@’PLOS ‘ ONE

CrossMark

click for updates

E OPEN ACCESS

Citation: YongE F, GaoShan K (2015) Identify Beta-
Hairpin Motifs with Quadratic Discriminant Algorithm
Based on the Chemical Shifts. PLoS ONE 10(9):
€0139280. doi:10.1371/journal.pone.0139280

Editor: Ayyalusamy Ramamoorthy, University of
Michigan, UNITED STATES

Received: May 12, 2015
Accepted: September 9, 2015
Published: September 30, 2015

Copyright: © 2015 YongE, GaoShan. This is an
open access article distributed under the terms of the
Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any
medium, provided the original author and source are
credited.

Data Availability Statement: All relevant data are
within the paper and its Supporting Information files.

Funding: The work was supported by the Inner
Mongolia autonomous region higher school science
and technology research projects (No. NJZY067) and
Basic Science of Inner Mongolia Agriculture
University Research Fund (No. JC2013004).

Competing Interests: The authors have declared
that no competing interests exist.

Abbreviations: CSs, Chemical Shifts; Sn, Sensitivity;
Sp, Specificity; MCC, Mathew's correlation
coefficient; Acc, The overall accuracy; AAC, Amino

RESEARCH ARTICLE

Identify Beta-Hairpin Motifs with Quadratic

Discriminant Algorithm Based on the
Chemical Shifts

Feng YongE*, Kou GaoShan

College of Science, Inner Mongolia Agriculture University, Hohhot, PR China

* fengyonge @ 163.com

Abstract

Successful prediction of the beta-hairpin motif will be helpful for understanding the of the
fold recognition. Some algorithms have been proposed for the prediction of beta-hairpin
motifs. However, the parameters used by these methods were primarily based on the
amino acid sequences. Here, we proposed a novel model for predicting beta-hairpin struc-
ture based on the chemical shift. Firstly, we analyzed the statistical distribution of chemical
shifts of six nuclei in not beta-hairpin and beta-hairpin motifs. Secondly, we used these
chemical shifts as features combined with three algorithms to predict beta-hairpin structure.
Finally, we achieved the best prediction, namely sensitivity of 92%, the specificity of 94%
with 0.85 of Mathew’s correlation coefficient using quadratic discriminant analysis algo-
rithm, which is clearly superior to the same method for the prediction of beta-hairpin struc-
ture from 20 amino acid compositions in the three-fold cross-validation. Our finding showed
that the chemical shift is an effective parameter for beta-hairpin prediction, suggesting the
quadratic discriminant analysis is a powerful algorithm for the prediction of beta-hairpin.

Introduction

Protein function is inherently correlated with its structure. So, the prediction of protein struc-
ture is an active research field in bioinformatics. At present, it is still difficult to predict the spa-
tial structure directly from protein primary structure. However, the successful prediction of
protein super-secondary structure is the key step in the spatial structure prediction. Protein
super-secondary-structure motifs are composed of a few regular secondary structural elements
connected by loops. These structural motifs play an important role in protein folding and stabil-
ity because a large number of motifs exist in protein spatial structure. Generally speaking, the
empirical prediction of protein super-secondary structure essentially consists of two parts: one
is the prediction of different structural types from amino acid sequences [1-3]; another is the
prediction of structural motifs [4-7]. In this article we concentrate on the latter. The prediction
of beta-hairpin motif will be helpful to identify fold in the unknown structure. In the past
decade, many researchers have focused on exploring methods for beta-hairpin prediction [6-
10]. However, the features of these studies were mainly derived from the amino acid
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compositions or dipeptide compositions. In this study, we introduced a novel feature, chemical
shifts (CSs), to predict beta-hairpin motifs. Chemical shift describes the local chemical environ-
ment of nuclear spins in nuclear magnetic resonance [11]. Therefore, some researchers have uti-
lized it for the determination of bimolecular structures and molecular dynamics studies [12-17].
Moreover, some works have studied on protein structure prediction [18-26] and protein back-
bone and side chain torsion angle prediction [27] by using chemical shifts, results showing that
chemical shift is a powerful parameter for the determination of protein structure information.

