e., genomic profiles) of a drug is decomposed into factors specific to individual
cell lines and factors shared by two or more cell lines, and only shared factors are assumed to
be relevant in characterizing drugs [22].

Gene-Set Analysis (GSA) was developed to address the shortcomings of IGA [23]. GSA uses
sets of genes connected by biological functions, instead of individual genes, as units of analysis.
In Gene Set Enrichment Analysis (GSEA) [24], the first GSA method, the relative importance
of a functional gene-set is represented by an enrichment score (ES). GSEA was employed to
generate a map that links genomic profiles of diseases to corresponding drug responses in
CMap [11].

More recent variants of GSEA, including GSA [25], SAFE [26], Catmap [27], Ermine] [28],
and SAM-GS [29], employ variations in matrix ranking, definition for enrichment scores, or
scheme for significance estimation. Other methods including FunNet [30], PARADIGM [31],
and COFECO [32] are network-based and more sophisticated, but their application may also
be limited by the availability of gene-gene interactions. GSA methods have been employed to

PLOS ONE | DOI:10.1371/journal.pone.0139889 October 16,2015

2/23


http://www.most.gov.tw/
http://www.most.gov.tw/
http://english.moe.gov.tw/
http://english.moe.gov.tw/
http://www.ncu.edu.tw/?hl=en
http://www.ncu.edu.tw/?hl=en
http://www.cgh.org.tw/en/index.html
http://www.cgh.org.tw/en/index.html

@' PLOS ‘ ONE

GSLHC for the Therapeutic Characterization of Bioactive Compounds

explore functional relationships in large-scale compendiums of clinical cancer cohort samples
and to elucidate associations in drug-driven signatures for therapeutic purposes [18, 33].
Another unsupervised method based on annotation-driven clustering had also performed
excellent results on recovering clinically relevant patient subgroups [34]. An integrated
approach using chemical structures and biological functions to discover novel links between
specific chemical structure properties and distinct biological responses in cells had also been
reported [35].

In GSA, a genomic profile may be expressed as the set of ESs for a comprehensive list of
gene-sets computed from that genomic profile; we shall call that set a functional genomic pro-
file (hereafter, functional profile). Because a functional profile neither relies on an arbitrary
threshold for gene selection, as does IGA, nor by definition is it dominated by a few functional-
ities involving large gene-sets, it is expected to be more accurate and sensitive in reflecting the
global as well as detailed properties of a genome-wide gene expression than IGA.

Here, we built Gene-Set Connectivity Map (GSCMap), an enhanced version of CMap where
the genomic profiles of drugs in the CMap database are converted to functional profiles. Like
CMap, GSCMap may be used for repurposed drug discovery, except that in GSCMap the func-
tional signature of a phenotype is matched to functional profiles of drugs. The goal is to con-
struct a database that one may expect to yield a more robust drug-phenotype association. We
conducted tests to establish the internal consistency of GSCMap. We showed that grouping of
drugs with similar biological activities is much more robust with GSCMap than with CMap in
IGA mode. For an application of GSCMap we developed Gene-set-based Local Hierarchical
Clustering (GSLHC), which utilizes an agglomerative hierarchical method for clustering a sub-
set of functional gene-sets associated with "local” drugs responses (Fig 1). The idea is that,
given a very large matrix of gene-set enrichment scores, a clear pattern of coordinated expres-
sion in sets of functionalities are usually confined to a subgroup of samples, a pattern that may
not be easily detected by global measurements [36, 37]. Through GSLHC we identified the
therapeutic properties and putative targets of 18 compounds of previously unknown character-
istics listed in CMap, placing each in a subclass of drugs grouped by the similarity of the func-
tional response they induce. Eight of the 18 subclasses contain putative anti-cancer activities.
Our results revealed novel links in terms of gene-sets, and drug-versus-functions.

Our results showed GSCMap to be a robust and biologically more reliable version of CMap,
and GSLHC, in combination with GSCMap, to be useful in discovering linkages among bioac-
tive compounds characterized by their functional properties.

Materials and Methods
External database

The CMap database (build 02). Four types of human cancer cell lines (MCF7, PC3, HL60,
SKMELD5) were treated with 1,309 distinct small-molecules including U.S. Food and Drug
Administration (FDA) approved drugs and uncharacterized bioactive compounds (call pertur-
bagens by the authors of CMap, here simplicity referred as drugs), for a total of 6,097 treat-
ments [11]. Gene (total RNA) expressions from the 6,097 “instances” (an instance is a cell line
treated with a drug at a dosage, and its non-treated control) were recorded in two batches of
microarrays: 671 HG-U133A (Affymetrix) chips (on 407 drugs) and 5,426 HT-HG-U133A
chips (for a total of 6,097 chips on 1,309 drugs). Raw data were downloaded from the CMap
website (http://www.broadinstitute.org/cmap/).

Molecular signature database. We downloaded the annotated 4,884 gene-sets (called tags)
from the Molecular Signatures Database (MSigDB: http://www.broadinstitute.org/gsea/
msigdb/index.jsp) [38]. We used four types of tags in MSigDB: C2: curated tags from known

PLOS ONE | DOI:10.1371/journal.pone.0139889 October 16,2015 3/23


http://www.broadinstitute.org/cmap/
http://www.broadinstitute.org/gsea/msigdb/index.jsp
http://www.broadinstitute.org/gsea/msigdb/index.jsp

@PLOS ‘ ONE

GSLHC for the Therapeutic Characterization of Bioactive Compounds

The Connectivity Map database

o' &
ofaf=-

\

o

S &
Qa8 88 Ef%r

Gene set database

N

7

m
sainjeubis Jenos|o

Underlying possible mechanisms for drug X 1

o>~ He M)

Fig 1. The GSLHC workflow.

o 1= H )

doi:10.1371/journal.pone.0139889.9001

pathways, online databases, and knowledge of domain experts; C3: motif tags based on conser-
vative cis-regulatory motifs from human, mouse, rat, and dog genomes; C4: computational
tags determined by co-expression neighbourhoods centered on 380 cancer-related genes; C5:
gene-ontology tags collected from the same GO annotations of genes. C1 (positional tags on
each human chromosome) was not included in this study for saving the time on big size of
tags. For convenience, gene symbols in each tag were combined and transformed in
HG-U133A Affymetrix ID according to the updated annotation file from Affymetrix website
(http://www.affymetrix.com/estore/).

