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Abstract

Cell-penetrating peptides (CPPs) are a group of peptides, which have the ability to cross
cell membrane bilayers. CPPs themselves can exert biological activity and can be formed
endogenously. Fragmentary studies demonstrate their ability to enhance transport of differ-
ent cargoes across the blood-brain barrier (BBB). However, comparative, quantitative data
on the BBB permeability of different CPPs are currently lacking. Therefore, the in vivo BBB
transport characteristics of five chemically diverse CPPs, j.e. pVEC, SynB3, Tat 47-57,
transportan 10 (TP10) and TP10-2, were determined. The results of the multiple time
regression (MTR) analysis revealed that CPPs show divergent BBB influx properties: Tat
47-57, SynB3, and especially pVEC showed very high unidirectional influx rates of 4.73 pl/
(g x min), 5.63 pl/(g x min) and 6.02 pl/(g x min), respectively, while the transportan analogs
showed a negligible to low brain influx. Using capillary depletion, it was found that 80% of
the influxed peptides effectively reached the brain parenchyma. Except for pVEC, all pep-
tides showed a significant efflux out of the brain. Co-injection of pVEC with radioiodinated
bovine serum albumin (BSA) did not enhance the brain influx of radiodionated BSA, indicat-
ing that pVEC does not itself significantly alter the BBB properties. A saturable mechanism
could not be demonstrated by co-injecting an excess dose of non-radiolabeled CPP. No sig-
nificant regional differences in brain influx were observed, with the exception for pVEC, for
which the regional variations were only marginal. The observed BBB influx transport proper-
ties cannot be correlated with their cell-penetrating ability, and therefore, good CPP proper-
ties do not imply efficient brain influx.

Introduction

Cell-penetrating peptides are a particular group of peptides that have the ability to cross cell
membranes without causing a significant lethal membrane damage [1,2]. The exact mechanism
of cellular entry remains controversial, but a consensus exists that endocytosis and a direct
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penetration mechanism are involved [3,4]. Drawing conclusions on the cellular uptake mecha-
nism of CPPs is impeded by different factors. Firstly, a variety of techniques and experimental
protocols are used to investigate these peptides [1]. Furthermore, multiple mechanisms can
simultaneously be active and the employed mechanisms depend not only on the peptide studied
but also on the cell type used, the peptide concentration and the attached cargo or label [3,4].

Since their discovery 20 years ago, hundreds of CPPs have already been described and can
roughly be classified into three chemical groups: the cationic, amphipathic and hydrophobic
CPPs [5]. The cationic CPPs contain a stretch of positive charges derived from arginine and
lysine residues in their sequence, while the amphipathic peptides are characterized by a
hydrophilic and hydrophobic part, mostly by adopting a helix structure. The hydrophobic
CPPs are rich in apolar amino acids and have a low net charge. However, a clear overlap
exists between these chemical groups, emphasizing that CPPs represent a chemically diverse
group of peptides [1].

The majority of the CPPs are derived from naturally occurring proteins and peptides like
heparin-binding proteins, DNA and/or RNA-binding proteins, homeoproteins, signal pep-
tides, antimicrobial peptides and viral proteins [5,6]. For some CPPs, their cell-penetrating
properties are linked to the function of the parent peptide or protein, but for other peptides,
the function of the CPP sequence in the full-length parent protein is still unclear [5]. Tradi-
tionally, CPPs are considered to be inert molecules, but actually these peptides can exert a
biological activity themselves [7,8]. Moreover, for some CPPs the biological function of the
parent peptide or protein is conserved in the cell-penetrating sequence, a feature that can be
therapeutically exploited [9-18]. However, up till now, only a limited number of studies
have described the biological activity of CPPs although this information is indicative for
potential side effects and relevant for future clinical applications [7,8]. The knowledge on the
bioactivity of CPPs is particularly interesting for peptides having an endogenous [9-13,15-
17,19-23] and viral or bacterial origin [14,24-32], as these CPPs can also be endogenously
produced during metabolization of their parent protein or peptide.

As CPPs are able to cross cellular membranes, the question arises whether this means that
they can also pass the blood-brain barrier (BBB), which protects the brain. The barrier function
of the BBB is established by physical, transport as well as metabolic means, explaining its selec-
tive permeability for ions and (macro)molecules [33]. Some fragmentary studies are describing
the ability of CPPs to reach the brain parenchyma both in vivo and in vitro [34]. However,
almost all studies investigate the brain delivery of a CPP attached to a cargo, which is known to
influence the cell-penetrating, as well as the BBB transport properties. Moreover, different
techniques are hereby used: measuring the pharmacological effect of the attached cargo or fol-
lowing the fluorescently labeled construct using in vivo imaging or fluorescence microscopy
techniques. A detailed overview of the currently available brain influx studies of CPPs can be
found in the Supporting Information (S1 Table). Comparable, quantitative data on the BBB
transport of CPPs are still lacking. Moreover, there is only limited knowledge on the BBB trans-
port mechanism of CPPs. Only for the SynB vectors, which are cationic CPPs, an adsorptive-
mediated translocation mechanism is proposed [35,36].

To evaluate whether different CPPs cross the BBB to the same extent, we quantitatively
investigated the BBB transport of five chemically diverse CPPs with different cell-penetrating
ability (Table 1): pVEC, SynB3, Tat 47-57, transportan 10 (TP10) and TP10-2. The peptides
were selected based on the different groups of CPPs determined during the previously per-
formed exploration of the chemical space [1]. In this study, their BBB influx transport rate, the
parenchyma/capillary and the intra-brain regional distribution after brain uptake, as well as
the efflux properties were investigated using an in vivo mouse model. The influence of pVEC
on the BBB permeability was verified. Finally, the saturability of the brain influx mechanism of
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pVEC, TP10 and SynB3 was evaluated. Our results indicate that CPPs selectively pass the BBB
as not all CPPs cross the BBB to the same extent.

