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Abstract

The flower bud transcriptome in the less dormant Taiwanese pear ‘Hengshanli’ and high-
chilling requiring Japanese pear strain TH3 subjected to the same chilling exposure time
were analyzed during winter using next-generation sequencing. In buds sampled on Janu-
ary 10th and on February 7th in 2014, 6,978 and 7,096 genes, respectively, were signifi-
cantly differentially expressed in the TH3 and ‘Hengshanli’ libraries. A comparative GO
analysis revealed that oxidation-reduction process (biological process) and ATP binding
(molecular function), were overrepresented during the ecodormancy period (EP) when com-
pared to the endodormancy deepest period (DP), indicating that ATP synthesis was acti-
vated during the transition between these dormancy stages. Among the 11 differently
expressed genes (DEGs) annotated as probable dehydrins or LEA protein-related genes,
9 DEGs showed higher transcript levels in the DP than in the EP. In order to focus on tran-
scription factors induced by low temperature or drought, 7 differently expressed genes
(DEGs) annotated as probable ICE1 or DREB proteins were analyzed by real-time PCR.
Expression levels of 3 genes were higher in TH3 than in ‘Hengshanli’ on all sampling days.
Their expression increased during the endodormancy deepest period (DP) and then
decreased before endodormancy breaking in TH3 buds. Taken together, these results sug-
gest that these genes annotated as ICE7, DREB and ERF are involved in endodormancy
maintenance and in the transition from endodormancy to ecodormancy.

Introduction

Bud dormancy in temperate zone deciduous fruit trees is an adaptive mechanism that allows
trees to survive under unfavorable conditions during winter [1]. The three dormancy stages are
paradormancy, endodormancy, and ecodormancy [2]. In autumn, buds enter endodormancy
after defoliation and growth cessation. At this stage, bud growth is not possible even under
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Abbreviations: AREB, ABA-responsive element
binding factor; bZIP, basic region/leucine zipper; CBF,
C-repeat binding factor; COP1, Constitutive
photomorpho- genesis 1; DAM, dormancy-associated
MADS-box; DREB, dehydration-responsive element
binding protein; ERF, ETHYLENE RESPONSE
FACTOR; FT, FLOWERING LOCUS T; HY5,
ELONGATED HYPOCOTYLS; ICE1, Inducer of CBF
expression 1; LEA, late embryogenesis abundant;
NAC, No Apical Meristem; PIP, Plasma membrane
Intrinsic Protein; PP2C, protein phosphatase 2C;
PRR, PSEUDO RESPONSE REGULATOR; TIP,
Tonoplast Intrinsic Protein.

favorable environmental conditions. Endodormancy breaks after a period of sufficiently low
temperatures known as the chilling requirement (CR), the required temperature and duration
of the CR depends on the species and cultivar [3]. However, if the CR is not met, such as in
periods of climate change or global warming, endodormancy does not break and new organ
growth does not occur in spring [4].

Pears (Pyrus spp.) are among the most important perennial deciduous fruit trees in the
world and Japanese pear (Pyrus pyrifolia Nakai) is one of the most important fruits in Japan.
Recently, in regions such as New Zealand [5] and Brazil [6] low chilling in winter has resulted
in reduced bud breaking in Japanese pears during spring. Thus, elucidating the mechanisms
underlying the dormancy stages and endodormancy break in pear trees and other deciduous
fruit trees is a prerequisite for developing countermeasures against global warming.

To address this issue, several studies have been conducted to examine endodormancy in
various tree species. Water availability is one of the basic factors that determines bud develop-
ment because it is thought that dormancy is closely related to changes in the water movement,
as this is an essential event in the overwintering process of woody plants [7]. The total soluble
sugar and water contents accumulation period in peach buds during endodormancy was differ-
ent in two cultivars with different CRs, even though the species was the same [8]. Moreover,
Yooyongwech et al. [8] showed that the expression levels of Pp-yTIP1 and Pp-PIP1 genes
encoding aquaporin proteins that regulate water transport in the tonoplast and plasma mem-
brane increased in peach buds of high-chilling requiring cultivars compared with those of low-
chilling requiring cultivars before the breaking of endodormancy. In addition, bud dormancy
has also been related to phytohormone fluctuations. For example, endogenous abscisic acid
(ABA) levels induced by low temperature or drought stress increased when endodormancy is
established and decreased during endodormancy release in apple [9] and pear [10] buds.
Accordingly, after dormancy induction by short days in autumn, ABA signal transduction
components (PP2C or AREB3) were induced in poplar buds [11]. A conceptual model devel-
oped for seasonal dormancy transitions in crown buds of leafy spurge based on microarray
studies also highlighted the role of DREB1A/CBF2, COP1, HY5, DELLAs, DAM, FT in the
maintenance of well-defined dormancy phases [12]. In addition, the cold-induced expression
of some dehydration-responsive element binding protein (DREB)/C-repeat binding factor
(CBF)-family members [13], and DREBIA has been identified as a central regulator of molecu-
lar networks involved in endodormancy induction [12] and break [14]. A recent study of
P. pyrifolia focused on determining the molecular levels of MIKC-type dormancy-associated
MADS-box (DAM) genes, which may be candidate endodormancy-breaking genes [15].
Expression of dam genes decreased during the breaking of endodormancy in the Japanese pear
‘Kosui’ and was very low in the Taiwanese pear (TP-85-119), which is a less dormant pear spe-
cies [15]. A comparison between ‘Kosui” and the less dormant Taiwanese pear ‘Hengshanli’
(TP-85-119) identified two novel transcription factors (NAC and PRR) whose expression levels
varied concomitantly with dormancy phase changes [16].

