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Abstract
The impact of reforestation on soil organic carbon (OC), especially in deep layer, is poorly

understood and deep soil OC stabilization in relation with aggregation and vegetation type

in afforested area is unknown. Here, we collected topsoil (0–15 cm) and deep soil (30–45

cm) from six paired coniferous forests (CF) and broad-leaved forests (BF) reforested in the

early 1990s in subtropical China. Soil aggregates were separated by size by dry sieving

and OC stability was measured by closed-jar alkali-absorption in 71 incubation days. Soil

OC concentration and mean weight diameter were higher in BF than CF. The cumulative

carbon mineralization (Cmin, mg CO2-C kg-1 soil) varied with aggregate size in BF and CF

topsoils, and in deep soil, it was higher in larger aggregates than in smaller aggregates in

BF, but not CF. The percentage of soil OC mineralized (SOCmin, % SOC) was in general

higher in larger aggregates than in smaller aggregates. Meanwhile, SOCmin was greater in

CF than in BF at topsoil and deep soil aggregates. In comparison to topsoil, deep soil aggre-

gates generally exhibited a lower Cmin, and higher SOCmin. Total nitrogen (N) and the ratio

of carbon to phosphorus (C/P) were generally higher in BF than in CF in topsoil and deep

soil aggregates, while the same trend of N/P was only found in deep soil aggregates. More-

over, the SOCmin negatively correlated with OC, total N, C/P and N/P. This work suggests

that reforested vegetation type might play an important role in soil OC storage through inter-

nal nutrient cycling. Soil depth and aggregate size influenced OC stability, and deep soil OC

stability could be altered by vegetation reforested about 20 years.

Introduction
Forest stores more than 80% of aboveground and up to 70% of belowground terrestrial carbon
[1]. Reforestation or afforestation has the potential to contribute to C storage directly through
living biomass and soil organic carbon (OC) accumulation [2,3] and indirectly as an alternative
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to fossil fuels for energy generation/production [4,5]. Silver et al. [6] reported that the above-
ground biomass and soil OC increased the first 100 years after reforestation and soil OC accu-
mulated at faster rates during the first 20 years (1.3 Mg C ha-1 yr-1) and at a rate of 0.41 Mg ha-1

yr-1 over a 100-year period in tropical area. Moreover, soil OC is an indicator of soil productivity
and ecosystem stability [7,8], which can be used to evaluate the effectiveness of reforestation. In
order to maximize the potential for carbon sequestration, the factors influencing soil OC in
plantation require further analysis. Assessing the contribution of reforestation to soil OC is
complicated by the influence of additional factors such as tree species, climate conditions, soil
properties and exogenous disturbances [4,5,9]. Although the impact of reforestation on soil OC
has previously been investigated in situ and in laboratories [10], the mechanisms by how soil
OC is influenced by reforestation is not fully understood [11].

Forest soil carbon stock is often measured to a depth of 1 m. However, most studies on soil
OC accumulation and stabilization mechanisms mainly focus on the topsoil (0–5 cm or 0–10
cm), which is richer in OC, and easier to sample [12,13,14]. Recently deeper stocks of OC have
been the focus of increasing interest, as almost half of the total OC within the first meter of soil
was found at depths below 30 cm [13,15]. Even though there is no standard definition of top-
soil and deep soil in the related literatures, operationally it refers to the depth of soil rather
thanthe formation of pedogenic horizons and 0–20 cm soil layer is often called topsoil and
below 30 cm is deep soil [10,13,16]. It has been found that the conditions of carbon stabiliza-
tion between deep soil and topsoil may be discrepant [17,18] and deep soil OC is characterized
by mean residence time up to several thousand years [19]. With rising atmospheric CO2 posing
a threat to the global climate, it is important to understand the mechanisms of OC storage and
stabilization in deep soils, especially in subtropical and tropical forests [20].

The turnover rate of soil OC was found to vary with soil particle-size [21,22,23]. Atmo-
spheric CO2 may be sequestered in deep soil by the formation of silt- and clay-associated soil
OC [22]. Organic matters within soil aggregates generally decompose less rapidly than those
outside of aggregates [24], which indicates physical protection is also a key factor contributing
to stabilization of OC in deep soils [7]. Drury et al. [25] found that CO2 production decreased
with increasing aggregate size in laboratory incubation and the size distribution of soil aggre-
gate had substantial impacts on the CO2 production. In addition, interaction between mineral
phase and chemical composition was reported to be the main stabilization mechanism in acid
soils [26], however the precise role of aggregation in long-term stabilization of organic matter
in deep soils remains to be determined.