Chemical structure database. In order to cluster compounds based on 3D structure similar-
ity, we queried 1,309 drug names on NCBI PubChem database (http://pubchem.ncbi.nlm.nih.
gov/). Next, the retrieved 1,267 compounds (97% of CMap databsets) were hierarchically clus-
tered by Chemical Structure Clustering tool based on the 3D structure (fingerprint) similarity
using the single linkage algorithm on PubChem website [39]. Finally, we partitioned the tree
into K clusters with K ranging from 10 to 200, and evaluated the clustering performance using
F-score [40].

Pharmacological classification system. We retrieved class information of 798 compounds
(61% of CMap databsets) from the Anatomical Therapeutic Chemical (ATC) classification sys-
tem in the World Health Organization (WHO) website (http://www.whocc.no/) for informa-
tion on similar therapeutic classes. In this system, drugs are classified into groups at 5 different
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levels: the first level of code indicates the anatomical main group; the second level of code indi-
cates the therapeutic main group; the third level of code indicates the therapeutic/pharmaco-
logical subgroup; the fourth level of code indicates the chemical/therapeutic/pharmacological
subgroup; the fifth level of code indicates the chemical substance. We used the first four levels
of ATC to evaluate the gene and tag clusters performance using F-score. The fifth level of the
code was not included in our analysis because at this level CMap was too fragmented-almost
one drug to a class—for the code to be useful.

Molecular target database. We extracted information on known therapeutic protein targets,
relevant diseases or cancers, and corresponding drugs (787 drugs; 60% of CMap datasets) from
the Therapeutic Target Database (TTD: http://bidd.nus.edu.sg/group/ttd/) [41]. The working
types on specific targets by the corresponding drugs (including activator, adduct, agonist,
antagonist, antibody, binder, blocker, breaker, cofactor, inducer, inhibitor, intercalator, mod-
ulator, multitarget, opener, regulator, stimulator, and suppressor) were simply divided into two
major groups: inhibition or activation. Because drugs and targets do not have one-to-one cor-
respondence, we did not calculate F-score based on the small class size. Instead, we computed
drug-drug correlations by target group in IGA and GSA. The drug-pair is assumed to have cor-
relation value of 1 if they have similar effects on the same protein target.

Local database

CMap mirror database. Following the original methods described in CMap, the raw image of
CEL files for the 6,097 instances from the CMap database were converted to average log-ratios
and confidence calls using the algorithms MAS 5.0 (Affymetrix) and linear-fit-on-Pcall [11].
For each instance the log-ratios for the 22,283 HG-U133A probesets were ranked and the
ranked data for all instances were saved in matrix form locally.

Local CMap program. The web version of CMap cannot be queried in batch mode. Further-
more, in each individual query the number of genes, or the size of the tag, is limited to 1000. To
overcome these limitations, we used C++ language to build a local program encoding the same
algorithms and datasets used by CMap. This program allows CMap-type queries to be made
locally in single or batch mode, and permits GSEA (Gene Set Enrichment Analysis [38])
parameters be varied. The program was tested for reliability and speed before applied to the
current study (see Results).

Matrix CMap and the enrichment-score matrix GSCMap and their sub-
matrices

Cmap is a 22,283x6,097 probe-set versus instance matrix; elements of matrix are log-ratios of
expression intensities. From this a number of extend maps/matrices were constructed:

Cmapl 2013 The 22,283x671 sub-matrix of CMap involving the 671 instances in CMap
v1.0.

tCMapl - A 300x671 sub-matrix of CMap1 involving the 300 highest variance probe-sets.

CMd - A 22,283x1,309 probe-set versus drug matrix reduced from CMap by averaging over
same-drug instances.

IGCMd - A 4,884x1,309 sub-matrix of CMd involving the 4,884 highest variance probe-
sets.

GSCMap - A 4,884x6,097 tag versus instance matrix; elements of the matrix are enrichment
scores (ESs). For each of the 4,884 tags from MSigDB (collections C2-C5), we queried the 6,097
instances in CMap (version 2.0) to yield a 6,097-component vector (called Vd) of Kolmogo-
rov-Smirnov statistic [11, 42, 43] based ESs, as defined in [38]. GSCMap is the set of 4,884
Vd’s.
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GSCMapl - The 4,884x671 sub-matrix of GSCMap involving the 671 instances in CMap
v1.0.

tGSCMapl - A 300x671 sub-matrix of GSCMapl involving the 300 largest ES variances
tags.

GSCMd - A 4,884x1,309 tag versus drug matrix. In CMap each drug were treated a variably
multiple (averaging 6,097/1,309 = 4.66) times. For each tag and each drug the matrix element
is the Kolmogorov-Smirnov statistic score (as in GSEA [38]) obtained by ranking the vector
Vd corresponding to the tag and querying it using the multiple treatments for that drug.

Significance by permutation and normalized enrichment score (NES)

We tested the significance of the ES of a tag-drug pair by random permutation. Given a tag and a
drug, and suppose the drug had f treatments in CMap and an (tag versus drug) enrichment score
ES,. We generated a distribution of randomized ESs by running r trials, in each trial recalculating
the Kolmogorov-Smirnov ES by replacing the ¢ treatments for the drug by ¢ randomly selected
treatments among the 6,097 treatments. A randomization (two-sided) p-value for the ES was
computed from ES, and the distribution. The normalized enrichment score (NES) was taken to
be ES, divided by the mean of the distribution [38]. In this work we set r = 10,000.

Gene-set based Local Hierarchical Clustering (GSLHC)

GSLHC is an application of GSCMap for discovering links among drugs through tags strongly
acted on by the drugs. Its implementation involves the steps: (i) Select a query drug set, which
may be a single drug or a group of drugs with known shared property, or a drug of unknown
property. (ii) For the query drug set, cull from GSCMap the functional profiles of drugs a subset
of tags, each of which significantly enriched against every drug in the query drug set, where sig-
nificant enrichment is determined by a threshold randomization p-value below an upper bound
(we used p < 0.005). In the randomization test we generate a distribution of ESs by computing
the ES for a tag-drug pair many times, each time replacing the genes in the tag by randomly
selected genes from the entire gene pool [23]. (iii) Do a two-way hierarchical clustering of the
culled tags with the entire set of 1,309 drugs, and cut out from the resulting heatmap the clade of
drugs that includes the query drug set with correlation above a threshold value (we used 0.9).