Recently, microarray analysis and RNA sequencing using next-generation sequencing tech-
nology (RNA-seq) have widely been used for the transcriptomic analysis of dormancy in plants
such as Japanese pear [16], [17], [18], grapevine [19], and Japanese apricot [20]. By comparing
buds of the same cultivar exposed to different chilling periods, these studies identified several
genes involved in dormancy phase transitions such as stress response-, cell cycle- and phyto-
hormone-related genes. In this study, we analyzed the transcriptome of flower buds exposed to
the same chilling period in the less dormant Taiwanese pear ‘Hengshanli’ and high-chilling
requiring Japanese pear strain TH3 during winter using next-generation sequencing. By com-
paring the transcriptome of buds collected on the same date, it is possible to limit the effect of
genes showing large diel variation caused by water stress due to limited rain, therefore, we
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expect to effectively isolate genes expressed specifically during the endodormancy stage. In
addition, by comparing buds of two pear strains at different endodormancy states despite their
exposure to the same chilling period, we expect to effectively isolate transcription factors
induced by low temperature, and are involved in endodormancy maintenance.

Materials and Methods

Plant materials and percentage of floral bud break in the 2013-2014 and
2014-2015 seasons

Samples were collected from high-chilling requiring Japanese pear strain TH3, which is bred
by selfing ‘Osa-Gold Nijisseiki’, and from the less dormant Taiwanese pear ‘Hengshanli’ grafted
onto P. betulaefolia seedlings in the orchard of Tottori University (35.5° N, 134.2° E), Tottori
city, Japan. Lateral floral buds and branches were collected on January 10th and February 15th
in the 2013-2014 season, and periodically from December 24th to February 3rd in the 2014-
2015 season. The buds from the TH3 strain were considered as T1 if collected on January 10th,
2014, and were considered as T2 from February 7th onwards. The buds from ‘Hengshanli’
trees were labeled as H1 and H2 when sampled on January 10th and February 7th, 2014,
respectively. Floral buds were frozen immediately after collection in liquid nitrogen and stored
at -80°C until RNA extraction.

In order to determine the percentage of floral bud break, branches of approximately 30 cm
long that included five lateral floral buds were used. The basal part of the cuttings was sub-
merged in 0.03% (v/v) aluminum sulfate and 0.3% (v/v) 8-hydroxyquinoline. The cuttings
were then maintained in a growth chamber at 23 + 1°C and 24-h photoperiod. Bud break is
defined as a developmental stage of more than four phases characterized by swelling of the
buds and the emergence of a green tip between scales. Bud break percentage was determined
14 d after forcing on five single shoots with five buds. Chilling unit (CU) values were calculated
using the Saitama method [21] as described by Tamura et al. [22].