Globally, roughly 140 million hectares of land had been reforested before 2005, and refores-
tation has the potential to create more than 34 million hectares of forest by 2020 [4]. In China
alone, reforested plantations covered 69.33 million ha in 2014, becoming the largest around the
world [27]. Although the influence of reforestation on deep soil OC is still poorly understood
[22], deep soil carbon may be influenced by changes in land-use and/or management [28]. The
two most frequently used tree species in afforestation in southern China are the coniferous
Masson pine (Pinus massoniana), and broad-leaved sweet gum (Liquidambar formosana) [8].
Both tree species have been widely planted and contribute to reducing soil erosion and provid-
ing harvestable wood [8]. The former is dominant during the early stage of forest succession in
the mid-subtropics, and the latter during the middle stage [29]. However, the influence of these
two vegetation types on OC, especially deep soil OC, is unclear.

In this study, we separated soil aggregates and measured soil OC stability of topsoil and
deep soil in the restored forest plantations of subtropical China. Moreover, the relationship
between the levels of nitrogen (N) and phosphorus (P) and OC stability at different soil depths
was also determined. The goal of this study was to test the following hypotheses: (1) OC is
more abundant in topsoil and more stable in deep soil; (2) Soil OC is more stable in coniferous

Deep SOC Stability Vary with Vegetation Type

PLOS ONE | DOI:10.1371/journal.pone.0139380 September 29, 2015 2 / 17



forests (CF) than in broadleaved forest (BF), since the needle litter is less rapidly decomposed
and tends to accumulate; (3) Carbon stability decreases with increasing aggregate size irrespec-
tive of topsoil or deep soil. Our results will help clarify the influence of vegetation type on OC
and nutrient dynamics, and assess the effectiveness of vegetation restoration in the hilly red
soil region of subtropical China.

Materials and Methods

Study area
This study was conducted in the Vegetation Restoration Ecological Station of Degraded Eco-
system, which lies in a typical red soil hilly area of Taihe County, Jiangxi Province, Southern
China (26°44’N, 115°04’ E). The climate is subtropical with a damp monsoon season, warm,
dry summer and a cool, wet winter. Mean annual rainfall is 1600 mm, and 49% of it occurs
between April and June. Air temperature ranges from -6°C to 40.7°C (mean annul temperature
18.6°C), and the average temperature is 6.5°C in January (winter) and 29.7°C in July (summer).
There are 1306 hours of clear sky per year, and the solar radiation is 4349 MJ m-2. The soil is
described as Ferralsols (FAO/UNESCO) developed from quaternary red clay, which are mod-
erately well drained and clay textured. The elevation ranges from 75 to 130 m above sea level
[8] and the mean slope gradient of this area was about 15°.

The research site had a history of frequent human disturbance (firewood collection) prior to
restoration in the 1980s. Prior to this, the site was dominated by secondary shrubs, a disturbed
plagioclimax community widely distributed in subtropical regions of China. This site with a
133-ha study area was established by Jiangxi Agricultural University and the local forestry
department in 1990 mainly to explore the reforestation effects of silvicultural regimes. Environ-
mental factors such as severe soil erosion and low P availability have made it difficult to estab-
lish forest vegetation at this site [30]. The research site did not involve endangered or protected
species, and no specific permissions were required for conducting experiment in this site.

Stand investigation and soil sampling
The stand characteristics of 6 paired plots (20 m × 20 m) in rehabilitated CF and BF distributed
in different hills were investigated in July 2011 (Table 1, see S1 Fig). Both plantations were
established in late1991 or early 1992. CF was planted with Masson pine at 1.5 m × 2 m spacing.
Major understory plants include Arundinella anomala, Cymbopogon citratus, Eurya japonica,
Melastoma dodecandrum, Quercus serrata, Rosa spp. and Viola philippica. BF was planted with
sweetgum (Liquidambar formosana) at 1.8 m × 2 m spacing. Understory plants were domi-
nated by Carex tristachya, Dicranopteris dichotoma, E. japonica, Rosa spp. and V. philippica.

Table 1. Stand characteristics of two restored subtropical plantations in hilly red soil region, southern
China.

Stand characteristics Coniferous foresta Broad-leaved foresta

Average density (individuals ha-1) 3150±66 3000±88

Diameter at breast height (cm) 10.22±0.25 11.64±0.25

Average height (m) 8.44±0.15 9.84±0.22

Basal area (m2 ha-1) 25.84±0.01 31.92±0.01

Understory vegetation biomass (t ha-1) 8.20±0.30 2.06±0.28

Understory litter biomass (t ha-1) 2.50±0.18 3.25±0.14

a Mean±1 standard error, n = 6.

doi:10.1371/journal.pone.0139380.t001
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We selected 2 locations of two representative trees from each plot at mesoslope in July 2011.
At each location we used a steel corer to obtain intact 15 cm × 15 cm × 15 cm soil blocks at 3
depths to 45 cm and four soil samples were obtained in one plot of each soil depth. These
blocks were placed in aluminum specimen boxes and transported to laboratory for air-drying.
In order to better discriminate the different characteristics in topsoil and deep soil, we define
the soil of 0–15 cm layer as “topsoil” and 30–45 cm layer as “deep soil”. Only the samples of
these two layers were used for analysis of soil aggregate separation and carbon mineralization.
We also collected soil samples using metal cylinder for determining soil bulk density and mois-
ture to 45 cm depth with the same 15 cm interval.