Results

Blood-to-brain transport kinetics of cell-penetrating peptides

The results of the multiple time regression (MTR) analysis indicated that the five investigated
CPPs crossed the BBB to a different extent. In Fig 1, the ratio of the brain and serum radioactiv-
ity is plotted versus the exposure time and the linear part of the curve was fitted using the
Gjedde-Patlak model [37-40]. The unidirectional influx rates (K;,) and initial brain distribu-
tion volumes (V;) are summarized in Table 2. For pVEC, SynB3 and TP10, the MTR

200 - e pVEC
' TP10
) &
180 - OTP10-2
o X Dermorphin
+BSA
160 - ¢ SynB3
ATat47-57
[
140 - '.-'
— 120 - o
5 %
2
g
3100 o
<
§ - e
<f° 80 -
*
* 7
60 - ° o
.'_'-":' * o4 “
'0 o, L N ¢ A
Je 0 A
0. x i x X% X %
..Jf-,.-t- """"" X 6 X X
20 { & U Ko X X NI o
“X»o(u::.’.. '_f_. ......... O T
%%*‘ox """"""""" + t o¥* N
0 T T T T T y
0 10 20 30 40 50 60
Exposure time (min)
Fig 1. Results of the multiple time regression analysis experiment of the five CPP using the linear model.
doi:10.1371/journal.pone.0139652.g001
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Table 2. Overview of the quantitative influx characteristics (* 65% confidence limits) of the five investigated CPPs based on linear and biphasic
modeling of the multiple time regression analysis data.

Influx parameter pVEC

Linear Gjedde-Patlak model

Kin (ul/(gx min)) 6.02 + 0.29
Vi (ul/g) 23.13+4.33
Biphasic model

Vo (vascular) (ul/g) -

Vg (tissue) (ul/g) =

Ki (ul/(g x min)) -

K (ul/(g x min)) -

Kin = Unidirectional influx rate.
V; = Initial brain distribution volume.

TP10 TP10-2 SynB3 Tat 47-57 Dermorphin BSA
0.05 + 0.04 0.36 + 0.06 5.63 + 1.83 473 +1.23 0.63+0.10 0.16 + 0.07
9.88 + 0.66 10.07 + 1.00 27.62 +5.58 17.43 + 4.04 13.98 + 0.79 15.42 + 1.11
= 10.27 10.27 10.27 -
- 44.47 +7.75 34.38 +9.32 13.72 £2.17 -
= 29.84 +8.42 13.50 + 3.88 2.54 +0.50 -
- ~ 1.92¢7® 0.27 +0.46 0.03 +0.06 -

Vo = Vascular brain distribution volume, experimentally determined as the brain distribution volume of radioiodinated BSA.

Vg = Tissue brain distribution volume.

K; = Unidirectional clearance or slope of the initial phase of the brain influx curve.
K = Net clearance or slope of the plateau phase of the brain influx curve.

doi:10.1371/journal.pone.0139652.t002

experiments were performed twice and their K;, and V; were calculated by fitting all obtained
data points. pVEC showed the highest brain influx rate of 6.02 pl/(g x min), followed by SynB3
and Tat 47-57 having a K;;, of 5.63 pl/(g x min) and 4.73 pl/(g x min), respectively. In contrast,
the transportan analogs showed a limited brain influx, especially TP10 that had a Kj, close to
zero (0.05 pl/(g x min)). The brain influx of TP10-2 (0.36 pl/(g x min)) was of the same magni-
tude as the positive control dermorphin, which is known to have a low to medium brain influx
rate. The radioiodinated vascular marker BSA showed a significant influx into the brain (K;, =
0.16 pl/(g x min)). Bovine serum albumin has been demonstrated to show non-specific binding
to cerebral capillaries of which the extent was much greater for radioiodinated than tritiated
BSA, explaining its significant K;,-value [41].

The ratio of the brain-to-serum activity is plotted versus the exposure time and fitted using
the linear Gjedde-Patlak model. For SynB3, Tat 47-57 and dermorphin, only the linear part of
the curve is fitted using the linear model.

The curves of the ratio of the brain and serum activity versus the exposure time of SynB3
and Tat 47-57 reached a plateau-phase after about 5 min. In Fig 2, the MTR data of these pep-
tides were fitted using a biphasic model and is summarized in Table 2 [42]. K, represents the
unidirectional influx of the initial phase of curve and for SynB3 the K, (29.84 ul/(g x min)) is
more than twice as high as that of Tat 47-57 (13.50 ul/(g x min)). After reaching the plateau-
phase, which can be explained by efflux of the peptide out of the brain and/or distribution and
elimination of the peptide, the ratio of the brain and serum activity did no longer increase for
these peptides: K is about 0 /(g x min) for SynB3 and is 0.27 + 0.46 pl/(g x min) for Tat 47-
57, which is not statistically significantly different from zero. Thus, after the initial phase char-
acterized by high brain influx rates, the BBB transport of SynB3 and Tat 47-57 reached a pla-
teau of no net brain clearance.

The MTR curve of pVEC did not show a plateau-phase in the 15 min time range of the per-
formed MTR experiments. Moreover, the amount of pVEC reaching the brain, represented by
the ratio of the brain-to-serum activity, greatly transcends that of the other investigated CPPs.
For this CPP, the initial distribution volume, representing the effective vascular space of the
peptide, was higher than that of the vascular marker radioiodinated bovine serum albumin

PLOS ONE | DOI:10.1371/journal.pone.0139652 October 14,2015 5/22
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Fig 2. Result of the multiple time regression analysis experiment of SynB3, Tat 47-57 and dermorphin
using the biphasic model. The ratio of the brain-to-serum activity is plotted versus the exposure time and
fitted using the biphasic model.

doi:10.1371/journal.pone.0139652.g002

(BSA) which was about 15 pl/g. This was also observed for SynB3 for which the V; was
27.62 pl/g. For the other CPPs, the V; was of the same magnitude as of radioiodinated BSA
(Tat 47-57) or was significantly smaller (transportan analogs).

The capillary depletion method was used to evaluate the brain parenchymal and capillary
distribution of the radiolabeled peptides after perfusion of the brain in order to remove capil-
lary bound peptides. The parenchymal fraction was 80% for pVEC, 77% for SynB3, 79% for
Tat 47-57, 85% for TP10 and 84% for TP10-2. Thus, the measured activity of the brain during
the MTR experiment mainly originated from peptides present in the brain parenchyma. Only
about 15 to 25% of the CPPs remained trapped by the endothelial cells.