RNA extraction, library preparation, and RNA-seq

Total RNA was extracted from 3 biological replicates of buds collected on each sampling date
according to the methods described in Gasic et al. [23] with some modifications. An indepen-
dent pool for transcriptome analyses was produced from buds in T1, T2, H1 and H2. Genomic
DNA was eliminated from the total RNA preparation using DNase I (New England Biolabs
Inc., Ipswich, MA, USA). The quality of total RNA was evaluated with an Agilent 2100 Bioana-
lyzer using an Agilent RNA 6000 nano Kit (Agilent Technologies, Santa Clara, CA, USA). Only
the samples with a RNA integrity number (RIN) > 8.0 were used for RNA-seq. Library prepa-
ration was performed according to the TruSeq RNA Sample Preparation v2 guide (Illumina,
San Diego, CA, USA). Oligo-(dT) magnetic beads were used to isolate poly-(A) mRNA from
total RNA, and fragmentation buffer was added to cut mRNA into short fragments. Using
these short fragments as templates, first-strand cDNAs were synthesized using random hex-
amer-primers and SuperScript II Reverse Transcriptase (Invitrogen). After second-strand
cDNA synthesis, end-repaired and dA-tailed fragments were connected with sequencing adap-
tors. The adapter-ligated cDNA fragments were amplified by 15 cycles of PCR, and the prod-
ucts were cleaned up using AMPure XP magnetic beads (Beckman Coulter, Pasadena, CA,
USA). Library quality and concentration were assessed using an Agilent Bioanalyzer 2100 and
an Agilent DNA 1000 kit (Agilent Technologies, Santa Clara, CA, USA). The concentration of
the libraries was more precisely determined by quantitative real-time PCR using a KAPA
Library Quantification Kit (Kapa Biosystems).
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All libraries were first diluted to a concentration of 10 nM and mixed in equal amounts.
After denaturalization with 0.2 N NaOH, the final concentration of the library mixture was
diluted to 13 pM including 1% PhiX library (Illumina, San Diego, CA, USA). The library mix-
ture was sequenced by 2 x 100 bp paired-end sequencing using an Illumina HiSeq 2500 (Illu-
mina, San Diego, CA, USA). Reads in FASTQ format were generated using an Illumina Casava
pipeline (version 1.8.3). The read data were submitted to the DDBJ Read Archive (Accession
number DRA003270).

De novo assembly and clustering analysis

Raw reads containing adaptors were removed using TagDust (version 1.13). Additionally, FAS-
TX-Toolkit (version 0.0.13.2) was used to trim the first 13 bp of each read, to clip uncertain
bases appearing as “N”, and to filter reads based on their quality scores. Quality filtering
parameters were as follows: (i) Minimum quality score to keep, 20; and (ii) Minimum percent
of bases that must have [-q] quality, 80. Among the remaining reads, unpaired-reads were then
removed using a custom Perl script. After combining the analysis data in twice on each sample,
de novo assemblies were performed using Trinity (version r20140413) using the default set-
tings. Highly similar contigs were clustered using CD-HIT (version 4.3) and TGICL (version
2.1).

Statistical analysis of expression levels and homology search

Using CLC Genomics Workbench 7.0.4 (Qiagen), read data without adaptors and with the first
13 bp trimmed were mapped to the references that consist of the clustered contigs. Mapping
parameters were as follows: (i) Mismatch cost, 2; (ii) Insertion cost, 3; (iii) Deletion cost, 3; (iv)
Length fraction, 0.5; and (v) Similarity fraction, 0.95. To compare expression levels between
two samples (T1 vs H1, T2 vs H2, and H1 vs H2), mapping-based count data was constructed
from "Total counts" and was tested using edgeR. Differentially expressed genes (DEGs) or
common genes between samples were selected according to the false discovery rate (FDR,
g-value < 0.05). All references clustered by CD-HIT and TGICL programs were aligned by
BLASTx (E-value < 1e-7) to the NCBI non-redundant protein database and annotated accord-
ing to the top hit description. "Total counts” of genes with the same annotation information
were combined, and genes that showed the same expression pattern between two samples in
both CD-HIT and TGICL analyses were defined as DEGs. To select DEGs related to the endo-
dormancy stage transition, the DEGs obtained by comparing H1 vs H2 were subtracted from
each of the DEGs obtained by comparing T1 vs H1 and T2 vs H2. DEGs that showed higher
expression levels in T1 and H1 libraries were annotated using Blast2GO [24] plugin in the CLC
Genomics Workbench with Gene Ontology (GO) [25].

Real-time PCR

Total RNA was isolated from the buds and used to synthesize first-strand cDNAs with reverse
transcriptase (TaKaRa). cDNA was diluted 1/100 and used as a template for real-time PCR.
Real-time PCR was performed using the SYBR Green system on a LightCycler 480 (Roche
Diagnostics, Basel, Switzerland). A total of 5 uL of diluted cDNA was added to 15 pL of the
reaction mixture containing 3 pL of LightCycler 480 SYBR Green Mastermix and 0.5 mM of
specific primer pairs for each gene (S1 Table). Specific primers for each gene were designed
using the Primer Express software. Real-time PCR was performed in the following manner: an
initial step of 2 min at 95°C was carried out, followed by 45 cycles of 10 s at 95°C, 20 s at 60°C,
and 20 s at 72°C, melting for 0 s at 95°C, and slow heating from 60°C to 95°C at 0.2°C/s to con-
firm the amplification of single products. The specificity of the amplification reaction for a
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Table 1. Floral bud break (%) of TH3 and ‘Hengshanli’ in 2013-2014 season.