Soil aggregate separation
Aggregates were separated by dry sieving in order to preserve water-soluble carbon, nutrient
and microbial communities within aggregates [31]. Following the procedures established by
Kemper and Rosenau (1986)[32], intact soil blocks were crumbled by hand into pieces of
approximately 10 mm in diameter. After air-drying, soil samples were sealed in plastic boxes at
4°C in order to preserve the moisture level at which soils can be easily sieved for aggregate frac-
tionation [31]. Briefly, 500 g soil samples were passed through nested sieves with 5-, 2-, 1-, 0.5-,
and 0.25-mmmesh. Sieves were placed on a Ro-Tap shaker and shaken at 200 oscillations per
min for 5 min. Aggregates retained at each sieving level were air-dried at room temperature
and weighed. Mean weight diameter (MWD) of aggregates was calculated by summing the
product of mean diameter of aggregates and proportion of total weight for each aggregate size
class [32].

Organic carbon mineralization
The carbon mineralization was evaluated by incubating soil samples from each aggregate size
class from topsoil and deep soil. In brief, 20 g soil samples were moistened with distilled water
to 50% field capacity and placed in a 500 ml chamber. To ensure an active microbial commu-
nity, soil samples in incubation chambers were inoculated with a suspension of fresh topsoil
from their respective plots. 10 g of fresh soil was mixed with 1000 ml physiological saline and
allowed to settle for approximately 6 hours. After adding 1 ml of this supernatant, chambers
were incubated for 24 hours, then sealed and incubated at 25°C. Sealed chambers contained
alkali CO2 traps consisting of 5 ml 2 M NaOH in 10 ml beakers. The CO2 traps were changed
on days 5, 10, 15, 22, 32, 43, 57 and 71, and the OC mineralization (CO2 emission) was mea-
sured by titration with standardized 0.5 M HCl after precipitation of CO2 with the addition of
1 M BaCl2 [33]. Soil OC mineralization of aggregates was calculated based on the soil dry
weight (cumulative carbon mineralization, Cmin, g CO2–C kg−1 soil) and soil OC concentration
(SOC mineralized, SOCmin, % SOC), respectively.

In order to compare soil OC mineralization of various soil aggregate sizes, the single first-
order model of Cm = C0 (1-e

-kt) was used. Cm is the cumulative percentage of SOC mineralized
(% SOC) during incubation, C0 is potential percentage of soil OC mineralized (% SOC), which
represents the proportion to the amount of available carbon during soil OC mineralized at a
given time [34], k and t represent the mineralization constant and duration of incubation
(days), and days required for decomposition of half of mineralizable carbon (t0.5) is calculated
by ln2/k, respectively.

Soil analysis
Soil bulk density was determined using a 100 cm3 metal cylinder. Soil moisture was calculated
gravimetrically by drying soils at 105°C overnight and the water content was expressed as a
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percentage of the dry weight. Soil pH was measured in a 1:2.5 mixture of soil and deionized
water using a glass electrode. All soil samples were oven-dried and sieved with a 0.15 mm
screen prior to nutrient measurement. Organic C was determined using the Walkley-Black wet
oxidation method [35]. Soil total N and total P concentrations were determined by the Kjeldahl
method and by the molybdenum-stibium colorimetric method, respectively, after samples
were digested with 1.84 M H2SO4[35]. The nutrient stock in bulk soil was calculated based on
the concentration and bulk density.

Statistical analysis
All statistical analyses were conducted using SPSS 16.0. All data were tested for homogeneity of
variance (Levene’s test) before statistical analysis. The CF and BF, and topsoil and deep soil
characteristics were compared by paired T tests. One-way ANOVA and least significant differ-
ence (LSD) method were used to compare the differences of OC, TN, TP and OC mineraliza-
tion parameters among six aggregate sizes. The standard 0.05 level was used throughout as a
cutoff for statistical significance.

Results

General soil characteristics and aggregate distribution
Soil bulk density, soil moisture and pH did not differ significantly between soil sampled from
CF and BF at any depth (Table 2). The OC concentration, total N and C/P were higher in BF
than in CF, and decreased with increasing soil depths in both forests. Total P concentration
and P stocks were much higher in BF topsoil than at other depths in both forests. Soil C/N was
the highest at the 15–30 cm depth in CF and the lowest in BF deep soil. Soil N/P was the highest
in CF topsoil, followed by the three soil depths in BF, and lowest in CF deep soil samples
(Table 2).

The mass of soil aggregates of>5 mm diameter was the greatest followed by 2–5 mm, 0.5–1
mm, 0.25–0.5 mm, and<0.25 mm, and that of 1–2 mm aggregates was the lowest (Fig 1).
Meanwhile, MWD was higher in BF than in CF samples, but did not differ significantly
between topsoil and deep soil in each forest type (Table 2).