Cluster evaluation

We used the F-score, a harmonic mean of precision and recall [40], to evaluate a cluster as a
classifier of a known classification. Let TP, FP, and FN be true positive, false positive, and false
negative, respectively. The precision rate P and recall R rate of the cluster are respectively given
by P = TP/(FP + TP) and R = TP/(TP+ FN). Suppose several nodes in a cluster are meant to
represent a classification, then, for class i, the F-score F; for that class is the maximum nodal
value for 2PR/(P+R), and the F-score for the classification is the weighted average of F;
summed over the nodes. The higher the F-score, the better the classification by cluster. The F-
score ranges from 0 to 1.

Whenever possible, computations were conducted in the R environment (R version 2.15.1).
Conversion of CMap to GSCMap was lengthy and took many hours of computation time.
However, a typical application of GSLHC for constructing a high-correlation drug cluster
requires less than one minute on a standard student grade laptop.

Ethic information

None.
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Results

The local program reproduced results from CMap server with better
efficiency

We used a tag called BRUINS_UVC_RESPONSE_LATE, which contains 1,137 genes differen-
tially expressed only 12 h after UV-C irradiation of MEF cells, from MSigDB to compare the
local program with the remote CMap server on the 100 drugs with the smallest p-value. The two
programs yielded practically identical ESs (S1A Fig, dashed lines), and almost identical permuta-
tion p-values (S1A Fig, solid lines). Identical p-value were not expected; proportionally large dif-
ferences in p-value occurred only when p < 10>, We used the 772 tags in the C2 collection of
MSigDB (number of genes in tags ranged from 50 to 1000) to compare the speed of the local pro-
gram and the CMap server and found that the computation times were comparable, but the local
program was slower when the gene number in the tag exceeded 600 (S1B Fig). The slower speed
of the local program was more than compensated by the possibility of querying in batch mode.

DEGs have low reproducibility in CMap genomic profiles

In CMap each of the 1,309 perturbagens has an average of 4.7 genomic profiles (from different
treatments) resulting from the total of 6,097 treatments. We computed the fractional overlaps
of top-1,000 DEGs between pairs of genomic profiles. The average reproducibility (common
DEGs/1000) between different-perturbagen pairs has a sharp peak at 0.05, with few cases
exceeding 0.1. That of the same-perturbagen pairs also peaks strongly at 0.06, but has a long
weak tail (S2 Fig), with 10,771 of cases having a reproducibility greater than 0.2.

The CMap and GSCMap matrices and their sub-matrices were
constructed

Here, by CMap we mean the 22,283 (probes) x 6,097 (instances) matrix of log-ratios from
CMap database. Using CMap we constructed the 4,884 (tags) x 6,097 GSCMap matrix of ESs
using the 4,884 tags in MSigDB. Then we constructed sub-matrices of CMap, CMapl
(22,283x671), tCMap1 (300x671), CMd (22,283x1,309), and IGCMd (4,884x1,309), and sub-
matrices for GSCMap, GSCMapl1 (4,884x671), tGSCMap1 (300x671) and GSCMd
(4,884x1,309), where 1,309 refers to the number of drugs/small molecules in CMap, 671 refers
to the number of instances in CMap v1.0, 4,884 refers to the number of tags in MSigDB or the
4,884 highest variance probe-sets (for IGCMd), and 300 refers to 300 highest variance probe-
sets (CMap) or ESs (GSCMap) (detail in Methods).

Cell-type dependence of CMap data was strong in IGA but weak in GSA

As a first comparison between the IGA and GSA, we separately hierarchically clustered the two
(300x671) matrices tCMap1 (S1 Table, http://figshare.com/download/file/2258031), represent-
ing IGA, and tGSCMapl (S2 Table, http://figshare.com/download/file/2258032), representing
GSA, using a Pearson distance metric and average-linkage and examined the properties of the
two resulting 671-branch dendograms as cell-type classifiers. Under visual inspection the
tCMapl dendrogram was overwhelmingly dominated by cell type (Fig 2A) whereas the
tGSCMap1 dendogram was not (Fig 2B). Quantitatively, F-scores (Materials and methods) for
the tCMap1 dendogram indicated that it provided a close to perfect classification for the four
cell types (Table 1, permutation p-value < 0.01). In contrast, the tGSCMap dendogram was a
poor (but fair for HL60) classifier for cell types. A similar result was found in a Principle Com-
ponent Analysis on the full CMap dataset (S3 Fig). These results implied GSA results had a sig-
nificantly better chance than IGA of not being masked by cell-type dependence.
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Fig 2. Hierarchical clustering of CMap instances less dominated by cell-type when clustering is based on gene-set/tag enrichment scores.
Dendrograms are hierarchical clustering of CMap instances based on gene expression (A) and tag enrichment score (B). Colors in color bar below
dendogram respectively represent the cell lines SKMELS5 (red), PC3 (green), MCF7 (blue), and HL60 (purple). For each instance top-300 genes or tags with
the top-300 expression log-ratios or ES scores were selected for clustering based on Pearson distance metric and average linkage.

doi:10.1371/journal.pone.0139889.9002

Testing drug responses in IGA and GSA

GSA had clearer and more varied drug response than IGA. We separately two-way hier-
archically clustered the two (4,884x1,309) matrices IGCMd (S3 Table, http://figshare.com/
download/file/2258034) for IGA and GSCMd (54 Table, http://figshare.com/download/file/
2258033) for GSA using Pearson distance metric and average-linkage (Fig 3). All computations
were carried out over two days on a personal computer with an Intel(R) dual core Quad CPU,
2.40 GHz processor with a 8GB RAM. While the vast majority of tags responded to the drugs
as being either positively or negatively enriched (Fig 3A), the vast majority of high-variance
genes were neither up-regulated nor down-regulated with respect to the drugs (Fig 3B).

Table 1. Cell-type effects are eliminated in hierarchical clustering based gene-set enrichment.