In this paper, we would like to utilize CSs as parameters to predict beta-hairpin motifs com-
bined with quadratic discriminant analysis. Using the benchmark dataset, we adopted three-
fold cross-validation and achieved the sensitivity of 92% and specificity of 94% and the overall
prediction accuracy of 87% by using CSs of six nuclei as features and combining with quadratic
discriminant analysis (QDA) algorithm. At the same time, to compare with other parameter,
we have performed the prediction by using 20 amino acid compositions (AAC) as inputs of the
method of QDA. The results showed that the performance of CSs outperform that of 20 AAC
in the prediction of beta-hairpin. At present, some machine learning algorithms were used in
the prediction of beta-hairpin motifs [6-10]. Therefore, to test our method and facilitate com-
parison with other methods, we have performed the prediction by using the same six CSs as
feature of the support vector machine (SVM) and Random forest (RF) algorithm in the same
cross-validation. Compared results showed that QDA is better than the other two algorithms
in terms of accuracies.

Materials and Methods
Database

All of the CSs data used in this paper were retrieved from the re-referenced protein chemical
shift database RefDB [28]. The following steps were performed to construct our dataset. Firstly,
only proteins in RefDB overlapping with the corresponding Protein Data Bank (PDB) file with
sequence identity of 100% were considered. Secondly, only proteins with the beta-hairpin or
beta-link (called not beta-hairpin) motifs information in ArchDB40 database [29] were consid-
ered. Thirdly, only proteins with six nuclei (C,Co,CpHn,H,N) assigned CSs were considered.
Finally, we utilized the PISCES program [30] to remove the highly similarity sequences. After
strictly following the aforementioned procedures, 123 proteins were obtained. Among 123 pro-
teins, 87% (107 sequences) proteins have less than 25% sequence identity, and the sequence
identity of the remains ranges from 25 to 30%. In 123 proteins, due to consider the six CSs
information at the same time, finally we obtained 157 beta-hairpin fragments, in which the
lengths are ranged from 7 to 38 amino acid residues. And 75 not beta-hairpin fragments, the
lengths of these fragments are ranged from 8 to 40 amino acid residues. PDB IDs of 123 and
CSs data of 157 beta-hairpin fragments and 75 not beta-hairpin fragments are listed in the Sup-
plementary Materials S1-S3 files.

Feature parameter

In the two data subsets {beta-hairpin, not beta-hairpin}, we calculated the averaged CSs of six
nuclei for a fragment of length [ using following formula.

t, ==Y CS (1)

[7738] inbeta — hairpin dataset
Herel = _ ;m = C,C,,Cp,Hn,Hy,N,and j represents
[8740] in not beta — hairpin dataset
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amino acid positions in the fragment. Therefore, a sequence fragment can be converted into a
six-dimensional vector R:{t,,}.

Statistical distribution

Under the normal distribution, the analysis of variance (ANOVA) can be used to test whether
there was a significant difference for two-group or multi-group samples [19, 31] in the data-
base. In this paper, the ANOVA is defined by Eq (2)

MS, = MS, + MS,, (2)

where MSt, MSg and MSyy denoted the square means of total, between groups and within a
group, respectively. The statistical value, called F-value, is the ratio of MSp and MSy, which
can be calculated by Eq (3)

F—value = MS,/MS,, (3)

From Eq (3), we can see that the MSp becomes increasingly larger than MSyy, F-value will
become larger. That is to say, there are significant differences between groups, otherwise, the
lack of differences.

Quadratic discriminant analysis (QDA)

As mentioned above [6-10], various parameters such as amino acid compositions and dipep-
tide compositions have been employed in the prediction of beta-hairpin. Here, we used CSs as
feature to predict beta-hairpin motifs.

The QDA [32-35] is an effective algorithm that has been widely applied in genomic and
proteomic bioinformatics in recent years. Thus, we used it here to perform prediction.