Organic carbon concentration and mineralization in aggregates of
different sizes
Smaller aggregates had a higher OC concentration (0.5–1 mm, 0.25–0.5 mm and<0.25 mm)
than larger aggregates (>5 mm, 2–5 mm and 1–2 mm) in CF topsoil, and OC concentration
decreased with increasing aggregate size in BF topsoil. In contrast, the OC concentration varied
very little between aggregate size classes at deep soils in both forests (Fig 2a).

The Cmin during the first 15 days was the highest in aggregates of 1–2 mm and<0.25 mm,
followed by>5 mm and 2–5 mm, and the lowest in aggregates of 0.5–1 mm and 0.25–0.5 mm
in CF topsoil (S2a Fig). Similarly in BF topsoil, the Cmin during the first 15 days was higher in
<0.25 mm aggregates than in other aggregates, and did not differ significantly between the six
aggregate categories at deeper soil depths in either vegetation type (S2a Fig).

In CF topsoil, the Cmin measured over 43 and 71 days were generally higher in aggregates of
1–2 mm and<0.25 mm than in other aggregates, but such patterns were not observed in deep
soil. In BF topsoil, the Cmin measured over 43 and 71 days were generally higher in aggregates
of>5 mm and<0.25 mm than in other aggregates, and higher in larger aggregates (>5 mm,
2–5 mm and 1–2 mm) than in smaller aggregates (0.5–1 mm, 0.25–0.5 mm and<0.25 mm) in
deep soils (Fig 2b and S2b Fig).
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In general, the SOCmin trended to be higher in larger aggregates (>5 mm, 2–5 mm and 1–2
mm) than in smaller aggregates (0.5–1 mm, 0.25–0.5 mm and<0.25 mm) in two soil depths
under two forest types (Table 3). In CF topsoil, the SOCmin was significantly higher in aggre-
gates of 1–2 mm than that in aggregates of 0.5–1 mm and 0.25–0.5 mm, while the highest value
of OC mineralization percentage was found in aggregates of>5mm in BF topsoil (Table 3).

Likewise, the soil OC mineralized potential (C0), mineralization constant (k) and decompo-
sition days of half mineralizable carbon (t0.5) varied with aggregate size, vegetation type and

Table 2. Soil physical-chemical properties of two restored subtropical plantations in hilly red soil region, southern China.

Properties Coniferous foresta Broad-leaved foresta

0–15 cm 15–30 cm 30–45 cm 0–15 cm 15–30 cm 30–45 cm

Bulk density (g cm-3) 1.63±0.05a 1.66±0.03a 1.68±0.06a 1.71±0.03a 1.65±0.04a 1.71±0.04a

Mean weight diameter (MWD, mm) 3.04±0.51b / 3.13±0.33b 4.19±0.14a / 4.45±0.33a

Moisture (%) 12.17±0.61a 12.86±0.73a 12.22±0.55a 13.28±0.43a 12.99±0.67a 13.40±0.59a

pH 4.52±0.02a 4.42±0.02a 4.53±0.01a 4.53±0.03a 4.46±0.04a 4.59±0.05a

Organic C concentration (g kg-1) 5.18±1.00a 2.37±0.41b 1.05±0.17c 6.64±0.56a 2.97±0.17b 1.40±0.03c

Total N concentration (g kg-1) 1.10±0.04b 0.34±0.05d 0.39±0.10d 1.50±0.29a 0.72±0.04c 0.46±0.03d

Total P concentration (g kg-1) 0.26±0.05b 0.36±0.03b 0.35±0.02b 0.53±0.03a 0.33±0.06b 0.23±0.03b

C/N 4.86±1.04b 7.13±0.67a 4.46±1.43b 4.92±0.64b 4.21±0.28b 3.11±0.23c

C/P 27.96±8.73a 6.88±1.50c 2.99±0.46d 12.90±1.40b 10.65±1.67b 6.78±0.86c

N/P 5.71±1.60a 0.98±0.20c 1.12±0.30c 2.83±0.49b 2.61±0.43b 2.22±0.30b

C stock (t ha-1) 12.90±2.75b 5.90±1.04c 2.70±0.48d 16.98±1.36a 7.35±0.42c 3.58±0.10d

N stock (t ha-1) 2.67±0.08b 0.85±0.14d 0.97±0.26d 3.87±0.78a 1.77±0.10c 1.18±0.08d

P stock (t ha-1) 0.63±0.12bc 0.90±0.07b 0.88±0.06b 1.36±0.10a 0.79±0.15bc 0.58±0.08c

a Mean±1 standard error, n = 6;

Different letters indicate the differences among three depths in two plantations.

doi:10.1371/journal.pone.0139380.t002

Fig 1. The components of soil aggregate fractions of two depths in two restored plantations of
subtropical China. The legend means the aggregate diameter. Error bars show the standard error of the
mean. The different letters represent significance differences among the different soil aggregate fractions
within a depth (P<0.05).