Cell type F Permutation p-value

Gene Gene-set Gene Gene-set
MCF7 0.92 0.33 <0.01 0.83
HL60 0.99 0.59 <0.01 0.01
PC3 0.97 0.31 <0.01 0.48
SKMEL5 1.00 0.30 <0.01 0.09

Cluster evaluation by F score was computed for cell-type classification of hierarchical clustering based on individual genes and on gene-based enrichment
(see materials and methods). Permutation p-value was calculated for the F scores by 100 random permutations of cell-type labels.

doi:10.1371/journal.pone.0139889.1001
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Fig 3. Two-way hierarchical clustering heatmep of 1309 CMap perturbagens shows higher contrast
when clustering is based on gene-set/tag enrichment scores. Two-way hierarchical clustering heatmaps
were generated based on Pearson distance metric and average linkage using, for each CMap perturbagen:
(A) normalized enrichment scores (NESs) of 4,884 tags from MSigDB, and (B) log-ratios for expression levels
of the top-4884 high-variance genes. Color code: on red, positive NES or log-ratio; green, black, NES or log
ratio ~0; green, negative NES or log-ratio.

doi:10.1371/journal.pone.0139889.9003

GSA gave a better drug classifier than IGA. In CMap a drug typically is represented by
several instances. For example, the pairs of drugs, trichostatin and LY-294002, respectively
occur in 15 and 9 instances, each instance represented by a vector of 4,884 ESs (in GSCMap) or
22,283 intensity log-ratios (in CMap). We separately hierarchically clustered the two sets of
combined 24 instances. Viewed as classifiers of the two drugs, the GSA cluster had a F-score of
0.98, and the IGA cluster, 0.72 (Fig 4A). The superiority of GSA over IGA in its ability to tell
one drug from another happened to be a general feature. We repeated the above comparison
for all the 20,736 drug-pairs with multiple instances in CMap1 and in GSCMap1 and found
that the (drug classification) F-score for GSA was about 0.036 higher then IGA over an average
of 0.75 (Fig 4B, two-sample Kolmogorov-Smirnov test: p-value < 2.2e-16).

GSA and IGA responded similarly to chemical properties of CMap drugs. The F-scores
of clusters, constructed through GSA (using ESs from GSCMd) and IGA (using gene expres-
sion log-ratios from IGCMd), of drugs classified according to their anatomical, chemical, ther-
apeutic, pharmacological (Anatomical Therapeutic Chemical (ATC) classification system,
World Health Organization, http://www.whocc.no/) and structural (PubChem Structure Data-
base [44]) properties (Material and Methods) were indistinguishable (54 Fig).

Genomic signatures of same-target drug pairs had higher correlation in GSA than in
IGA. We expect the genomic signatures of drugs sharing a target to be more similar than
drugs that do not. Information on drug targets were obtained from the Therapeutic Target
Database (TTD) [41] (Material and Methods). The same-target drug-pairs correlated much
better under GSA (ESs from GSMCd) than IGA (gene expression log-ratios from IGMCd)

(Fig 5). An outstanding case was the triplet vorinostat, valproic acid, and trichostatin A that
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Fig 4. Separation of two drugs among all instances involving the drug pair is done better using gene-set/tag enrichment scores. Quality of
separation is determined by F-scores for hierarchical clusters, constructed using tag enrichment scores and log-ratios for gene expressions, respectively, of
all instances involving the drug pair. (A) Two clusters for the drug-pair valproic acid and trichostatin A; cluster based on gene expression, cluster on left, and
on tag, cluster on right. Two-color bar indicates drug classification. (B) Ranking by F-scores of ~20,000 drug-pairs from the CMap development batch on
HG-U133A platform involving 407 drugs and 674 chips; black, gene expression and red, tag.

doi:10.1371/journal.pone.0139889.g004
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Fig 5. Same-target drug-pairs correlate better when evaluated by gene-set/tag enrichment scores.
Figure plots correlation of same-target drug pair evaluated by tag enrichment score (ES) versus that
evaluated by gene expression. Drug targets were those given by TTD database. In the tag approach, each
drug, or CMap perturbagen, was represented by the ESs of 4884 MSigDB tags. In the gene expression case,
each drug was represented by the set of top-4884 high variance genes. The three red dots are from the three
pairs formed by the three drugs, vorinostat, valproic acid, and trichostatin A, all targeting the histone
deacetylase (HDAC) protein.

doi:10.1371/journal.pone.0139889.9005
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targets the histone deacetylase (HDAC) protein. The three pair-wise correlations for the triplet
ranged from 0.8 to 1.0 in GSA and from 0.05 to 0.15 in IGA. Averaged over all 5,034 pairs
involving 639 drugs, the mean of GSA correlation was 0.35 (S.D. = 0.27) and the mean of IGA
correlation was 0.18 (S.D. = 0.15) (two-sample t-test, p-value < 2.2e-16).

Validation of GSLHC and novel HDAC inhibitors

There are 106 active compounds in the CMap database that are poorly studied, and GSLHC
was developed as an application on GSCMap to discover drug partners of known therapeutic
properties for the compounds. We tested the GSLHC by giving it a set of tags common to
and significantly enriched in the functional profiles of three histone deacetylase (HDAC)
inhibitors-vorinostat (also known as suberoylanilide hydroxamic acid or SAHA), valproic
acid, and trichostatin A-and see if it can recover them from GSCMap. The three HDAC
inhibitors were chosen because they have been fully studied [45-47]. A set of 597 tags signifi-
cantly enriched with permutation p< 0.005 were selected for the test (Material and Meth-
ods). The selected tags had functions related to HDAC inhibitor activities. For example,
among the down-regulated functions were histone acetylating, histone and chromatin modi-
fication, and maintenance of chromatin structures (Fig 6C). The test was successful; the trip-
let was among the six recovered drugs (Fig 6A and 6B). The three extras are not known as
HDAC inhibitors but two of the three, scriptaid and HC toxin, have been reported to have
HDAC inhibition activities [48, 49].
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Fig 6. GSLHC finds novel HDAC inhibitors. The three know HDAC inhibitors valproic acid, trichostatin A, and vorinostat, are all significantly enriched by
597 tags with permutation p< 0.005; these 597 tags were used in a new heatmap in the GSLHC protocol. (A) A sub-heatmap including the three HDAC
inhibitors and all neighbors with correlation > 0.9. (B) Detail of the drug cluster associated with the sub-heatmap. The two drugs rifabutin and scriptaid in the
cluster, not previously known as HDAC inhibitors, has literature support as having inhibition functions on HDAC proteins. (C) Detail of the tag cluster with the
sub-heatmap shows several functions known to be related to HDAC inhibitor activities.