Brain-to-blood transport kinetics

The efflux properties of the CPPs out of the brain were investigated by measuring the brain
activity after intracerebroventricular injection of the radiolabeled peptides. The efflux transfer
constant Kk, was derived from the absolute value of the slope of the natural logarithm of the
brain activity versus the experimental time curve. The kq of pVEC (0.10 + 0.11 min™") was not
statistically significantly different from zero. All other investigated CPPs showed a statistically
significant efflux out of the brain. The k,,, calculated for SynB3 was 0.05 + 0.01 min™, for
TP10 koue was 0.09 + 0.02 min™', and for TP10-2 Koy was 0.06 + 0.01 min"'. These efflux rate
constants equal a half-time disappearance (t;/2 prain) 0f 15 min, 8 min and 11 min, respectively.
The highest efflux rate was observed for Tat 47-57, having a ko, of 0.21 + 0.08 min™" or t;/,,
brain Of 3 min. These brain half-time disappearances of less than 15 min suggest the existence of
an active efflux transport system for the investigated peptides [43]. The observed efflux of
SynB3 and Tat 47-57 is also consistent with the observed plateau-phase during the MTR
experiment.

Evaluation of the influx mechanism

As pVEC showed an extraordinary high brain influx, the BBB transport of this peptide was fur-
ther explored. We hypothesized that pVEC itself (transiently) increased the BBB permeability.
To evaluate this hypothesis, a MTR experiment was performed with the radiolabeled vascular

PLOS ONE | DOI:10.1371/journal.pone.0139652 October 14,2015 6/22
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marker BSA, with and without co-injection of 20 pg of pVEC. The slopes of the curves of radio-
iodinated BSA and radioiodinated BSA with an excess dose of pVEC were not statistically sig-
nificantly different (P > 0.05, Fig 3A). Thus, under the experimental conditions of this study,
the BBB did not show an increased permeability for radioiodinated BSA after IV injection of
pVEQC, indicating the BBB integrity was not significantly influenced by pVEC.

Next, the saturability of the brain influx mechanism of pVEC, SynB3 and TP10, being repre-
sentatives of the three different groups of CPPs observed during the BBB transport studies, was
evaluated. Therefore, a MTR experiment was performed with these peptides, radiolabeled using
a no-carrier added (NCA) method, with and without an excess dose of 10 pg of the unlabeled
peptide. The results are shown in Fig 3B-3D: there was no statistically significant difference in
unidirectional brain influx rate between the experiments of the peptide alone or when co-injected
with an excess dose (P > 0.05). For SynB3, the slopes of the initial, linear part of the curve, fitted
using the linear Gjedde-Patlak model, were not statistically significantly different (P > 0.05).
Thus, during the performed experiments, the brain influx mechanism of pVEC, SynB3 and TP10
was not saturable. Although the K;, was unaffected, the excess dose of unlabeled pVEC caused a
significant decrease of V; from 24 pl/g to 1 ul/g, suggesting saturable binding sites on the brain
endothelium, a phenomenon which was similarly observed for glucagon [44].
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Fig 3. Evaluation of the BBB permeability after injection of pVEC and used brain influx mechanism of pVEC, TP10 and SynB3. (A) Evaluation of the
BBB permeability after IV injection of pVEC: ratio of brain-to-serum radioactivity versus exposure time of radioiodinated BSA with (purple squares) and
without (black dots) an excess dose of pVEC (20 ug). (B-D) Evaluation of the saturability of the BBB influx mechanism of pVEC, TP10 and SynB3,
respectively: ratio of brain-to-serum radioactivity versus exposure time with (purple squares) and without (black dots) an excess dose of the CPP (10 pg).
Data are fitted using the linear Gjedde-Patlak model, except for the data of SynB3, which are fitted using the biphasic model.

doi:10.1371/journal.pone.0139652.9003
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Fig 4. Regional variations in brain influx of pVEC, TP10, SynB3, dermorphin and radioiodinated BSA. The data of pVEC, TP10 and radioiodinated
BSA are fitted using the linear Gjedde-Patlak model; the data of SynB3 and dermorphin are fitted using the biphasic model. Grey = whole brain,

yellow = frontal cortex, purple = occipital + parietal cortex, light blue = cerebellum, dark blue = striatum, brown = thalamus + hypothalamus, orange = pons
medulla, green = hippocampus and red = midbrain.

doi:10.1371/journal.pone.0139652.9004

Regional intra-brain distribution and tissue distribution of cell-penetrating
peptides

For pVEC, SynB3 and TP10, the regional differences in brain influx were investigated. There-
fore, during the MTR experiments of these peptides, brains were dissected into eight different
brain regions and their regional unidirectional influx rate Kj,, was determined using the
Gjedde-Patlak model. For SynB3, TP10, as well as the controls radioiodinated BSA and der-
morphin, no statistically significant difference in brain influx rates were observed between the
different dissected brain regions (P > 0.05, Fig 4). The slopes, i.e. K, of the initial, linear part
of the curve, fitted using the linear Gjedde-Patlak model, were compared for SynB3 and der-
morphin. For pVEG, the slopes of curve of the ratio of the brain-to-serum radioactivity versus
the exposure time significantly differed (P < 0.05). In Table 3, the individual K;, and V; values
of the whole brain and brain regions after IV injection of pVEC are summarized. The differ-
ence in initial brain influx rates was not pronounced: the influx of pVEC was only slightly
higher in the cerebellum, cortex and midbrain compared to the pons medulla, hippocampus,
thalamus and hypothalamus and striatum.

The tissue distribution of the investigated CPPs was also evaluated for mice of the 15 min
time point of the MTR experiments (Fig 5). pVEC and Tat 47-57 showed a high liver distribu-
tion compared to the other tissues. The transportan analogs did also show this high liver con-
centration, but an even higher serum distribution was observed. SynB3 was mainly distributed
to the spleen and serum and to a lesser extent to the liver. This CPP also showed a significant
heart distribution. The results of the controls dermorphin and radioiodinated BSA were similar

PLOS ONE | DOI:10.1371/journal.pone.0139652 October 14,2015 8/22
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Table 3. K;, and V; values of the whole brain and eight brain regions of pVEC (between brackets the
65% confidence interval is indicated).