doi:10.1371/journal.pone.0139380.g001
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soil depth (Table 4). The C0 was higher in CF than in BF soil aggregates at both depths, while
the t0.5 in BF topsoil aggregates exceeded those in topsoil aggregates of CF (Table 4). In CF, the
C0 and t0.5 were higher in deep soil aggregates than in topsoil aggregates, however, the t0.5 was
lower in deep soil aggregates than in topsoil aggregates in BF (Table 4 and Fig 3). Additionally,

Fig 2. The organic carbon concentration andmineralization of aggregate soil within 71 days at
various soil depths in two restored plantations of subtropical China. Error bars show the standard error
of the mean. The different letters represent significance differences among the different soil aggregate
fractions within a depth at P<0.05 level.

doi:10.1371/journal.pone.0139380.g002

Table 3. The percentage of soil organic carbonmineralized in various aggregates within 71 incubation days in two soil depths under two restored
plantations of subtropical China.

Aggregates (mm) Coniferous foresta Broad-leaved foresta

0–15 cm 30–45 cm 0–15 cm 30–45 cm

>5 2.60±0.22ab 4.52±0.42a 2.26±0.20a 2.83±0.41a

2–5 2.57±0.38ab 4.74±0.48a 1.49±0.20b 2.36±0.24a

1–2 3.25±0.75a 4.86±0.59a 1.64±0.16b 2.49±0.40a

0.5–1 1.75±0.29b 3.76±0.54a 1.44±0.12b 2.44±0.41a

0.25–0.5 1.83±0.32b 4.63±1.01a 1.41±0.15b 2.48±0.56a

<0.25 2.17±0.39ab 3.86±0.59a 1.62±0.12b 1.79±0.35a

Weighted mean 2.32±0.3B 4.59±0.37A 1.76±0.15B 2.49±0.25B

a Value = mean±1 standard error, n = 6;

Different lowercase letters represent significance differences among the different soil aggregate fractions within a depth and different uppercase letters

indicate the differences among two depths in two plantations.

doi:10.1371/journal.pone.0139380.t003

Deep SOC Stability Vary with Vegetation Type

PLOS ONE | DOI:10.1371/journal.pone.0139380 September 29, 2015 7 / 17



Table 4. The parameters of organic carbonmineralization kinetic model in two restored subtropical plantations of China.

Aggregates (mm) Coniferous foresta Broad-leaved foresta

C0 (% SOC) k (day-1) r t0.5b (day) C0 (% SOC) k (day-1) r t0.5b (day)

0–15 cm

>5 2.82 0.0372 0.97 18.6 3.32 0.0182 0.95 38.2

2–5 2.88 0.0328 0.97 21.1 1.94 0.0227 0.97 30.5

1–2 3.69 0.0313 0.97 22.2 2.28 0.0202 0.96 34.4

0.5–1 1.95 0.0322 0.98 21.5 1.94 0.0211 0.97 32.8

0.25–0.5 1.99 0.0339 0.97 20.4 1.95 0.0203 0.96 34.2

<0.25 2.34 0.0376 0.96 18.4 1.93 0.0299 0.94 23.2

30–45 cm

>5 5.28 0.0270 0.96 25.7 3.03 0.0393 0.96 17.6

2–5 5.35 0.0316 0.94 21.9 2.58 0.0377 0.95 18.4

1–2 5.23 0.0354 0.96 19.6 2.63 0.0440 0.95 15.8

0.5–1 4.12 0.0318 0.94 21.8 2.55 0.0455 0.94 15.2

0.25–0.5 5.13 0.0326 0.95 21.2 2.68 0.0355 0.95 19.5

<0.25 4.21 0.0332 0.96 20.9 1.88 0.0425 0.96 16.3

a Calculated with the formula Cm = C0 (1-e
-kt). Cm and C0 indicate the cumulative percentage of soil organic carbon mineralized within the incubation days

and potential percentage of soil organic carbon mineralized, respectively; k and t indicate the mineralization constant and days, respectively.
b t0.5 indicates the required days for attaining half potential percentage of organic carbon mineralized.

doi:10.1371/journal.pone.0139380.t004

Fig 3. The weightedmean of soil organic carbonmineralized percentage in various aggregates vary with incubation days in two soil depths under
two restored plantations of subtropical China.CF and BF indicate coniferous forest and broad-leaved forest, respectively. Organic carbon mineralization
modelingCm = C0 (1-e

-kt). Cm andC0 indicates the accumulative amount of organic carbon mineralization percentage within the incubation days and potential
mineralization percentage, respectively; k and t indicate the mineralization constant and days, respectively.

doi:10.1371/journal.pone.0139380.g003
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the percentage of Cm to C0 reached roughly 50% on day 15, and 85% on day 43, of the minerali-
zation achieved by 71 days (Table 4 and Fig 3).