doi:10.1371/journal.pone.0139889.9006
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Fig 7. GSLHC identifies 0175029—-0000 as a novel cyclin-dependent kinase inhibitor (CDKi). (A) A correlation > 0.9 sub-heatmap including the
compound 0175029-0000 of unknown function from a GSLHC-generated heatmap based on the ES of 1080 tags significantly enriched in 0175029-0000
with permutation p< 0.005. (B) Detail of the drug cluster associated with the sub-heatmap. According to the TTD database, GW-8510, alsterpaullone, and H-7
(red asterisk) CDK inhibitors, and doxorubicin, camptothecin, azacitidine, mitoxantrone, and ellipticine (blue asterisk) are DNA topoisomerase inhibitors. All
have anti-tumor activities. (C) Detail of the tag cluster with the sub-heatmap shows functions known to be related to the inhibition activities of cell cycle.

doi:10.1371/journal.pone.0139889.g007

Sample applications of GSLHC to characterization of active compounds

A novel cyclin-dependent kinase inhibitor (CDKi). The compound 0175029-0000 is
among molecules in CMap known to be active in certain biological roles [11] but poorly stud-
ied in literature. Its ES profile had 1,080 significantly enriched tags with permutation p< 0.005.
Our GSLHC search showed it to be closely associated with three CDKi’s with correlation coeffi-
cient (CE) > 0.97 and five DNA topoisomerases with CE > 0.92 (Fig 7A and 7B). Biological
functions negatively regulated by these drugs included those related to cell cycle and check-
point on cell cycle (Fig 7C).

A novel antibiotic, anesthetic, and anti-inflammatory agent. The ES profile of com-
pound CP-863187 had 36 significantly enriched tags with permutation p< 0.005. Our GSLHC
search showed it to be closely associated with an antibiotic (piperacilin; CE > 0.98), an anes-
thetic (benzocaine), an anti-inflammatory agents (betunlinic acid; CE > 0.97), as well as with
another anti-inflammatory agent (CE > 0.96) and five other antibiotics (CE > 0.90) (Fig 8A
and 8B). Biological functions affected by drugs associated with CP-863187 included negative
regulation of integrin signalling pathway and hydrolases (Fig 8C).

Summary of drug discovery by GSLHC (Table 2)

Eighteen previously uncharacterized compounds in CMap, including 0175029-0000 and CP-
863187, were discovered by GSLHC to have closely associated drug partners (in CMap), puta-
tive targets, and therapeutic indications (Table 2; detail in S5-520 Figs). Among the discoveries,
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Detail of the tag cluster with the sub-heatmap shows functions known to block the formation of bacteria cell wall by inhibition of integrin signaling pathway.

doi:10.1371/journal.pone.0139889.9008

eight compounds: tyrphostin AG-825, 5248896, 0175029-0000, H-7, U0125, STOCKIN-
35215, 0297417-0002B, and F0447-0125, were identified as having potential anti-tumor activi-
ties. Depending on their closest putative drug partners, their molecular mechanisms differ.
Camptothecin, irinotecan, and betulinic acid, with closest partners tyrphostin AG-825, U0125,
and CP-944629, respectively, were predicted to block DNA transcription by inhibiting DNA
topoisomerase activities. The compounds 0175029-0000 and H-7, with closest partner GW-
8510, were predicted to be cyclin-dependent kinase inhibitors. Compounds predicted to have
therapeutic activities on non-cancer diseases include 5186324 (closest partner neostigmine
bromide and therapeutic activity on myasthenia gravis) and Prestwick-692 (closest partner iso-
flupredone and therapeutic activity on rheumatoid arthritis).

GSLHC website (http://cloudr.ncu.edu.tw/gslhc/)

This website contains 1,857 local hierarchical clusters accessible by querying 555 of the 1,309
drugs and small molecules listed in CMap v2.0. The other CMap drugs do not yield local hier-
archical clusters that meet the criteria permutation p-values not greater than 0.01 and Pearson
correlation not less than 0.90. The full dataset of NES values (http://figshare.com/download/
tile/2288071) and permutation p-values (http://figshare.com/download/file/2288072) for gen-
erating the hierarchical cluster results shown in GSLHC website can be downloaded and repli-
cated in the local computer.
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Table 2. Putative molecular target and pharmacology obtained from application of GSLHC on CMap perturbagens without known indication.

Test drug (+ anti-

tumor)
5186324
DL-PPMP
Prestwick-692

tyrphostin AG-825*

5248896*

0175029-0000"
CP-863187
H-7*

Prestwick-1103
uo125*
5109870

MG-132

PHA-00851261E

STOCK1N-35215*
0297417-0002B*

F0447-0125*
W-13

CP-944629

Cor.

0.99
0.99
0.99
0.995
0.990
0.990
0.975
0.970
0.96

0.96
0.98

0.98
0.98
0.98
0.98
0.98
0.98
0.97

0.97
0.97

0.97
0.95
0.95
0.95

0.92

Partner drug

Neostigmine bromide

Indoprofen
Isoflupredone
Camptothecin
GW-8510
Doxorubicin
duanorubicin
Irinotecan
Mitoxantrone

alsterpaullone

tyrphostin AG-825

GW-8510
Piperacillin
GW-8510
Doxorubicin
Pentoxifylline
Irinotecan

Phenoxybenzamine

MG-262

Amrinone
(inamrinone)

MS-275
8-azaguanine
Lomustine

Fludrocortisones

Betulinic acid

Partner drug targets

Acetylcholinesterase inhibitor
Cyclooxygenase-1 inhibitor

Gilucocorticoid receptor agonist

DNA topoisomerase | inhibitor
Cyclin-dependent kinase 2 inhibitor

DNA topoisomerase Il inhibitor

DNA topoisomerase Il inhibitor

DNA topoisomerase | inhibitor

Human epidermal growth factor receptor-2/neu
inhibitor

Glycogen synthase kinase 3 inibitor

Human epidermal growth factor receptor-2/neu
inhibitor

Cyclin-dependent kinase 2 inhibitor

Sodium channel blocker

Cyclin-dependent kinase 2 inhibitor
anthracycline antibiotic

Tumor necrosis factor antibody

DNA topoisomerase | inhibitor

Alpha adrenergic receptor antagonist

Proteasome Inhibitor
CGMP-inhibited 3',5'-cyclic phosphodiesterase

Histone deacetylase inhibitor

Purine nucleoside phosphorylase Inhibitor
DNA Inhibitor

Mineralocorticoid receptor agonist

DNA polymerase beta inhibitor

Indications

Myasthenia gravis

Non-steroidal anti-inflammatory drug
Rheumatoid arthritis

Cancer

Cancer

Cancer

Leukemia, cancer

Colorectal Cancer

Acute myeloid leukemia, metastatic breast
cancer

Cancer, type |l diabetes
Myeloid leukemia

Cancer

Anesthetic

Cancer

Cancer

Intermittent claudication, vascular dementia
Colorectal Cancer

Hypertension, hypoplastic left heart
syndrome

Congestive heart failure

Hodgkin's lymphoma (phase Il trial)
Acute leukemia
Brain tumours, Hodgkin's lymphoma