Brain region

Whole brain
Cerebellum
Pons medulla
Frontal cortex
Striatum
Hippocampus

Kin (HI/(g x min))
6.04 [5.78, 6.30]
5.61[5.12, 6.10]
4.51[3.87, 5.15]
4.84[4.66, 5.02]
4.07 [3.77, 4.37]
3.94[3.51, 4.37]

Occipital and parietal cortex 5.03[4.73, 5.32]
Thalamus and hypothalamus 4,12 [3.86, 4.38]
Midbrain 5.32[5.17, 5.46]

doi:10.1371/journal.pone.0139652.t003

Vi (ul/g)

24.37 [21.23, 27.51]
21.02 [15.09, 26.95]
36.06 [28.34, 43.78]
12.93 [10.77, 15.09]
11.47 [7.81, 15.13]
9.33[4.13, 14.54]
16.61 [13.02, 20.19]
17.72 [11.58, 17.86]
13.88 [12.15, 15.62]

as reported in previous studies, with high liver distributions for both controls and also high

serum concentrations for radioiodinated BSA [45-48]. Thus, the distribution to the different
tissues varied among the different CPPs, which is also observed for other already investigated
peptides [45-48].

pVEC
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Fig 5. Relative tissue distribution of the radiolabeled CPPs and the controls dermorphin and radioiodinated BSA 15 min post IV injection
expressed as the percentage of the injected dose (+ SEM, n = 2). From the left to the right: brain (light blue), spleen (dark blue), kidneys (purple), lungs
(red), heart (orange), liver (yellow) and serum (light green).

doi:10.1371/journal.pone.0139652.g005
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Table 4. Overview of the in vitro metabolic stability results of the five investigated CPPs.

pVEC TP10 TP10-2 SynB3 Tat 47-57
Tissue Half-life (min)
Serum <3 1315.8 229.4 55 2.7
Brain 68.4 175.9 102.3 21.4 54.3
Kidney 7.2 34.3 11.3 5.1 18.3
Liver 42.9 139.4 118.2 36.8 59.8

doi:10.1371/journal.pone.0139652.t004

In vitro peptide stability in mouse serum and brain, kidney and liver
homogenates

As data on the metabolic stability of CPPs are scarce [36,49-51], the stability of the investigated
peptides was determined in mouse serum, as well as in mouse brain, liver and kidney homoge-
nates (Table 4). In the brain and liver homogenate, the stability varied among the CPPs: in
mouse brain, the half-lives ranged between 21 min (SynB3) and 176 min (TP10) and in the
liver homogenate between 37 min (SynB3) and 139 min (TP10). The transportan analogs
showed high serum stability, with a half-life of 22 h for TP10 and 4 h for TP10-2. In contrast,
Tat 47-57, SynB3 and pVEC were not so stable in serum, having a half-life of less than 6 min.
Kidney enzymes also extensively metabolized the investigated CPPs: the half-lives ranged
between 5.5 min (SynB3) and 34 min (TP10). For pVEC, showing an extraordinary brain
influx, the formed metabolites during serum incubation were further investigated. One metab-
olite was determined and identified as the pVEC peptide with the first six hydrophobic N-ter-
minal amino acids deleted, formed by cleavage of the first N-terminal arginine-arginine bond
(pVEC;_1), which is known to be unstable in serum (see S2 Fig) [49].

Discussion

Despite the ability of CPPs to enter mammalian cells, only a few studies have fragmentarily
investigated their transcellular transport characteristics. Lindgren et al. demonstrated for TP10
its ability to cross a Caco-2 cell layer, while penetratin passed the cell layer to a lower extent
due to rapid degradation [52]. For the Tat peptide, in vitro transcellular delivery studies could
not demonstrate the capacity of the peptide to cross the cell layers [53-55]. In vivo evaluation
of CPP-mediated delivery of cargoes resulted in divergent outcomes. Tat-mediated delivery of
neuroprotective therapeutics across the BBB in ischemia and seizure models gave promising
results, but in these models the BBB is compromised [55]. For a limited set of CPPs, studies are
available demonstrating their ability to mediate CNS delivery of different cargoes in vivo [34]
(S1 Table). Currently, CPPs are investigated as possible carriers for BBB-impermeable cargoes.
However, quantitative knowledge on the BBB transport characteristics of CPPs without a cargo
is also needed as these peptides can be produced endogenously through metabolization of pro-
teins and might exert biological activity. As this information is currently lacking, the in vivo
BBB transport of five model CPPs was investigated to evaluate whether cell-penetrating prop-
erties of peptides inherently imply the ability to cross the BBB. The selected peptides constitute
different clusters in the exploration of the chemical space of the CPPs and thus structurally dis-
seminate [1] (see S1 Fig). TP10-2 only differs one amino acid from TP10, but differentiates in
o-helicity and extent of cellular uptake [56]. Beside these structural variability, the model pep-
tides also differ in cell-penetrating ability, expressed as the cell-penetrating (CP-) response:
TP10 and pVEC have the highest cellular influx with a CP-response of 1.641 and 1.318,
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respectively, while SynB3 and Tat 47-57 show the lowest cellular penetration, having a CP-
response of 0.126 and 0.309, respectively (Table 1) [1].

In this study, the selected CPPs showed quite different BBB transport properties. Tat 47-57,
pVEC and SynB3 showed relatively high unidirectional influx rates (Kj,), of 4.73 pl/(g x min),
6.02 pl/(g x min) and 5.63 pl/(g x min), respectively, as obtained by fitting the MTR data using
the linear Gjedde-Patlak model. On the other hand, the transportan analogs showed a very low
to negligible brain influx. The blood-to-brain transport of pVEC was extraordinary high: the
amount of peptide reaching the brain was much higher compared to SynB3 and Tat 47-57,
with a maximal ratio of brain-to-serum radioactivity of about 180 pl/g for pVEC versus about
70 pl/g for SynB3. This high brain influx was not caused by an increase in BBB permeability, as
co-injection of radioiodinated BSA and pVEC did not result in an increased brain entry of the
vascular marker. Using the capillary depletion method, it was demonstrated that the peptides
effectively crossed the BBB with a parenchymal fraction of about 80% for all peptides. For
SynB3, TP10 and the controls dermorphin and radioiodinated BSA, no differences in influx
between the eight dissected brain regions were observed. For pVEC, the Ky, values of the dis-
sected brain regions statistically differed, but the observed regional difference was not pro-
nounced compared to other peptides such as amylin and insulin showing clear regional
variations in brain influx [57]. It is unlikely that alterations in cerebral blood flow due to the
changing local metabolic demand explain the observed differences in regional brain uptake as
this only affects the uptake of compounds showing a very rapid brain influx [57-59]. The BBB
influx (Kj,) of pVEC, TP10 and SynB3 was not saturated when peptides were co-injected with
an excess dose of 10 pg of unlabeled peptide. For pVEC, the V; significantly decreased suggest-
ing the presence of saturable binding sites, similarly as observed for glucagon. These saturable
binding sites may include receptors or enzymes located at the brain capillary endothelium [44].