Date (CU ?) Cultivar
10—Jan (1134) TH3
Hengshanli
7—Feb. (1731) TH3
Hengshanli

Bud break (%) ¥ Dormancy stage Sample No.
0.0c* Endodormancy deepest period (DP) T1
100.0 a Ecodormancy period (EP) HA
32.0b Endodormancy breaking period (BP) T2
100.0 a Ecodormancy period (EP) H2

Z CU value at sampled date was calculated from 31 Oct.

Y 14 days after forcing.

X Different letters within the same column show a significant difference at P<0.05 by t-test.

doi:10.1371/journal.pone.0139595.t001

given primer set was verified on the basis of the melting curves. Relative expression was deter-
mined using the 2"**“* algorithm and normalized to the actin gene [26] which did not show
differential expression in this study.

Results

Dormancy status of ‘Hengshanli’ and TH3 in the 2013—-2014 and 2014—
2015 seasons

In all sampling date of both seasons, leaves of TH3 and ‘Hengshanli’ had already been defoli-
ated. In the 2013-2014 season, the percentage of floral bud break in TH3 increased from 0% to
32% from January 10th to February 7th (Table 1). In contrast, the percentage of floral bud
break in ‘Hengshanli’ remained constant at 100%. Based on the percentage of floral bud break,
TH3 buds were in the deepest period (DP) phase of endodormancy on January 10th, 2014, and
the buds then transitioned to the breaking period (BP) phase on February 7th, while the ‘Heng-
shanli’ buds were in the ecodormancy period (EP) on both sampling dates in 2014.

In the 2014-2015 season, the percentage of floral bud break in TH3 was 0% from December
24th to January 20th, which then increased to 64% on February 3rd (Table 2). The percentage
of floral bud break in ‘Hengshanli’ was over 85% on all sampling dates.

Sequencing, de novo assembly, and clustering analysis

RNA isolated from TH3 and ‘Hengshanli’ floral buds collected on January 10th and February
7th, 2014, was used to synthesize the cDNA for paired-end sequencing using the Illumina
HiSeq 2500. The RNA-seq generated a total of 0.5 billion reads from each sample and a total of
870,440 contigs were assembled using clean reads (S2 Table). By clustering analysis using

Table 2. Seasonal changes in percent floral budbreak of Pyrus plants in 2014—2015 season.

Registered name (Cultivar or lines)

TH3
Hengshanli

Z 14 days after forcing.

Budbreak (%) *
Date 24—Dec. 8—Jan. 20—Jan. 3—Feb.
cuY 767 1111 1394 1709
0b* 0b 0b 64 a
88 a 96 a 100 a 96 a

Y CU value at sampled date was calculated from 31 Oct.
X Mean separation within lows by t-test at P<0.05.

doi:10.1371/journal.pone.0139595.1002
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CD-HIT and TGICL programs, 314,420 and 65,551 contigs were assembled, respectively. All
contigs generated by TGICL were defined as unigenes in this study. The percentage of reads
mapped using the two clustering programs in each library ranged from 65.1-84.0%.

Genes showed differential expression between dormancy stages

By subtracting the DEGs obtained by comparing H1 vs H2 from each of the DEGs obtained by
comparing T1 vs H1 and T2 vs H2 libraries, DEGs related to the endodormancy stage transi-
tion were identified in the two comparative analyses, i.e., in the T1 vs H1 and T2 vs H2 com-
parisons (S3 Table). In flower buds sampled on January 10th, 6,978 genes were significantly
differentially expressed in the T1 and H1 libraries. Of these, 2,756 and 4,222 were DEGs with
higher expression levels in the T1 and H1 libraries, respectively. When comparing T2 and H2
libraries, 7,096 DEGs were identified of which 2,531 and 4,565 had higher expression levels in
T2 and H2, respectively.

To compare function of DEGs in the different dormancy statuses, DEGs that showed higher
expression levels in the T1 and H1 libraries were annotated using Blast2GO. A comparative
GO analysis considering biological processes showed that genes involved in oxidation-reduc-
tion metabolic, and carbohydrate metabolic processes, and transmembrane transport were
present in a higher percentage in the H1 than in the T1 library (Fig 1(A)). More than 20% of
the genes were shown to be nuclear and integral membrane components in the T1 and H1
libraries, respectively, when DEGs were classified according to their cellular component (Fig 1
(B)). Classification by molecular function showed that a higher percentage of DEGs was
involve in DNA binding in T1 than in H1, while a higher percentage of DEGs was involve in
ATP binding in H1 than in T1 (Fig 1(C)).