Nutrient concentration and carbon stability relationship in soil
aggregates
The total soil N and P concentrations did not differ significantly between the six soil aggregate
sizes at any depth or vegetation type (Fig 4a and 4b). However, total N was generally higher in
BF than in CF and much higher in topsoil than in deep soil at each aggregate (Fig 4a). CF top-
soil aggregates contained less P than BF topsoil aggregates, but CF deep soil aggregates con-
tained more P than BF deep soil aggregates. Additionally, the total P concentration was higher
in topsoil aggregates than in deep soil aggregates in BF, but did not differ significantly between
these depths in CF (Fig 4b).

Soil C/N varied with aggregate size in BF topsoil, where it generally decreased with increas-
ing aggregate size (Fig 4c). Soil C/P was higher in smaller than larger aggregates in topsoil of
two vegetation types, and was the highest in aggregates under<0.25 mm in CF (Fig 4d). Soil
N/P was higher in smaller than larger aggregates in CF topsoil, however, this pattern of distri-
bution was not found in BF topsoil. In deep soil, soil N/P was higher in BF than in CF at any
aggregate size (Fig 4e).

Meanwhile, Cmin generally correlated positively with total OC, total N, total P, C/N and C/P
(Table 5 and S1 Table). But Cmin negatively correlated with C/N in CF. Moreover, Cmin corre-
lated positively with OC and total N in topsoil, but negatively in deep soil. The SOCmin during
the incubation period generally negatively correlated with OC, total N, total P, C/N, C/P and
N/P. In contrast, total P positively correlated with the SOCmin in deep soil, but not in topsoil
(Table 5 and S1 Table).

Discussion

Deep soil organic carbon stock influenced by vegetation type
The stability of deep soil carbon stocks has received increased attention in recent years
[12,13,14]. In this study, the soil OC concentration and OC stock in BF soil were greater than
that in CF soil at any soil depth. Moreover, the absolute difference in soil OC stock between
topsoil and deep soil in BF (13.40 t ha-1) was higher than that in CF (10.20 t ha-1) (Table 2).
Therefore, the influence on deep soil OC stock varied with vegetation type. Various mecha-
nisms by which OC stocks in deep soils are increased following reforestation have previously
been described [9,11,12]. The characteristics of deep soil OC are mainly influenced by three
key processes, including the input of organic matter from biological residuals (roots, root exu-
dates, soil animals and microorganisms), OC transportation into deep soil from topsoil, and
physical protection and decomposition of organic matter [28].

Root biomass accumulation and input through root turnover was considered as an impor-
tant factor in carbon sequestration following reforestation [36,37]. In the present study, we did
not directly measure the root biomass, however a previous publication reported a study of the
same climatic zone and similar soil condition [38]. Analysis of the 21-year old Masson pine
and sweet gum plantations indicated that the annual average biomass of living and dead fine
roots in the pine plantation was higher than that in the sweet gum plantation at 30–45 cm soil
depth [38]. However, the value of fine root biomass at 0–15 cm soil profile was higher in sweet
gum plantation than in Masson pine plantation [38]. Dead roots could supply OC to the soil
by microbial conversion. Contrary to expectation, the potential higher root input in CF did not
lead to a greater OC stock in deep soils, in comparison with BF. We speculate that the transfer
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Fig 4. The concentrations of total nitrogen and phosphorous in various aggregates varied with soil
depth in two restored plantations of subtropical China. Error bars show the standard error of the mean.
The different letters represent significance differences among the different soil aggregate fractions within a
depth (P<0.05).

doi:10.1371/journal.pone.0139380.g004
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of OC from topsoil to deep soil, originating from fine root decomposition, may be an impor-
tant source of deep soil OC stocks in BF.

In addition to the direct input of carbon from roots at depth, deep soil carbon may also
come from the vertical transport of dissolved OC [12,39]. The movement and retention of dis-
solved OC within mineral soil was found to be responsible for 20% of the total mineral soil car-
bon stock to a depth of 1 m in a Californian forest soil [40]. Previous research had found that
the dissolved OC concentration in BF was significantly higher than that in CF at 0–10 cm and
10–20 cm soil layer of same study location [41]. In our study, BF topsoil carbon stock exceeded
CF carbon stock. Therefore, we deduced that transport of dissolved OC from the topsoil to
depth was greater in BF than in CF, increasing the deep BF OC stock despite a lower root bio-
mass input. Moreover, in this study, the percentage of soil OC mineralization of aggregates in
deep soils was higher in CF than in BF (Table 3), implying there might be higher OC decompo-
sition in CF deep soils compared with that in BF deep soils.