For a sequence X to be classified, we calculated the averaged CSs of six nuclei using the Eq
(1). So, the sequence is converted into a six-dimensional vector R:{t,,}

R:{t,}(m=C,C,Cy;Hy,H,N) (4)
Here we integrated six-dimensional vector by using QDA. Consider a sequence X is classi-

fied into two groups (beta-hairpin, not beta-hairpin). The discriminant analysis function
between group i and group j is defined by

&, = Inp(wX) — Inp(rX) (5)
According to Bayes’ Theorem, we deduce

p%—9 1 [
¢j=In>*— ——In =5
oo 2 2 [F

B S IR P

Set

s, 1
1, =Inp, — Rl 5111 ’ZV

where
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where v = beta-hairpin, not beta-hairpin, and p, denotes the number of samples in group v, 3,
is the square mahalanobis distance between R and 1, with respect to Zv (notes: 4, and |Z,| are
calculated in training set), and y, denotes chemical shift values of six nuclei R:{t,,} averaged
over group v, |X,| is the determinant of matrix X,.
The six-dimensional vector y, can be written
b
M(V) — l " (9)

m m
an:l

here p, denotes the number of samples in group v; ¢ tdenotes the average CSs of m nuclei for
n-th sequence in group v; v = beta-hairpin, not beta-hairpin; m = C,C,,CgHn,Hg,N.

The covariance matrix X, is 6 x 6dimension, quantifying correlations between the chemical
shifts of six nuclei.

v v v

011 0 016

v v v

091 T ap 0 26
2=

v v v

061 02 066

where the element

o}, = plz (ti - uf-”) (t]— - u}”) (10)

here v = beta-hairpin, not beta-hairpin; i,j = C,C,,Cs,Hn.Hp N
From Eq (6) and Eq (7), we have concluded

5,-]-:’7,-—77,- (11)

It can be easily proved that p(wy|X) is the maximum of p(w,|X), if 77 is the maximal one in
7, (v = beta-hairpin, not beta-hairpin). Then, we predict that X belongs to group k. In statistical
results, fluctuation phenomenon inevitably exists. To correct predicted results, we define the
coefficient of the error allowed scope as

Neowr — 1
R — _fcorr wro (12)
17!:077

where 7,,,, denotes X belonging to itself class 7, 1,,,, denotes X being predicted other class 7.
Set the appropriate R, the sequence X in the error allowed scope can be classified correctly by
using Eq (12).

Performance evaluation

In statistical prediction, the jackknife test is considered to be the most rigorous test method
[36] and has been widely used to evaluate the performance of various predictors [37-41].
However, considering the longer time needed for the jackknife test and because the goal of
our paper concentrated on introducing a new model for beta-hairpin prediction, we adopted
the three-fold cross-validation to evaluate the performance of our method. We randomly
divided the training dataset into three parts, two of which are for training and the one for
testing. The process is repeated three times. The final performance was calculated by averag-
ing over all three datasets. The following parameters: the sensitivity (Sn), specificity (Sp), the
overall accuracy (Acc) and Mathew’s correlation coefficient (MCC) are used to evaluate the
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predictive performance of our approach.

S L ST (13)
"TTP{EN °
TN
1000 14
P =N 1 pp < 100% (14)
TP + TN
Acc + x 100% (15)

“TP{FN+ TN + FP

(TP x TN) — (FP x FN)

MCC =
V(TP + EN) x (TN + EN) x (TP + FP) x (TN + FP)

x 100% (16)

where true positive (TP) denotes the number of correctly predicted beta-hairpin motif, false
negative (FN) denotes the number of the beta-hairpin misclassified as not beta-hairpin
motif, false positive (FP) denotes the number of the not beta-hairpin misclassified as beta-
hairpin motif, and true negative (TN) denotes the number of correctly predicted not beta-
hairpin motif.

Results and Discussion
Statistical distribution of the average CSs of six nuclei

We analyzed the average chemical shifts of six nuclei in beta-hairpin and not beta-hairpin data-
set. As showed in Fig 1, we found that the different distribution of the CSs six nuclei in beta-
hairpin and not beta-hairpin dataset. The average chemical shift values of C,C,,Cs,H,,N nuclei
are higher in not beta-hairpin dataset than beta-hairpin dataset. However, the average chemical
shift value of Hy nuclei is lower in not beta-hairpin dataset than beta-hairpin dataset.