Transcriptome analysis of DEGs

Endodormancy is closely related to changes in the water movement, many reports have shown
that aquaporin, dehydrin or LEA protein involved in regulation of endodormancy [8] [27]
[28]. To serve as representative examples, we constructed heat map diagrams of relative gene
expression levels for DEGs annotated as probable aquaporin-, dehydrin- or LEA-related genes.
Among the 8 DEGs in the T'1 vs H1 comparison annotated as probable aquaporin-related
genes, 7 DEGs showed higher transcript levels in the EP (H1) than in the DP (T1) and 6 DEGs
showed higher levels in the EP (H2) than in the BP (T2) (Fig 2). In contrast, among the 11
DEGs in the T1 vs H1 comparison annotated as probable dehydrin- or LEA protein-related
genes, 9 DEGs showed higher transcript levels in the DP (T1) than in the EP (H1) (Fig 3).

To investigate the relationship between phytohormone signaling and the transition between
the different dormancy stages, DEGs related to ABA and gibberellin (GA) signaling pathways
were analyzed. Among the 31 DEGs identified as related to the ABA signal transduction path-
way, 21 DEGs were annotated as probable protein phosphatase 2C (Fig 4). All of the 4 DEGs
annotated as probable basic leucine zipper genes showed higher transcript levels in the DP
(T1) than in the EP (H1). In the ABA signaling pathway heat map diagram from the T2 vs H2
comparison, transcript levels of 10 DEGs were higher in the EP (H2) than in the BP (T2), and
12 DEGs showed higher levels in the BP (T2) than in the EP (H2).

In the GA signal transduction pathway, among the 22 DEGs annotated as probable bHLH
transcription factors, the expression of 18 DEGs was higher in the EP (H1) than in the DP (T1)
(Fig 5). In the GA signaling pathway heat map diagram from the T2 vs H2 comparison, tran-
script levels of 10 DEGs were higher in the EP (H2) than in the BP (T2). In contrast, 12 DEGs
showed higher expression levels in the BP (T2) than in the EP (H2).
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Fig 1. Functional categories of DEG genes in the Gene Ontology. GO categories were analyzed in pairwise comparisons in between T1 and H1 libraries.

DEG genes were classified by biological process (A), cellular component (B) and molecular function (C).

doi:10.1371/journal.pone.0139595.g001
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To focus on the DEGs annotated as probable ICEI or DREB, we constructed a heat map dia-
gram of relative gene expression levels (Fig 6). Among all of the 9 DEGs identified as probable
ICEI or DREB, transcript levels of 7 DEGs were higher in the DP (T1) than in the EP (H1),
while no DEG showed higher expression levels in the EP (H2) than in the BP (T2).

Expression analysis of DEGs related to bZIP and WRKY in ‘Hengshanli’
and TH3 by Real-time PCR

bZIP and WRKY are two important plant transcription factor families regulating diverse devel-
opmental and stress-related processes [29]. DEGs of 2 types annotated as probable bZIP in sig-
nal transduction pathways of ABA and DEGs of 3 types annotated as probable WRKY were
higher in the DP (T1) than in the EP (H1) and these DEGs were analyzed using real-time PCR.
In the expression analysis carried out in TH3 and ‘Hengshanli’ floral buds collected from

Color Key N/A

DP, BP .

Value

15788 _aquaporin TIP1-3-like

16978 _probable aquaporin NIP5-1

28199 _plasma membrane intrinsic protein 1-1

782_probable aquaporin PIP2-8

5283_aquaporin TIP2-1

44325 aquaporin SIP1-2-like

22291 _aquaporin PIP2-2

21230_gamma tonoplast intrinsic protein

T1 vs H1
T2 vs H2

Fig 2. Heat map diagram of relative gene expression levels for DEGs annotated as probable aquaporin-related genes. Red indicates a relative higher
levels in expression in DP or BP than EP, and green represents a relative higher levels in expression in EP than DP or BP.

doi:10.1371/journal.pone.0139595.g002
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Fig 3. Heat map diagram of relative gene expression levels for DEGs annotated as probable dehydrin or LEA protein-related genes. Red indicates a

relative higher levels in expression in DP or BP than EP, and green represents a relative higher levels in expression in EP than DP or BP.