In contrast to pVEC, both SynB3 and Tat 47-57 showed a biphasic BBB influx behavior:
after an initial sharp increase, the MTR-curve reached a plateau-phase, resulting in a non-sig-
nificant net brain clearance of these peptides. This plateau-phase can at least partly be
explained by the significant efflux of SynB3 (k,, = 0.05 min ") and Tat 47-57 (Koy = 0.21 min”
") out of the brain. Except for pVEC, the other CPPs showed a significant efflux as well with a
Kout 0f 0.09 min™' and 0.06 min™* for TP10 and TP10-2, respectively. The brain half-time disap-
pearances of the CPPs suggest the existence of an active efflux transport system [43].

All investigated CPPs were mainly distributed to the liver and serum, which was also previ-
ously demonstrated for pVEC and TP10 [49]. For pVEC and Tat 47-57, a very high liver con-
centration was observed compared to the other tissues, which can indicate metabolization, but
also uptake of the peptides and their metabolites in hepatocytes. The transportan analogs and
SynB3 showed high serum distribution that can be explained either by protein binding or high
serum stability and the latter was confirmed during the in vitro metabolic stability study of the
transportan analogs where a serum half-life of 22 h was calculated for TP10 and of 4 h for
TP10-2. The other CPPs were not stable in serum, having half-lives of less than 6 min. Thereby,
it cannot be excluded that radiolabeled metabolites of these CPPs contribute to the observed
brain radioactivity during the evaluation of the blood-to-brain transport. During in vivo meta-
bolic stability studies, metabolites present in serum as well as in brain tissue can be identified,
providing the full picture of which peptides do actually cross the BBB. This information is valu-
able during structure-property relationship studies for BBB transport of CPPs, or peptides in
general. The low serum stability originates from the presence of arginine-arginine bonds,
which are absent in the sequence of the transportan analogues [49]. The low stability was
already reported for Tat 47-57 [50], as well as for pVEC, for which a rapid C-terminal lysine
(Lys'®) cleavage was demonstrated when incubated in human serum [51]. In contrast, another
study demonstrated a (human) serum half-life of a few hours by evaluating the activity of the
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%8Ga-DOTA labeled pVEC [49]. In this in vitro study, we could not demonstrate the formation
of this Lys'®-cleaved pVEC metabolite when incubated in mouse serum. Instead, we identified
a metabolite being pVEC from which the first six hydrophobic N-terminal amino acid residues
were cleaved off (pVEC,_;5). A structure-activity relationship study revealed that these,
cleaved-off N-terminal hydrophobic residues are crucial for the cellular uptake properties, sug-
gesting that the found metabolite pVEC; ;3 is not cell-penetrating [60]. Thus, both pVEC and
PVEC; 13, having similar cationic nature, could contribute to the measured brain activity dur-
ing the MTR experiment of pVEC, as both contain a radiolabeled tyrosine residue. Once the
brain tissue was reached, the mouse brain half-life indicates the peptides remain sufficiently
stable to allow further distribution in the brain parenchyma.

Based on the BBB transport results, three groups of CPPs could be distinguished. The cat-
ionic-amphipathic peptide pVEC constitutes the first group, which showed a rapid brain
influx, resulting finally in relatively high ratio of brain-to-serum radioactivity. SynB3 and Tat
47-57, both short cationic CPPs, form the second group and had relatively high initial brain
influx rates, but their brain influx shows a biphasic behavior. The third group consists of the
transportan analogs, TP10 and TP10-2, which showed no to slow brain influx, respectively.
The first two groups are composed of arginine-rich peptides, while the transportans only con-
tain lysine-residues in their sequences and have a much lower charge density of 19% versus
44%, 50% and 73% of pVEC, SynB3 and Tat 47-57, respectively (Table 1). Thus, arginine-rich
CPPs seem to more effectively and rapidly influx the BBB in the investigated experimental time
period. The BBB influx properties of pVEC, SynB3 and Tat 47-57 are also superior to other
peptides already investigated for their BBB transport characteristics: using our recently pro-
posed classification method [61], these peptides show a very high brain influx (class 5), while
TP10 and TP10-2 have a very low (class 1) and low (class 2) brain influx, respectively. These
findings were not expected based on the cell-penetrating properties of these CPPs, quantita-
tively expressed as the CP-response [1]. TP10 had the highest CP-response (1.641), but the
poorest BBB influx characteristics. In contrast, medium cell-penetrating properties were attrib-
uted to SynB3 and Tat 47-57, but high BBB influx was concluded [1]. Our data indicate that
CPPs selectively cross the BBB and that their brain influx behavior cannot be directly positively
correlated with their cell-penetrating properties (Fig 6). A possible explanation can be found in
their differences in cellular influx mechanism and secondary structure at the membrane inter-
face. For SynB3, an endocytosis-dependent mechanism is described, which is initiated after an
electrostatic interaction [62]. The uptake of Tat 47-57 is endocytosis-driven as well, but start-
ing from a certain threshold concentration, the peptide directly penetrates into the cell [3,62—
64]. The use of an endocytosis-dependent and -independent mechanism has been demon-
strated for pVEC [3,60,65,66]. This peptide is derived from the murine vascular endothelial
(VE)-cadherin, located in the adherens junctions between the vascular endothelial cells, and
constitutes the 13 cytosolic amino acids closest to the membrane and five amino acids from the
C-terminus of the transmembrane region (615-632) [19]. As already mentioned, these five
hydrophobic residues, located at the N-terminus of the pVEC sequence, appear to be crucial
for cellular uptake and directly interact with the plasma membrane [60]. The cellular interac-
tion of pVEC, SynB3 or Tat 47-57 does not cause any membrane disturbances [60,62]. This
corroborates with our results where we could not demonstrate that pVEC increased the BBB
permeability, as the influx of radioiodinated BSA did not augment after co-injection with
pVEC. For TP10, the used cell-penetrating mechanism remains controversial: Padari et al.
described an endocytosis-driven mechanism, while more recent studies ascribe a pore-forming
mechanism [67-69].