Finally, we found the regulation of carbon cycling in CF and BF between the topsoil and
deep soil was different. In this study, OC was much lower in deep soil than topsoil in CF, and
also lower in CF than in BF. However, the Cmin occurring within 15–71 days did not differ sig-
nificantly between deep soil and topsoil in CF (Fig 2b and S2b Fig). Therefore, we deduced that
the deep soil may be more readily decomposed in CF than in BF, potentially as a result of a
higher dead fine root biomass, since fresh carbon may accelerate soil OC decomposition [10].
To sum up, organic matter decomposition and OC transportation from topsoil to deep soil
might be the dominant processes influencing deep soil OC in these soils.

Soil organic carbon stability influenced by aggregate size and tree
species
The stability of soil OC was influenced by soil aggregation, providing microenvironments of
physical protection and absorbing particle organic matter [7,23]. The SOCmin trended to be
higher in larger aggregates than in smaller aggregates in two soil depth under two forest types

Table 5. Correlation co-efficiencies among soil aggregate nutrients vs. organic carbonmineralization of 71 days in two restored subtropical plan-
tations of China.

Variables TOC TN TP C/N C/P N/P

Cumulative carbon mineralization, Cmin
a

All data (n = 144) 0.78*** 0.67*** 0.68*** 0.27** 0.28** 0.04NS

Coniferous forest(n = 72) 0.51*** 0.52*** 0.09NS -0.33** 0.24* 0.29*

Broad-leaved forest (n = 72) 0.83*** 0.75*** 0.88*** 0.58*** 0.23* -0.35**

0–15 cm (n = 72) 0.63*** 0.41*** 0.64*** 0.42*** 0.00NS -0.30**

30–45 cm (n = 72) -0.72*** -0.61*** 0.40*** 0.07NS -0.63*** -0.62***

Soil organic carbon mineralized, SOCmin
a

All data (n = 144) -0.62*** -0.62*** -0.14NS -0.07NS -0.68*** -0.56***

Coniferous forest(n = 72) -0.73*** -0.62*** 0.10NS 0.12NS -0.64*** -0.61***

Broad-leaved forest (n = 72) -0.63*** -0.54*** -0.46*** -0.48*** -0.61*** -0.15NS

0–15 cm (n = 72) -0.65*** -0.54*** -0.30* -0.25* -0.58*** -0.32**

30–45 cm (n = 72) -0.72*** -0.61*** 0.40** 0.07NS -0.63*** -0.62***

aNS not significant,

* P<0.05,
** P<0.01,

***P<0.001.

doi:10.1371/journal.pone.0139380.t005
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(Table 3). Similarly, the Cmin was greatest in larger aggregates (>1 mm) at two soil depth in CF
and was greater in larger than smaller aggregates at BF deep soil (Fig 2b). In general, the protec-
tion degree of soil OC is different in varied aggregates classes [7,42]. Previous studies had
shown that the degree of protection to microaggregates on OC was higher than that of the mac-
roaggregates, since the mean residence time (MRT) of OC in macroaggregates is less than in
microaggregates [43,44,45]. von Lützow et al.[17] reported that the turnover time of OC in
macroaggregates and microaggregates was 15–50 years and as long as 100–300 years using 13C
natural abundance method, respectively, which indicates that microaggregates are more effec-
tive for decreasing OC mineralization relative to macroaggregates. These conclusions were
basically supported by our findings, that the value of SOCmin was higher in larger aggregates
than in smaller aggregates at topsoils and deep soils of two forest types. In this study, we also
found higher OC concentration in topsoil smaller aggregates, probably because smaller aggre-
gates have larger surface area and then can absorb more OC. On the other hand, decomposi-
tion efficiency of microbe and enzyme on OC may be lower in smaller aggregates owing to
greater physical protection, in the light of the theory that microaggregate is formed within mac-
roaggregate structure [23].

Generally, physical protection is one of the important mechanism to carbon stability. Com-
pared with BF, CF had more smaller soil aggregates and fewer larger soil aggregates, and the
MWDwas lower in CF than that in BF deep soils, which means the stability of the soil OC was
better in CF [46]. However, the value of SOCmin was significantly higher in CF than in BF and
there was no difference of Cmin in deep soil of CF and BF (Fig 2 and Table 3). Soil organic mat-
ters were the adhesive in the formation of soil aggregates [6], which mainly came from root exu-
dates and decomposition of microbes on plant residue [13]. Soil aggregates might not be a major
factor controlling OC stability when soil OC concentration was both low both in CF and BF at
the early stages of vegetation restoration (21yr). Thus SOCmin was not lower in CF with relatively
higher percentage of smaller soil aggregates than in BF. We speculate that the aggregate protec-
tive effects on carbon will appear more intense with the advance of the recovery process.