Addison's disease, cerebral saltwasting
syndrome

Melanoma (in deve-lopment)

Partner drug of a perturbagen (test drug in first column) was given by GSLHC. Partner drug target and indication were those associated with partner drug
as given by the TTD database. Target of the test drug may not be that of the partner drug. Perturbagens found to be anti-tumouric are marked by the *

symbol.

doi:10.1371/journal.pone.0139889.1002

Discussion and Summary

We used CMap as a vehicle for the demonstration that GSA is a better way than IGA in utiliz-
ing genome-wide gene expression. Because this would involve repeated and massive applica-
tion of CMap, we constructed a local extended version of CMap. The local CMap was stored
and computation using it were conducted on a personal computer equipped with Intel(R) dual
core Quad CPU, 2.40 GHz processor with a 8GB RAM. Advantages of the local program over
the remote CMap include: (i) No reliance on the Internet and the ensuing network connection
time saved; (ii) Length of the list of querying gene not limited to 1000; (iii) Capability for batch
mode operation. Extensive tests conducted on the local version confirmed its accuracy, and
verified that in single mode its running speed is comparable to the remote CMap (S1 Fig).
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We implemented a GSA-based application of CMap by constructing GSCMap, an analog of
CMap where gene-based genomic profiles of instances in CMap are replaced by tag-based
functional profiles.

Hierarchical clustering based on gene expression has been an important tool in genomic
technology. We showed that IGA-based hierarchical clustering of the CMap (the matrix) was
dominated by cell-types, a dominance absent in the GSA-based GSCMap (Fig 2). This notion
was strengthened by our quantitative measure, using F-scores, of the clusters as classifies of cell
types. We confirmed a previous report that CMap was an excellent classifier of cell types, a
result that imposes strong constraints of it being a good classifier of drug effects. In contrast,
our F-score analysis showed GSCMap to be a poor classifier of cell types (Table 2). It is biologi-
cally reasonable that drug sensitivity varies with different cell types [50]. In a method that stud-
ies drug effects using a database such as CMap, the question is whether the method can pick
out drug-induced signals over the background of cell type-specific signatures. For instance, the
clustering of instances of the two drugs trichostatin and LY-294002 shows that under IGA, sig-
natures associated with the cell line HL60 dominate over drug effects, whereas under GSA,
drug-specific signals dominates over cell type-specific signatures (Fig 4A). This suggests that
GSA provides a better means than IGA for focusing on drug effects, or “shared factors” [22],
that are common to different cell types.

Having demonstrated that GSCMap has far weaker cell-type dependence than CMap, we
conducted three tests to show the former had more discriminating responses to drug properties
than the latter. The first test (using the 4,884x1,309 matrices GSCMd and IGCMd) showed tag
response to drugs in GSCMap exhibited a much wider range then gene expression response to
drugs in CMap (Fig 3). A second test showed that GSCMap clustered same-drug instances con-
sistently better than CMap (Fig 4). A third test showed that the genomic profiles of a pair of
drugs having the same target had higher correlation in GSCMap than in CMap (Fig 5). Our
assumption for the third test is that same-target drugs are designed to have similar indication.
Based on this assumption, the result of the test—the GSEA-based and IGA-based correlations
have a two-sample ¢-test p-value of < 2.2e-16—suggests GSCMap much better connects drugs
with similar indication. The case of the three HDAC inhibitors-vorinostat, valproic acid, and
trichostatin A-brings home this point (red dots in Fig 5; admittedly this represents an extreme
case). In GSEA the three pairwise correlations among the three drugs have a mean value of
0.90 (SD = 0.082), and in GSA the mean correlation is 0.077 (SD = 0.055). The ¢-test p-value
for the two sets is 0.00301. Thus, in the IGA mode, if a query (a genomic profile or a gene set)
matches (i.e., has a high IGA enrichment score) with one of the three HDAC inhibitors, it will
not match either of the other two. In contrast, in the GSEA mode, a query will either match all
three HDAC inhibitors or not match any.

Similar correlation-based analysis applied to drug-pairs having structural similarities at the
chemical level or therapeutic indications at the clinical level did not exhibit any different
between GSCMap and CMap (54 Fig). This is not surprising, since global genomic signatures
do not generally bear any direct relation to chemical structures of the drug and the target.
Chemical compatibility between drug and target is a crucial consideration in drug design, espe-
cially when the purpose is to regulate a specific target that has a central role in a biological path-
way. CMap (hence GSCMap) was not constructed to address the question of chemical
compatibility. CMap focuses on the effects of a drug as manifested in changes it causes in the
genomic profile, but makes no assumption on how those changes were brought about. This
implies that in Table 2, the test drug may not share the target of the partner drug.

GSLHC was designed to discover, through GSCMap, functional links among drugs in
CMap. The principle of the method, local hierarchical clustering, is generally applicable to any
large list that may or may not represent drug effects. We validated GSLHC by using three
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known HDAC inhibitors as bait and saw that they were recovered as part of a tight cluster
returned by GSLHC (red dots in Fig 5). The cluster also included three drugs, scriptaid, HC
toxin, and rufabutin, not previously known as HDAC inhibitors. GSLHC showed all three as
having significant correlation with biological functions relating to switching histone modifica-
tion and destroying chromatin maintenance (Fig 6); scriptaid and HC toxin have been reported
to inhibit HDAC proteins [48, 49], and rifabutin is primarily used in the treatment of tubercu-
losis. We regard all three as potential novel HDAC inhibitors.

Of the 106 uncharacterized compounds in the CMap dataset, GSLHC found drug partners
of known indications for 18 (Table 2), 8 of which, tyrphostin AG-825, 0175029-0000, H-7,
U0125, STOCKIN-35215, 0297417-0002B, F0447-0125, and CP-944629 were inferred to have
anti-tumor activities. In each case we found significantly correlations between the compound
with newly inferred indication and biological functions related to that indication (Figs 7 and 8,
and S5-520 Figs). As mentioned, these predictions do not make any statement about drug
targets.