The investigated peptides also have a different secondary structure at the membrane inter-
face: when in solution, all peptides have a random coil structure, but at the membrane
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Fig 6. Schematic overview of the relationship between cell-penetrating and BBB-penetrating properties of the five investigated CPPs. The
thickness of the arrows indicates the extent of influx and/or efflux.

doi:10.1371/journal.pone.0139652.9g006

interface, pVEC adopts a B-sheet structure and TP10 becomes o-helical, while SynB3 and Tat
47-57 remain random coiled [56,70]. Overall, the investigated CPPs differ essentially in the
presence or absence of arginine residues, thus their cationic nature (chemical properties), in
their secondary structure at the membrane interface (physicochemical properties) and inher-
ently, in the cellular uptake mechanism (biological properties).

Currently, four different BBB transport mechanisms are described for peptides. The non-
saturable mechanism involves passive diffusion across the BBB, which is mainly used by lipo-
philic peptides. The saturable mechanisms include receptor-mediated transcytosis, involving a
specific receptor, carrier-mediated transcytosis, following an interaction with a transporter
located at the endothelial cell surface, and adsorptive-mediated transcytosis, which is a non-
specific transport mechanism triggered by an electrostatic interaction between positively
charged peptides and the negatively charged cellular membrane. For SynB3, it was already pro-
posed that the adsorptive-mediated transcytosis mechanism was used to cross the BBB [36]. As
the BBB transport data indicate that a high charge density derived from arginine residues are
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favorable for BBB influx, it is assumed that an initial electrostatic interaction with the nega-
tively charged glycocalyx and phospholipid head groups triggers the transport across the BBB,
followed by penetration or endocytosis. Under our experimental conditions, we could not dem-
onstrate that pVEC, SynB3 nor TP10 used a saturable transport mechanism to cross the BBB,
pointing to the passive diffusion mechanism.

Conclusion

The BBB transport properties of five structurally different model CPPs, showing a variable
extent of cellular penetration, were investigated. SynB3, Tat 47-57 and pVEC showed relatively
high (initial) brain influx rates, while the influx of TP10 and TP10-2 was low. The CPPs use a
non-saturable influx mechanism and do not cause a (transient) increase in BBB permeability,
as demonstrated for pVEC. Except for pVEC, all peptides showed a significant efflux out of the
brain, which partly explains the biphasic behavior of SynB3 and Tat 47-57. Our BBB transport
results indicate that CPPs selectively cross the BBB and thus cell-penetrating properties of pep-
tides do not imply BBB-penetrating ability.

Materials and Methods

Peptide quality

TP10 and TP10-2 were purchased at Caslo ApS (Lyngby, Danmark); pVEC, SynB3 and Tat
47-57 at LifeTein LLC (Somerset, USA) and the positive control dermorphin at Bachem

(Bubendorf, Switzerland) and Hanhong group (Shanghai, China). The peptide purity was veri-
fied by (U)HPLC-analysis and estimated > 95% [71].

Radioiodination and purification of peptides and BSA

SynB3, Tat 47-57, dermorphin and albumin (BSA) (Merck KGaA, Darmstadt, Germany) were
radiolabeled using the Iodo-Gen method. A previously established procedure was used [45],
but in case of Tat 47-57 and dermorphin, a 1 pmol/ml sodium iodide carrier solution was
used. The peptides were iodinated by transfer of the iodonium solution to 50 pl of a 1 pmol/ml
peptide solution. TP10, TP10-2 and pVEC were radiolabeled using the chloramine-T method
[72]. Briefly, to 50 ul of a 1 umol/ml peptide solution (TP10 and TP10-2) or 110 ul of a 1 mg/
ml pVEC solution, dissolved in 0.1% formic acid in 95:5 water:acetonitrile, 20 ul of a

3.75 pmol/ml sodium iodide in aqueous 0.1% (m/V) formic acid (TP10 and TP10-2) solution
or 20 ul of a 2.5 pmol/ml sodium iodide in 25 mM phosphate buffer pH 8.5 (pVEC) was added.
Then, a volume containing 1 mCi of Na'?’I (Perkin Elmer, Zaventem, Belgium) was trans-
ferred to this solution, followed by 30 pl of a 0.5 mg/ml chloramine-T solution in 25 mM phos-
phate buffer (pH 7.4 (TP10 and TP10-2) or pH 8.5 (pVEC)). The iodination reaction
proceeded during 40 s, followed by the addition of 30 ul of a 1 mg/ml sodium metabisulfite in
25 mM phosphate buffer (pH 7.4 (TP10 and TP10-2) or pH 8.5 (pVEC)) to stop the iodination
reaction. For evaluation of the used influx mechanism, pVEC, SynB3 and TP10 were radiola-
beled using a no-carrier added protocol, in which the sodium iodide solution was replaced by
its solvent.

After radiolabeling, the iodinated peptides were fractionated using an HPLC-UV apparatus
(LaChrom Elite, Hitachi, Tokyo, Japan) equipped with a radioactivity detector (Berthold Tech-
nologies GmbH & Co. KG, Bad Wildbad, Germany) and fraction collector (Gilson Interna-
tional BV, Den Haag, The Netherlands), in line with the HPLC waste. For separation, a Vydac
Everest Cyg column (250 x 4.6 mm, 5 pm particle size; Grace, Lokeren, Belgium) was coupled
to the HPLC system. Mixtures of water and acetonitrile acidified with 0.1% (m/V) formic acid
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or 0.1% (m/V) trifluoroacetic acid (SynB3 and Tat 47-57) were used to create appropriate gra-
dients for separation of peptides and their iodinated forms. After fractionation, the fractions
containing the radiolabeled peptides were selected and evaporated using a N, flow. For BSA,
after radio-iodination, 500 ul of phosphate buffer (130 mM, pH 7.4) was added and the solu-
tion was filtered over a silver filter (Sterlitech, Kent, USA). Before each experiment, a quality
control of the iodinated peptide stock was performed.