For further investigating whether the distribution of average CSs of six nuclei in two datasets
are independent of one another, the analysis of variance (ANOVA) [19, 31] can be used for the

160

140
F}
!‘_é 120
(%]
T 100
€
2 80 o
S H not beta-hairpin
& 60 -
© B beta-hairpin
2 40

20

0
Ca CB Ha HN N C
Six nuclei

Notes: Red and blue lines represent the beta-hairpin and not beta-hairpin respectively.
Fig 1. Distribution chart of six-nuclei CSs in beta-hairpin and not beta-hairpin motifs.

doi:10.1371/journal.pone.0139280.g001
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Table 1. The statistical test using ANOVA for CSs of six nuclei.

Nuclei ANOVA (p-value)
c 4.42 (p<0.05)
Ca 4.01 (p<0.05)
Cs 4.44 (p<0.05)
Hy 4.13 (p<0.05)
H, 4.36 (p<0.05)
N 4.12 (p<0.05)

doi:10.1371/journal.pone.0139280.t001

average CSs of six nuclei in beta-hairpin and not beta-hairpin statistical analysis under a nor-
mal distribution. Though we know that many test statistics are approximately normally distrib-
uted for large samples (generally>30 samples) under the central limit theorem. In order to
strictly verify the validity of a normal distributional assumption, we implemented the statistical
test. The Quantile-quantile (Q-Q) plot or Probability-probability (P-P) plot in statistics is often
as a means to check the validity of a statistical distributional assumption for a dataset [42]. In
term of P-P plot, if the data indeed follow the assumed normal distribution, then the points on
the P-P plot will fall approximately on the diagonal line. The result demonstrated that the sam-
pling distributions of six-nuclei CSs obey normal distribution (see supplementary material S4
file). Therefore, ANOVA can be implemented. Table 1 records the F-values of six nuclei and
corresponding p-values. From Table 1 we observed that six p-values are less than 0.05 (p<
0.05). This result shows that the average CSs of six nuclei have a significant difference between
beta-hairpin and not beta-hairpin structures, suggesting that beta-hairpin motifs can be dis-
criminated from not beta-hairpin sequences based on the CSs of six nuclei.

Prediction of beta-hairpin based on the CSs of six nuclei

Results in Table 1 suggest that the CSs of six nuclei are capable of predicting beta-hairpin.
Therefore, we examined the accuracy of six nuclei by using QDA algorithm. Under the bench-
mark dataset, we calculated the average chemical shift values using the Eq (1). The sequences
from two data subsets are converted respectively into six-dimensional vectors. In the training
sets, determinant and inverse matrix of covariance matrix X, are calculated. And y is a six-
dimensional mean vector, which is calculated in each dataset. Given a sequence X in testing
sets, we may calculate 77, by using Eqs (6-11) and compare the results. Then the class of
sequence X was determined by the maximum of 7, (v = beta-hairpin and not beta-hairpin).
Finally, the coefficient R given in Eq (12) is used to correct predicted results. The current study
utilized R<0.2. The results of three-fold cross-validation are listed in Table 2.

From the Table 2, we can see that the sensitivity, specificity and total accuracy are 92%, 94%
and 87%, respectively, indicating that chemical shift is a good parameter for the beta-hairpin
prediction.

Chemical shift is an easily obtained experimental datum. However, Chemical shift values of
a sequence are not always complete for a multitude of reasons. Often, chemical shifts can only

Table 2. Results of different parameters using QDA (R<0.2).

Parameters Sn Sp Acc MCC
Six CSs 92% 94% 87% 0.85
20 AAC 36% 87% 32% 0.26

doi:10.1371/journal.pone.0139280.t002
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Table 3. Predicted results by using the CSs of five nuclei (R<0.2).