The compound 0175029-0000 was shown to be closely associated with three CDKi’s-GW-
8510 [51-58], alsterpaullone [51-58], H-7 [51-58]-and five DNA topoisomerases—doxorubi-
cin [51-58], camptothecin [51-58], azacitidine [51-58], mitoxantrone [51-58], and ellipticine
[51-58] (Fig 7), and was inferred as a putative CDKi/DNA topoisomerases, all of which have
been reported to have anti-tumour activities [51-58] and significantly expressed biological
functions that negatively regulate cell cycle and checkpoint on cell cycle (Fig 7C).

The compound CP-863187 was shown to be closely associated with an antibiotic (piperaci-
lin), an anesthetic (benzocaine), and an anti-inflammatory agent (betunlinic) (Fig 8), and to
significantly express negative regulation of integrin signaling and hydrolases (Fig 8C). There
are studies suggesting that antibiotics may have inflammatory and anesthetic properties [59,
60]. The source of the shared properties may be that as a signal transductors, integrins are
involved in activities on cell membranes and cell-cell interactions. Hydrolases are ubiquitous
and play important roles among bacteria including digesting the murein of bacteria [61], acting
as a pacemaker for cell wall growth [62], and splitting the septum during cell division [63].

Despite its apparent success, the GSLHC approach has its own limitations. Statistical con-
cerns regarding the neutrality of GSEA has been raised [64, 65] (and replied [64, 65]). There is
not a perfect method for extracting hypothesis-free information from something as rich as a
modern set of genome-wide gene expression data. The several tests shown in this work does
show that for practical purposes, GSA, including GSEA and two algorithms derived from it,
PAGE and GAGE, is superior to IGA. Of the 106 unknown compounds in CMap (version 2.0),
we only found drug partners for 18. That we failed to do the same for the other 88 compounds
have many possible reasons: a weakness of GSLHC; the tags in MSigDB is not sufficiently com-
prehensive; the sets of compounds presently included in MCap is too restrictive. Improvements
on all three fronts are possible, even expected. Already in its current form, we expect the
GSLHC approach to be more widely applicable to many areas other than what was demon-
strated here. To name a few: repurposed drug discovery based on functional-profile characteri-
zation of phenotypes, function-based diagnosis and classification of complex diseases, and
prognosis on advance-stage patients after chemotherapy treatment.

A sequel to CMap, the LINCS L1000 dataset consisting of over 1.4M gene-expression pro-
files collected from human cells treated with chemical compounds, was recently constructed
and made available online (http://support.lincscloud.org/hc/en-us) by The Broad Institute. In
L1000 each profile is a 1000-gene representation of a gene-expression profiling assay based on
the direct measurement of the transcriptome. A GSA as carried out in the present paper will
not be suitable for L1000 gene-sets. However, it will be interesting to investigate the cell-type
dependence of the LINCS data.
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Supporting Information

S1 Fig. The local program reproduces results of CMap server. (A) The local program (blue)
tracks results given by CMap for permutation p-value (solid lines), with small deviations when
drug list is less than 30, and enrichment score (dash lines). (B) Run times for the local program
and CMap are comparable, with the former slightly faster when size of probe set is less than
700, and slight slower otherwise.

(TIF)

S2 Fig. Most of replicates treating with the same perturbagen show low reproducibility on
the top-1000 differentially expressed genes (DEGs) across all CMAP datasets. The repro-
ducibility between two treatments (blue: the same perturbagen; red: two different perturba-
gens) is defined by the frequency of number of the overlapping genes verse the number of 1000
DEGs.

(TIF)

S3 Fig. Principle component analysis of full C-MAP dataset. The first two components,
together accounting for 21.7% of the total weight, show a clear separation of data from the
HC60 (black circle) and PC3 (green cross) cell lines.

(TTF)

$4 Fig. Performance test (F-score) showed that no difference between gene and tag clusters
by Anatomical Therapeutic Chemical (ATC) classification system and PubChem structure
database. (A) In PubChem database, we use chemical structure clustering tool to cluster com-
pounds based on the structure (fingerprint) similarity using the Single Linkage algorithm;
number of cluster decreases with cluster size. Both results indicated that F-score increases with
decreasing class size. (B) In ATC system, drugs are classified into groups at 4 different levels—
from general anatomical groups to detail chemical/therapeutic/pharmacological subgroups.
(TIF)

S5 Fig. GSLHC identified the compound 5186324 as a novel acetylcholinesterase inhibitor.
(A) A correlation > 0.9 sub-heatmap including the compound 5186324 of unknown function
from a GSLHC-generated heatmap based on tags significantly in 5186324 enriched with per-
mutation p< 0.005. (B) Detail of the dendrogram showing 5186324 (marked by black asterisk)
with its partner drugs.

(TIF)

S6 Fig. GSLHC identified the compound DL-PPMP as a novel cyclooxygenase-1 inhibitor.
(A) A correlation > 0.9 sub-heatmap including the compound DL-PPMP of unknown func-
tion from a GSLHC-generated heatmap based on tags significantly enriched in DL-PPMP with
permutation p< 0.005. (B) Detail of the dendrogram showing DL-PPMP (marked by black
asterisk) with its partner drugs.

(TIF)

$7 Fig. GSLHC identified the compound Prestwick-692 as a novel glucocorticoid receptor
agonist. (A) A correlation > 0.9 sub-heatmap including the compound Prestwick-692 of
unknown function from a GSLHC-generated heatmap based on tags significantly enriched in
Prestwick-692 with permutation p< 0.005. (B) Detail of the dendrogram showing Prestwick-
692 (marked by black asterisk) with its partner drugs.

(TIF)

S8 Fig. GSLHC identified the compound tyrphostin AG-825 as a novel DNA topoisomerase
Iinhibitor. (A) A correlation > 0.9 sub-heatmap including the compound tyrphostin AG-825
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of unknown function from a GSLHC-generated heatmap based on tags significantly enriched
in tyrphostin AG-825 with permutation p< 0.005. (B) Detail of the dendrogram showing tyr-
phostin AG-825 (marked by black asterisk) with its partner drugs.