In vivo experiments in mice

Female, ICR-CD-1 mice (Harlan Laboratories, Venray, The Netherlands), aged 7 to 10 weeks
and weighing 28-36 g, were used during the in vivo BBB transport experiments. All animal
experiments were performed in accordance with the Ethical Committee principles of labora-
tory animal welfare. The protocol was approved by the Ethical Committee of the Faculty of
Veterinary Science of Ghent University (Permit Numbers: 2009-052 and 2014-128). Prior to
experiments, mice were anesthetized by intraperitoneal injection of a 40% urethane solution (3
g/kg) (Sigma-Aldrich, Diegem, Belgium).

Evaluation of blood-brain barrier influx

The protocol of the multiple time regression (MTR) analysis to evaluate whether the peptides
cross the BBB is described in detail elsewhere [45]. Shortly, 200 pl of the radioiodinated CPP
solution (30000 cpm/pl) was injected into the right jugular externalis vein of anesthetized
ICR-CD-1 mice, which were then decapitated at 1, 3, 5, 10, 12.5 and 15 min post injection,
with first and last time points performed in duplicate, after which brains were collected and
measured for radioactivity using a gamma counter (Wallac Wizard 1470, Perkin Elmer).
Shortly before decapitation, blood was collected from the left carotid artery, which was centri-
fuged (10000 g, 15 min at 21°C) in order to measure the radioactivity of blood and serum. Der-
morphin and radioiodinated BSA were used as positive and negative control, respectively. The
blood-to-brain entry during the experimental period of 15 min was evaluated by plotting the
ratio of brain (A,(T)) and serum activity (C,(T)), corrected for the brain weight and serum
volume, respectively, versus the exposure time (0), expressing the theoretical steady state
serum level of the iodinated peptide at a given serum concentration [37,73]. The exposure time
is calculated as the integral of the arterial serum radioactivity over time divided by the radioac-
tivity at time t. The integral is calculated through the trapezoidal rule of the log-transformed
data [73]. In the linear part of the curve, assuming a two-compartmental BBB model, data can
be fitted using a linear model from which the unidirectional influx rate (Kj,), also referred to as
unidirectional blood to brain clearance K; [46], and the initial brain distribution volume (V;)
can be determined using the following equation according to Gjedde and Patlak [37-40]:

T

An(T) _ Apan(T) _ . _ Cy(t) - dt

P

serum
0

If during the experimental time frame the curve deviates from linearity due to a significant
efflux out of the brain resulting in a transition from unidirectional to net transfer, the following
expansion of the Gjedde-Patlak plot, a model of biphasic blood-brain transfer as derived from
[42], was used to fit the uptake:

An(D) _ Auin(D) 0 g v, (1 - e(_g(%))> +V, 2V, (1 - e(_®<%>)> +V, (2)

C,(T) ~ An(T)

serum (
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with K is the unidirectional clearance, K is the net clearance, V,, the brain tissue distribution
volume, and V|, the vascular brain distribution volume, experimentally determined as the brain
distribution volume of radioiodinated BSA [46,74].

To evaluate whether the BBB remains intact after intravenous injection of the CPPs,a MTR
experiment was performed for radioiodinated BSA with and without an excess dose of 20 pg of
pVEC. This dose of 20 ug was determined based on the amount of peptide injected during a
MTR experiment estimated based on the specific activity and taking into account the amount
of non-radioactively iodinated peptide present in the injected dose. A MTR experiment with
and without co-injection of an excess dose of 10 pg of unlabeled peptide was used to investigate
whether the CPPs use a saturable or non-saturable transport mechanism to cross the BBB.
During this experiment, peptides are radiolabeled using a no-carrier added method in order
that only radioactively labeled peptide was injected.

Tissue distribution after IV injection

At the 15 min time points of the MTR experiment, six tissues, i.e. spleen, kidneys, lungs, heart
and liver, were collected immediately after decapitation, and weighed and measured in a
gamma counter. The percentage of the injected dose for each isolated tissue was calculated as
follows:

Atissue /Wtissue (3)

%injected dose = ————"—
AIV injected /Wmouse

with Agissue and Ay injected the measured radioactivity of the isolated tissue and the radioactivity
0f 200 pul of MTR stock solution, respectively, and wyjssue and Wiouse the weight of the consid-
ered tissue and injected mouse, respectively.

Regional variation in brain influx between different brain regions

After measuring the whole brain radioactivity, the brains collected during the MTR experiment
of pVEC, SynB3 and TP10, as well as of the controls dermorphin and radioiodinated BSA,
were dissected into eight brain regions in order to evaluate regional variations in brain influx:
(1) cerebellum, (2) medulla oblongata, (3) frontal cortex, (4) striatum, (5) hippocampus, (6)
thalamus + hypothalamus, (7) midbrain and (8) occipital + parietal cortex, including “rest of
brain”. Different dissected brain regions were weighed and measured in the gamma counter.
The unidirectional influx and initial distribution volume of the iodinated peptides for the dif-
ferent brain regions are determined using Eq 1.