Therefore, the soil OC stability in different forest types may be determined by other factors
[47,48]. In this study, we found positive correlation between SOCmin and total P concentration
and negative correlation between SOCmin and total N, C/P, N/P in deep soil (Table 5). It has
been reported that the increase of N may inhibit soil respiration in tropical and subtropical
regions, while the increase of P would promote the cycle of C [49]. Our previous study also
reported that P enrichment can degrade the stability of OC in urban vegetation soil because P
increases microbial activity on soil protected C [50]. That response likely arises because N is
more closely coupled to organic matter cycling, and P is limiting element in ecosystem [49,51].
In fact, soil OC mineralization is the process of microbial participation in the release of CO2

[52]. Due to the different stoichiometric ratios between microorganism and the substrate, the
microbes will have different OC utilization efficiencies under different stoichiometric ratios of
substrate for nutrient requirement [53,54], which may induce different OC mineralization.
Manzoni et al. [52]considered that stoichiometry controlled microbial carbonuse efficiency in
soils and Buchkowski et al. [55] reported that microbial stoichiometry overrode biomass as a
regulator of soil carbon cycling. Therefore, the higher SOCmin in CF than in BF in deep soil
may be induced by the differences of nutrient concentration, C/P and N/P between two vegeta-
tion types, since P concentration was higher in CF and broadleaf litters with high N/P ratios
accumulated in the BF [56].

It has been found that deep soil OC has old radiocarbon age, which suggests that deep soil
OC is stable on longer time scales [57,58]. In general, root litter and exudates were the main
resources contributing to deeper soil OC input [36], which may be chemically more recalcitrant
than topsoil litter because of higher concentrations of aliphatic and lignin material [59].
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Moreover, acid hydrolysis process in soil was considered to remove easily decomposable pro-
tein and polysaccharide material leaving behind chemical recalcitrant structures [13], which
may be able to isolate deeper soil C with long-term stability due to the evidence that the C iso-
lated by acid hydrolysis from deeper soil was several hundred or thousand years older than
bulk soil [60]. However, the SOCmin of deep soil was greater than that of topsoil in this study,
whether in CF or in BF. Soil microbial biomass and its activity were the principal driver regu-
lating the C cycle and stability [13]. Taylor et al. [61] considered that deep soil was metaboli-
cally active and contained substantial numbers of microorganisms despite the low biomass
contents, which was consistent with the finding that deep soils had a higher value of Cmic/Corg

quotient (ratio of microbial biomass carbon to OC) [62]. Similarly, Blume et al. [63] reported
that microbial activity in deep soil was similar to that measured in topsoil when normalized to
biomass size. Therefore, it would not be surprised that deep soil had a higher SOCmin in view
of lower OC concentration compared with topsoil. However, this study was carried out under
controlled laboratory conditions, and the relevant works on deep soil OC stability at the field
scale yet need to be demonstrated in order to compare the results with laboratory studies.

Fig 5. A stylized illustration of the mechanical framework shows the difference of OC stability influenced by nutrient concentration and aggregate
composition in two restored plantations. The up arrow represents the OC loss percentage and the width of the up arrow indicates the relative
mineralization percentage of OC in topsoil and deep soil aggregates. The left arrow show the direction of OC stability decreased with aggregate size in topsoil
and deep soil.

doi:10.1371/journal.pone.0139380.g005
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Clearly, reforestation tree species appeared to be an important determinant of OC stability
through the influence on soil nutrient and its stoichiometric ratio [30] and BF might be more
efficient in OC conservation than CF at the sites we studied (Fig 5) and deep soils may have
lower OC stability than topsoil.

Conclusions
We found vegetation type (coniferous vs. broad-leaved forest) specific effects on soil aggregate
formation and nutrient accumulation in the degraded site. Soil OC concentration and storage
were higher in BF than in CF at topsoil and deep soil. Soil OC stability trended to be higher in
smaller soil aggregates than in larger soil aggregates, while OC stability between CF and BF was
dominated by the differences of N, P concentrations and their stoichiometry in two reforested
vegetation types. Compared with topsoil, deep soil had lower soil OC stability and the highest
value of soil OC mineralized was found in CF deep soils. Thus, soil depth and aggregate size
were the important factors influencing soil OC stability, and reforested vegetation type might
play an important role in soil OC storage by affecting ecosystem nutrient (especially N and P)
cycling. Our results highlight that nutrient alteration shall be the primary concern during vege-
tation restoration, since nutrient is the key factor to dominate OC dynamics and assess soil
quality [64]. A long-term monitoring focusing on interaction among soil physical, chemical
and biological properties needs to be developed in order to validate our findings.

Supporting Information
S1 Fig. The location of selected plots [6 replications for coniferous plantations (CF Δ) and
broad-leaved forests (BF �)]. Source from the original drawing of afforestation design in Col-
lege of Forestry, Jiangxi Agricultural University. The contour interval is 2.5 m.
(TIF)

S2 Fig. The cumulative carbon mineralization of aggregate soil within 15 and 43 days at
various soil depths in two restored plantations of subtropical China. Error bars show the
standard error of the mean. The different letters represent significance differences among the
different soil aggregate fractions within a depth at P<0.05 level.
(TIF)

S1 Table. Correlation co-efficiencies among soil aggregate nutrients vs. organic carbon
mineralization of 15 and 43 days in two restored subtropical plantations of China.
(DOC)
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