doi:10.1371/journal.pone.0139595.g003

N/A

51347 _dehydrin 3

45423 dehydrin DHN2-like

50356_dehydrin 6

22956 _dehydrin 7

17626 _late embryogenesis abundant protein 76-like
4633_late embryogenesis abundant protein, group 3-like
356_dehydrin 5

1333_dehydrin COR47-like

10331_dehydrin DHMN3-like

63430_dehydrin ERD14

24229 _dehydrin

T2 vs H2

December 24th to February 3rd in the 2014-2015 season, expression levels of 5 DEGs on January
8th were higher in TH3 than in ‘Hengshanli’ (Fig 7). Expression levels of bZIPI (Unigene21464)
on December 24th and January 20th and WRKY1 (Unigene28589) on December 24th were higher
in ‘Hengshanli’ than in TH3. On the other hands, expression levels of bZIP19 (Unigene24896)
and WRKY of 2 types (Unigene50008 and Unigene54944) from December 24th to February 3rd
were higher in TH3 than in ‘Hengshanli’. Additionally, expression levels in TH3 of the three uni-
genes decreased from January 8th to January 20th and from January 20th to February 3rd.

Expression analysis of DEGs related to ICET and DREB in ‘Hengshanli’
and TH3 by Real-time PCR

ICEI or DREB genes were also proposed to be involved in the endodormancy maintenance
[13], [14], [30]. Among the 9 DEGs annotated as probable ICEI or DREB, expression levels of
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doi:10.1371/journal.pone.0139595.g004

7 DEGs were higher in the DP (T1) than in the EP (H1) and these DEGs were analyzed using
real-time PCR. In the expression analysis carried out in TH3 and ‘Hengshanli’ floral buds col-
lected from December 24th to February 3rd in the 2014-2015 season, expression levels of all 7
genes on January 8th were higher in TH3 than in ‘Hengshanli’ (Fig 8). The 7 genes were classi-
fied into 2 subgroups based on their expression patterns: type 1 genes included those genes
which expression levels on December 24th and January 20th were higher in ‘Hengshanli’ than
in TH3 (Unigene9700, Unigene44252, Unigenel10919, and Unigene46364), and type 2 genes
included those genes which expression levels from December 24th to February 3rd were higher
in TH3 than in ‘Hengshanli’ (Unigenel1862, Unigenel5251, and Unigene27973). Expression
levels in TH3 of the three type 2 unigenes increased from December 24th to January 8th, while
it decreased from January 8th to January 20th and from January 20th to February 3rd.

Discussion

Endodormancy in temperate zone deciduous fruit trees is a strongly regulated strategy to sur-
vive environmental extremes. In order to monitor gene expression changes during winter
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mancy state at the same sampling date.
From the results obtained in the 2013-2014 season regarding the percentage of floral bud
break, we can conclude that the dormancy state on January 10th and February 7th varies widely
between TH3 and ‘Hengshanli’ trees. Leaves of ‘Hengshanli’ had already been defoliated at
both sampling dates, in addition, the dormancy of ‘Hengshanli’ had already progressed to an
ecodormancy stage by those sampling dates. Therefore, we performed RNA-seq using these flo-
ral buds and then subtracted DEGs obtained by comparing H1 vs H2 from each of the DEGs
obtained by comparing T1 vs H1 and T2 vs H2 to exclude those DEGs that are not involved in

dormancy, Bai et al. [17] and Liu et al. [18] compared the transcriptomes of pear buds on dif-
ferent sampling dates during the transition from endodormancy to ecodormancy in the same
cultivar using RNA-seq. In the present study, in order to uncover the biochemical processes
involved in endodormancy maintenance and to identify the transcription factors related to this
maintenance, we analyzed floral bud transcriptome of two pear strains that show different dor-
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doi:10.1371/journal.pone.0139595.g006

the transition between dormancy stages. Later, we performed a comparative GO analysis of the
DEGs identified when comparing the T1 (DP) and H1 (EP) libraries in order to determine the
different functions of DEGs in the different dormancy stages. The GO analysis results suggest
that DEGs contain genes involved in stage-specific expression at each dormancy stage. A com-
parative GO analysis considering the biological process and molecular function detected that
the percentage of genes related to the oxidation-reduction process and ATP binding were
higher in the H1 than in the T1 library. In grapes, it has been shown that hydrogen cyanamide
(HC) and heat shock treatment can induce endodormancy breaking, which is followed by the
activation of the tricarboxylic acid cycle (TCA cycle), ATP synthesis, and oxidative phosphory-
lation involved in the oxidation-reduction process [31]. Recent microarray results in tree
peony indicate that the ATP-binding cassette (ABC transporter) family protein was down-
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regulated during the endodormancy stage, while it was upregulated during the ecodormancy
stage [32]. From these results, it was gathered that buds on ecodormancy stage, still unable to
grow, have already commenced the ATP synthesis necessary for growth.