(TTF)

S9 Fig. GSLHC identified the compound 5248896 as a novel human epidermal growth fac-
tor receptor (HER)-2/neu inhibitor. (A) A correlation > 0.9 sub-heatmap including the com-
pound 5248896 of unknown function from a GSLHC-generated heatmap based on tags
significantly enriched in 5248896 with permutation p< 0.005. (B) Detail of the dendrogram
showing 5248896 (marked by black asterisk) with its partner drugs.

(TTF)

$10 Fig. GSLHC identified the compound H-7 as a novel Cyclin-dependent kinase 2 Inhibi-
tor. (A) A correlation > 0.9 sub-heatmap including the compound H-7 of unknown function
from a GSLHC-generated heatmap based on tags significantly enriched in H-7 with permuta-
tion p< 0.005. (B) Detail of the dendrogram showing H-7 (marked by black asterisk) with its
partner drugs.

(TTF)

S11 Fig. GSLHC identified the compound Prestwick-1103 as a novel Tumor necrosis factor
antibody. (A) A correlation > 0.9 sub-heatmap including the compound Prestwick-1103 of
unknown function from a GSLHC-generated heatmap based on tags significantly enriched in
Prestwick-1103 with permutation p< 0.005. (B) Detail of the dendrogram showing Prestwick-
1103 (marked by black asterisk) with its partner drugs.

(TTF)

$12 Fig. GSLHC identified the compound U0125 as a novel DNA topoisomerase I inhibi-
tor. (A) A correlation > 0.9 sub-heatmap including the compound U0125 of unknown func-
tion from a GSLHC-generated heatmap based on tags significantly enriched in U0125 with
permutation p< 0.005. (B) Detail of the dendrogram showing U0125 (marked by black aster-
isk) with its partner drugs.

(TTF)

$13 Fig. GSLHC identified the compound 5109870 as a novel Alpha adrenergic receptor
antagonist. (A) A correlation > 0.9 sub-heatmap including the compound 5109870 of
unknown function from a GSLHC-generated heatmap based on tags significantly enriched in
5109870 with permutation p< 0.005. (B) Detail of the dendrogram showing 5109870 (marked
by black asterisk) with its partner drugs.

(TTF)

$14 Fig. GSLHC identified the compound MG-132 as a novel Proteasome Inhibitor. (A) A
correlation > 0.9 sub-heatmap including the compound MG-132 of unknown function from a
GSLHC-generated heatmap based on tags significantly enriched in MG-132 with permutation
p< 0.005. (B) Detail of the dendrogram showing MG-132 (marked by black asterisk) with its
partner drugs.

(TIF)

$15 Fig. GSLHC identified the compound PHA-00851261E as a novel CGMP-inhibited
3',5'-cyclic phosphodiesterase. (A) A correlation > 0.9 sub-heatmap including the compound
PHA-00851261E of unknown function from a GSLHC-generated heatmap based on tags sig-
nificantly enriched in PHA-00851261E with permutation p< 0.005. (B) Detail of the
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dendrogram showing PHA-00851261E (marked by black asterisk) with its partner drugs.
(TIF)

$16 Fig. GSLHC identified the compound STOCK1N-35215 as a novel Histone deacetylase
inhibitor. (A) A correlation > 0.9 sub-heatmap including the compound STOCKIN-35215 of
unknown function from a GSLHC-generated heatmap based on tags significantly enriched in
STOCKI1N-35215 with permutation p< 0.005. (B) Detail of the dendrogram showing
STOCKIN-35215 (marked by black asterisk) with its partner drugs.

(TIF)

$17 Fig. GSLHC identified the compound 0297417-0002B as a novel Purine nucleoside
phosphorylase Inhibitor. (A) A correlation > 0.9 sub-heatmap including the compound
0297417-0002B of unknown function from a GSLHC-generated heatmap based on tags signifi-
cantly enriched in 0297417-0002B with permutation p< 0.005. (B) Detail of the dendrogram
showing 0297417-0002B (marked by black asterisk) with its partner drugs.

(TIF)

$18 Fig. GSLHC identified the compound F0447-0125 as a novel DNA Inhibitor. (A) A
correlation > 0.9 sub-heatmap including the compound F0447-0125 of unknown function
from a GSLHC-generated heatmap based on tags significantly enriched in F0447-0125 with
permutation p< 0.005. (B) Detail of the dendrogram showing F0447-0125 (marked by black
asterisk) with its partner drugs.

(TIF)

$19 Fig. GSLHC identified the compound W-13 as a novel Mineralocorticoid receptor ago-
nist. (A) A correlation > 0.9 sub-heatmap including the compound W-13 of unknown func-
tion from a GSLHC-generated heatmap based on tags significantly enriched in W-13 with
permutation p< 0.005. (B) Detail of the dendrogram showing W-13 (marked by black asterisk)
with its partner drugs.

(TIF)

$20 Fig. GSLHC identified the compound CP-944629 as a novel DNA polymerase beta
inhibitor. (A) A correlation > 0.9 sub-heatmap including the compound CP-944629 of
unknown function from a GSLHC-generated heatmap based on tags significantly enriched in
CP-944629 with permutation p< 0.005. (B) Detail of the dendrogram showing CP-944629
(marked by black asterisk) with its partner drugs.

(TIF)

§1 Table. The 300x671 tCMap1 matrix used to construct the one-way cluster in Fig 2A.
tCMapl is the 300 by 671 similarity matrix of the 300 highest variance microarray probe-sets
and the 671 instances in CMap v1.0 (http://figshare.com/download/file/2258031).

(XLSX)

S2 Table. The 300x671 tGSCMap1 matrix used to construct the one-way cluster in Fig 2B.
tGSCMapl is the 300 by 671 similarity matrix of the 300 largest ES variance MSigDB tags and
the 671 instances in CMap v1.0 (http://figshare.com/download/file/2258032).

(XLSX)

$3 Table. The 4884x1309 IGCMd matrix used to construct the two-way cluster in Fig 3A.
IGCMd is the 4884 by 1309 similarity matrix of the 4884 highest variance microarray probe-
sets against the 1309 drugs/chemicals in CMap v2.0 (http://figshare.com/download/file/
2258034).

(XLSX)
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S4 Table. The 4884x1309 GSCMd matrix used to construct the two-way cluster in Fig 3B.
GSCMd is the 4884 by 1309 similarity matrix of the 4884 largest ES variance MSigDB tags
against the 1309 drugs/chemicals in CMap v2.0 (http://figshare.com/download/file/2258033).
(XLSX)
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