Peptide distribution to brain parenchyma and capillaries

The capillary depletion method was used to evaluate the distribution of the peptide between
the brain parenchyma and capillaries [75,76]. In summary (see Materials and Methods in
[45]), 200 ul of a radiolabeled peptide solution (10000 cpm/pl) was injected in the jugular exter-
nalis vein of two anesthetized ICR-CD-1 mice. Ten minutes after IV injection, mice were
decapitated and brains were collected and measured for radioactivity. Prior to decapitation,
blood was collected from the abdominal aorta followed by intracardial perfusion of the brain
using 20 ml of lactated Ringer’s buffer after clamping the aorta and severing the jugular veins.
Then, brain was homogenized with 0.7 ml of ice-cold capillary buffer and 1.7 ml of 26% ice-
cold dextran solution in capillary buffer. The resulting homogenate was weighed and centri-
fuged at 5400 g for 30 min at 4°C, resulting in a pellet, i.e. capillaries, and supernatant, i.e.
parenchyma and fat tissue, which were weighed and measured in the gamma counter. The
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radioactivity of blood and serum, obtained by centrifuging blood at 10000 g, 15 min at 21°C,
were measured as well. Compartmental distribution was calculated as follows:

A,

capillaries or parenchyma
A,
9%) — - seum
capillaries or parenchyma ,(/0) A A X 100 (4)

capillaries parenchyma

A, A,

Fraction

serum serum

Brain-to-blood transport

For evaluation of the efflux of the peptides out of the brain, 1 ul of a radioiodinated peptide
solution (25000 cpm/pl) was injected in the lateral ventricle of anesthetized ICR-CD-1 mice at
a speed of 360 ul/h for 10 s using a syringe pump (KDS100, KR analytical, Cheshire, UK). At 1,
3, 5,10, 12.5 and 15 min post injection, mice were decapitated and the brains were isolated and
measured in the gamma counter. Prior to decapitation, blood was collected from the abdomi-
nal aorta, which was subsequently centrifuged (10 000 g, 15 min at 21°C) to obtain serum of
which the radioactivity was measured. The brain half-time disappearance (/3 prain) Was calcu-
lated from the linear regression of the natural logarithm of the residual radioactivity in brain
versus time as follows:
_In(2)
t1/2,brain - k—

out

(5)

with k., defined as the efflux rate constant calculated as the absolute value of the slope of the
linear regression, applying first order kinetics [45,77]. An extensive description of the protocol
can be found elsewhere [45].

In vitro metabolic stability

The in vitro metabolic stability of Tat 47-57, SynB3, pVEC, TP10 and TP10-2 was determined
in mouse serum and mouse brain, liver and kidney homogenates according to pre-established
protocols [45,78,79]. Prior to use, the protein content of each homogenate was determined
using the Pierce Modified Lowry Protein Assay method (Thermo Scientific) to generate a stock
solution with a protein concentration of 0.6 mg/ml by dilution with Krebs-Henseleit buffer
(pH 7.4, Sigma-Aldrich). In brief, 100 ul of a 1 mg/ml peptide solution, dissolved in Krebs-
Henseleit buffer (pH 7.4) was added to 900 ul of tissue extract or serum (500 pl of tissue
homogenate or serum + 400 pl of Krebs-Henseleit buffer (pH 7.4) = 300 pg of protein in total)
and incubated at 37°C while shaking at 750 rpm. Aliquots of 100 pl were sampled after 0, 15,
30, 60, 90 and 120 min of incubation into tubes containing an equal volume of aqueous TFA
(1% m/V). For the serum samples of SynB3 and Tat 47-57, aliquots were taken as well at 2, 4,
6, 8,10 and 12 min (in a separate experiment) and for TP10 and TP10-2 at 2, 5 and 10 min.
After sampling, enzymatic activity was terminated by additional heat inactivation at 95°C for 5
min, followed by cooling the samples in an ice bath for 30 min. Centrifugation at 20 000 g for 5
min at 5°C yielded a clear supernatant ready for HPLC-UV analysis. For the analysis of the
serum samples of TP10 and TP10-2, a more extensive sample preparation was required to
remove interfering compounds. Therefore, a solid phase extraction (SPE) protocol using an
Oasis™ WCX pelution plate (Waters, Zellik, Belgium) was used prior to HPLC-UV analysis. In
the Supporting Information, the protocol of the SPE extraction procedure is described (S1
Text). Blank control solutions were prepared as described above, but without adding the pep-
tide. To confirm chemical stability and mass balance, control reference solutions without tissue
homogenate or with a prior heat inactivation were analyzed as well.
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The HPLC-UV system consisted of a Waters Alliance 2695 separation module and a Waters
2996 photodiode array (PDA) detector (detection from 190-400 nm, quantification at 215
nm), fitted with Empower 2 software for data handling (Waters). For each sample, 20 ul was
injected and separated on a Vydac Everest C,5 column (SynB3 and Tat 47-57) or Prevail
Organic Acid (pVEC, TP10 and TP10-2) column (250 x 4.6 mm, 5 pum particle size) both from
Grace at 1 ml/min in an oven set at 30°C. Appropriate gradients for separation of the peptides
and their metabolites were created by mixtures of water (0.1% trifluoroacetic acid m/V) and
acetonitrile (0.1% trifluoroacetic acid m/V). The half-life was determined as:

t1/2 - ln(Z) (6)

~ dope
with the slope derived from the curve of the natural logarithm of the percentage of the amount
at the start of the incubation, i.e. t = 0 min, versus time.

For identification of the formed metabolites during incubation of pVEC in mouse serum,
serum samples obtained at 0 min and 15 min post injection were injected into an Acquity H-
class UPLC™ apparatus consisting of a quaternary solvent manager, an automatic sample
injection system, combined with a flow through needle, a column heater and an ultra-perfor-
mance LC PDA detector, with Empower 3 FR 2 software for data acquisition (all from Waters).
An Acquity BEH C18 300 A column (2.1 mm x 100 mm, 1.7 pm, Waters), thermostated at
30°C, was selected for separation using the same mobile phase as above. The eluting mobile
phase was split towards both the PDA and a QDa detection system (ratio 10/1), consisting of
an Acquity isocratic solvent manager and an Acquity QDa detector (both from Waters),
equipped with an electrospray ionization (ESI) interface. The fraction going to the QDa was
diluted with 40/10/50 (V/V/V) water/propionic acid/2-propanol at a flow rate of 0.35 ml/min.
The QDa detector was operated in positive ion mode with the ESI capillary voltage set at +0.8
kV and the cone voltage at 15 V. The probe temperature was 600°C. A full mass spectrum
between m/z 100 and 1250 was acquired at a sampling rate of 2.0 spectra/s.

Statistics

Generally, regression lines were computed using the least squares method. Regression lines of
the ratio of the brain-to-serum radioactivity versus the exposure time obtained during the eval-
uation of the regional brain distribution and the used brain influx mechanism, were statistically
compared using the Prism 6 software (GraphPad, La Jolla, USA). If the calculated P-value was
greater than 0.05, the slopes were not statistically significantly different.
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