Results of comparative GO analysis considering the cellular component also indicated that a
higher percentage of DEGs were integral membrane components in the H1 than in the T1
library. Aquaporins, known as water channel proteins, are intrinsic membrane proteins that
constitute a major route for water transport across the cell membrane [33]. Therefore, we
focused on aquaporins and constructed a heat map diagram of relative gene expression levels
for DEGs annotated as probable aquaporins. Among the 8 genes annotated as aquaporins, 7
showed higher transcript levels in the EP (H1 and H2). In peach flower buds, the expression of
TIP1 and PIP2 aquaporins increased earlier in the low-chill cultivar ‘Coral’ than in the high-
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chill cultivar ‘Kansuke Hakuto,” reflecting the difference in timing for the end of endodor-
mancy in the two cultivars [34]. Endodormancy is closely related to changes in water move-
ment, hence, aquaporins are required for bud activity at the end of endodormancy, resulting in
a gradual increase in water content.

Moreover, these results show that transcripts of genes encoding late embryogenesis abun-
dant (LEA) protein or dehydrin (related to drought stress) are significantly higher in the DP.
Dehydrins, such as LEA proteins, were identified as being associated with dormancy transition
[31]. Dehydrins, known as a multi-family of proteins produced in response to cold and drought
stress, are associated with cold hardiness and with the water content/state in the tissues of trees
on endodormancy stage [32]. The expression of some dehydrin genes in Norway spruce
(Betula pubescens Ehrh.) gradually decreases when approaching bud burst [35]. Additionally,
dehydrins are known to be synthesized by cells in response to ABA [36].

ABA has been termed as ‘dormin’ or ‘dormancy inductor’ [37], and is proposed to promote
and maintain bud dormancy in woody plants [38]. During the endodormancy period, it has
been considered that ABA accumulation in Japanese pear buds controls endodormancy devel-
opment [39]. Later, the ABA content decreases during the transition from endodormancy to
ecodormancy in leafy spurge [38] and pear buds [10], [17]. In agreement with these findings,
our study showed an abundance of DEGs involved in the ABA signaling pathway which had
higher expression levels in the T1 library of the DP than in the H1 library of the EP. Genes
annotated as protein phosphatase 2C (PP2C) were differentially expressed between the two
libraries, while the transcript abundance of a gene annotated as a serine/threonine-protein
kinase (SnRK2) was higher in the DP. ABA binding to the PP2C complex allows SnRK2 activa-
tion, which then activates downstream transcription factors that induce ABA-responsive gene
expression [40]. In agreement with the role suggested for ABA in seed dormancy, the triple
mutant snrk2.2 snrk2.6 snrk2.3 also exhibited loss of dormancy [41]. In addition, the transcript
levels of SnRK2 and ABA-responsive element/ABA binding factor (AREB/ABF) genes identi-
fied in grapevine were significantly down-regulated in response to HC, which is known as an
agricultural chemical for artificial dormancy release [42]. In this study, the transcript abun-
dance of genes annotated as ABFs (Unigenel4244 and Unigene23904), downstream transcrip-
tion factors of SnRK2, was also higher in the DP (T'1) and BP (T2). In addition, we focused on
the 5 unigenes annotated as bZIP and WRKY that showed higher transcript levels in the DP
(T1). bZIP and WRKY are two important plant transcription factor families regulating diverse
developmental and stress-related processes, involved in ABA and stress signaling as the tran-
scription factors functioning downstream of SnRK2 [41]. The real-time PCR results show that
expression levels of bZIP19 (Unigene24896) and WRKY of 2 types (Unigene50008 and Uni-
gene54944) from December 24th to February 3rd were higher in TH3 than in ‘Hengshanli’,
and decreased from January 8th to January 20th and from January 20th to February 3rd. More-
over, it is interesting to note that expression levels of WRKY17 (Unigene50008) in ‘Hengshanli’
of EP stage in all sampling days was significantly lower than in TH3. Taken together, these
results suggest that ABA signaling pathway activation and higher expression level of transcrip-
tion factors related to these signaling are necessary to maintain endodormancy.

In contrast to these DEGs involved in the ABA signaling pathway, transcripts of three genes
encoding DELLA proteins, found in the GA responsive pathway, were significantly higher in
the EP. In the presence of bioactive GAs, DELLAs are generally targeted for degradation lead-
ing to the release of growth promoting transcription factors [43]. Taken together, these results
proposed that transcription factors induced by low temperature or drought, and ABA or GA
are closely involved in the transition from endodormancy to ecodormancy.