Parameters Sn Sp Acc MCC
CaCpHn,Ha,N(omit C) 98% 52% 83% 0.61
C,Cg,Hn,Ha,N(omit Cy) 94% 48% 80% 0.50
C,Cq,Hn,HqN(omit Cg) 87% 76% 83% 0.62
C,C4,Cp,Ha,N(omit Hy) 100% 48% 83% 0.61
C,Ca,Cg,Hn,N(omit Hy) 94% 32% 74% 0.35
C,Cqo,Cg,Hn,Ho(omit N) 100% 14% 72% 0.29

doi:10.1371/journal.pone.0139280.t003

be assigned partially or are missing. To assess the impact of incomplete chemical shift assign-
ment and determine the importance of chemical shift of each nucleus, we performed the pre-
diction by removing any one of the CSs six nuclei. Then, the CSs of combination of five nuclei
can be seen as features to predict the beta-hairpin. The results are listed in Table 3.

In table 3, we can see that all results are affected compared with using six CSs as features
when a CSs feature is left out. If all six CSs are used, we reach a prediction overall accuracy of
87% (see Table 2). The absence of one CS leads to a significant decrease in prediction accuracy
ranging from 4% for missing C or Cg or Hy shifts to 15% for missing N shifts. It is strange that
the overall accuracy is worst when the CS of N nuclei is left out. This illustrates that N is the
most important feature for prediction the beta-hairpin. According to the overall accuracy, we
rank as the importance as: N>H,>C,>C> Hy >Cp in this paper.

Comparison with other feature

To test our method and facilitate comparison with other feature, we used 20 amino acid com-
positions (AAC) as inputs of the method of QDA. Notes: Where y is a twenty-dimensional
mean vector, and X, denotes the 20x20 dimensional covariance matrix. The results are also
recorded in Table 2. Compared results show that the performance of CSs is more superior to
that of 20 AAC for the beta-hairpin prediction.

Comparison with other approaches

Some approaches have been developed for predicting the beta-hairpin motifs [7-10]. However,
due to differences in database, it is difficult to directly compare our results with other published
results. Here we examined the predicted performance of other algorithms by use of the same
CSs of six nuclei as features. At present, the support vector machine (SVM) and random forest
(RF) are arguably the most widely used classification techniques in the Life Sciences [43-46].
In this paper, we implemented the SVM and RF algorithm based on R software package. The
results are all listed in Table 4.

Table 4 shows that QDA vyields the best outcomes in using six CSs as feature. Therefore, we
proposed using QDA to perform the beta-hairpin motifs prediction.

Table 4. The results of different approaches using the same six CSs information.

algorithm Sn Sp Acc MCC
QDA 92% 94% 87% 0.85
SVM 71% 98% 86% 0.75
RF 12% 86% 62% 0.28

doi:10.1371/journal.pone.0139280.t004
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Conclusion

In this paper, we have introduced a model for predicting beta-hairpin motifs based on CSs. By
the analysis of the statistical distributions of six-nuclei CSs in beta-hairpin and not beta-hairpin
dataset, we found that the CSs of six nuclei are significantly different in beta-hairpin and not
beta-hairpin motifs. Finally, we adopted three-fold cross-validation, and achieved the best pre-
diction, namely the sensitivity (Sn) of 92%, the specificity (Sp) of 94%, the total accuracy (Acc)
of 87% with 0.85 of Mathew’s correlation coefficient (MCC) by using six CSs as features and
the quadratic discriminant analysis. Results showed that chemical shift is indeed an effective
parameter for the prediction of beta-hairpin motifs. Moreover, we have performed the predic-
tion by combining the CSs of five different nuclei. Results showed that CSs of each nucleus has
a different influence on the prediction of beta-hairpin structures. Our model is both simple and
easy to perform. We hope this model will assist investigation the topology of protein structures
in the near future [47-49]. As demonstrated in a series of recent publications [50-53] in devel-
oping new prediction methods, user-friendly and publicly accessible web-servers will signifi-
cantly enhance their impacts [54], we shall make efforts in our future work to provide a web-
server for the prediction method presented in this paper.
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