In addition to the transcription factor related to ABA or GA, several specific transcription
factors and regulatory genes have been demonstrated to play an important role in one or more
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of the processes in the transition of endodormancy. Among genetic components contributed to
the intricate regulation of dormancy, DAM genes have been reported to be directly associated
with the regulation of dormancy onset and release in peach [44], pear [16], apricot [45] and
apple [46], as well the herbaceous plant, leaty spurge [47]. In a previous study, PpPMADS13-1
and -2 isolated genes from Japanese pear appear to be up-regulated towards endodormancy
establishment and down-regulated concomitant with endodormancy release [16], [48], similar
to peach DAMS5 and DAME6 genes [49]. In poplar, the expression of an EARLY BUD-BREAK]1
(EBBI) gene plays a major role in regulating the timing of bud break [50]. In addition, the CBF
is thought to be an upstream trans-factor regulating DAM genes in peach [51], leafy spurge
[47] and Japanese pear [48]. A recent report showed that constitutive over-expression of a
peach CBFI in apple results induction of dormancy by short photoperiod, delayed budbreak
and altered expression of several key genes including DAM and EBB, provide further evidence
for DREBs playing a role in induce and breaking processes leading to endodormancy [52].
DREB or CBF genes appear to encode key transcription factors from the major transcription
cascade that responds to low temperature and drought [53], [54]. ICE1, which is induced by
low temperature, enhances DREB/CBF gene expression by binding to their promoter regions
[55], [56]. Therefore, among the 9 genes annotated as ICEI and DREB genes in DEGs, we
focused on the 7 unigenes that showed higher transcript levels in the DP (T1). The real-time
PCR results show that expression levels of all 7 genes on January 8th in the 2014-2015 season
were higher in TH3 than in ‘Hengshanli’. These results indicate that expression levels of these
genes show little yearly variation, because the expression pattern obtained by real-time PCR
matched that obtained by RNA-seq using buds collected on January 10th (CU. 1134) in the
2013-2014 season, which has a similar CU value to January 8th (CU. 1111) in the 2014-2015.
Among the 7 unigenes, the expression levels of 3 genes (Unigene11862, Unigenel5251, and
Unigene27973) analyzed by real-time PCR were always higher in TH3 than in ‘Hengshanli’ in
all sampling days. Moreover, it is interesting to note that expression levels of these 3 unigenes
in TH3 increased from December 24th to January 8th and then decreased before the BP. Uni-
genel1862, Unigenel5251, and Unigene27973 were annotated as ERF, DREB2A and ICE],
respectively. DREBs belong to the ERF family of transcription factors and are a subfamily of
the larger APETALA2 (AP2)/ERF superfamily containing involved in abiotic and biotic stress
signaling, which has been extensively reviewed [42], [57], [58]. ICE1 is a MYC-like bHLH tran-
scription factor inducing expression of a gene that codes for CBF/DREB, a member of the ERF
family, and also regulates the expression of downstream coldresponsive gene contributing to
cold acclimation [59]. The DREB and ERF sub-families are responsive to ethylene and previous
reports have suggested that a transient spike in ethylene may be a pre-requisite to induction of
endodormancy by inducing 9-cis-epoxycarotenoid dioxygenase (NCEDI), a key regulator in the
biosynthesis of ABA, these findings are consistent with several models indicating that meta-
bolic pathways involved in endodormancy induction in leafy spurge [13], [14], [30]. Results in
TH3 in expression analysis also suggest that expression of these unigenes annotated as ICEI,
ERF and DREB is up-regulated not only by chilling exposure, but also down-regulated by ade-
quate chilling accumulation for bud breaking. Recent study have shown that the presence of up
to four CRT/DRE motifs in the ~1000 bp 5" upstream region of the PpMADS13-1 genes in Japa-
nese pear [48]. The presence of CRT/DRE motifs in promoters enhances or modulates target
gene expression by DNA-binding proteins belonging to the AP2/ERF family, such as CBF or
DREB [60]. The presence of these transcription binding sites was also reported in the putative
promoter regions of leafy spurge and peach DAM genes [47] [49]. Additionally, DAM genes
were also proposed to be involved in the endodormacy phase transition in many species,
including in peach [44], pear [16], apricot [45] and apple [46]. Taken together, the results in
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this study suggest that these unigenes involved in endodormancy maintenance and in the tran-
sition from endodormancy to ecodormancy.
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