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Abstract
Data traffic demands in cellular networks today are increasing at an exponential rate, giving

rise to the development of heterogeneous networks (HetNets), in which small cells comple-

ment traditional macro cells by extending coverage to indoor areas. However, the deploy-

ment of small cells as parts of HetNets creates a key challenge for operators’ careful

network planning. In particular, massive and unplanned deployment of base stations can

cause high interference, resulting in highly degrading network performance. Although differ-

ent mathematical modeling and optimization methods have been used to approach various

problems related to this issue, most traditional network planning models are ill-equipped to

deal with HetNet-specific characteristics due to their focus on classical cellular network

designs. Furthermore, increased wireless data demands have driven mobile operators to

roll out large-scale networks of small long term evolution (LTE) cells. Therefore, in this

paper, we aim to derive an optimum network planning algorithm for large-scale LTE Het-

Nets. Recently, attempts have been made to apply evolutionary algorithms (EAs) to the

field of radio network planning, since they are characterized as global optimization methods.

Yet, EA performance often deteriorates rapidly with the growth of search space dimension-

ality. To overcome this limitation when designing optimum network deployments for large-

scale LTE HetNets, we attempt to decompose the problem and tackle its subcomponents

individually. Particularly noting that some HetNet cells have strong correlations due to inter-

cell interference, we propose a correlation grouping approach in which cells are grouped

together according to their mutual interference. Both the simulation and analytical results

indicate that the proposed solution outperforms the random-grouping based EA as well as

an EA that detects interacting variables by monitoring the changes in the objective function

algorithm in terms of system throughput performance.

1 Introduction
The last two decades have witnessed a boom in the use of cellular communication technologies.
Billions of people are now requesting high-quality mobile wireless services with end-user data
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rates of several megabits per second over wide areas and tens, or even hundreds end is expected
to continue in the future, with volumes predicted to increase around 15 times their current lev-
els by 2016—2017, reaching 11.2 exabytes per month by 2017 [1, 2]. Recently, in order to meet
and encourage such ever-increasing service demands, heterogeneous networks (HetNets) have
been widely discussed, perhaps most significantly in the 3GPP long term evolution-advanced
(LTE-A). In HetNets, small cells complement traditional macro eNodeB (eNB) cells by extend-
ing coverage to indoor areas which outdoor signals have difficulty reaching, or by increasing
network capacity in areas of highly dense phone usage such as train stations, airports, and
shopping malls. However, deploying small cells as parts of HetNets creates a key challenge for
operators’ careful network planning. HetNets are becoming increasingly complex due to the
deployment of heterogeneous cells that have distinctly different traits. In particular, HetNets
show large degrees of variation in both the number of interfering cells and in the amount of
interference. To make matters worse, massive and unplanned deployment of these base stations
(BSs) cause a much higher magnitude of interference, potentially resulting in highly degraded
network performance.

In conventional cellular networks, a large amount of prior work has dealt with the planning
and optimization of cellular access network design and operations, with problem formulations
including coverage planning, power optimization, and channel assignment [3, 4]. Although dif-
ferent mathematical modeling and optimization methods have been used to approach these
problems, most traditional network planning models are ill-equipped to deal with HetNet-spe-
cific characteristics due to their focus on classical cellular network design. Furthermore,
increased wireless data demands have driven mobile operators to roll out large-scale networks
of small LTE cells. For instance, Sprint has planned to make aggressive use of small cells in its
future LTE network, launching tens of thousands of tiny high-capacity BSs in high-traffic
indoor and outdoor areas in 2013 and 2014 [5]. Therefore, we aim to derive an optimum net-
work planning algorithm for the large-scale LTE HetNets.

In 3G cellular networks, mobile operators carefully try to choose the locations of new BSs in
order to meet increasing demands for wireless coverage and larger data rates. A large amount
of previous work has focused on how to locate and configure new macro BSs. One of the first
BS placement algorithms was presented by Sherali et al. [3], who considered single and multi-
ple transmitter problems. In [6], a genetic approach was used to find the near-optimal locations
of BSs. Amaldi et al. [7] proposed discrete optimization algorithms to support decisions in
choosing the locations of new BSs from a set of candidate sites, considering signal quality con-
straints in the uplink direction and fixed BS configuration. They also considered the downlink
direction, since 3G systems are specifically intended to provide data services for users [8]. How-
ever, in practice, mobile operators usually have a tightly limited set of candidate sites due to
authorization constraints on new antenna installation, and site acquisition costs are very
expensive in urban areas. Thus, they investigated mathematical programming models for 3G
radio planning, given that modifying the configuration of existing BSs can also provide
improved wireless coverage for users [9]. In [10] and [11], mixed integer linear programming
was employed for planning cost-efficient radio networks under network quality constraints.
Models based on set covering were used to obtain lower bounds on the number of BSs required
to serve a given fixed area, and an automatic two-phase network planning approach based on
successive instances of model application was presented. In [12], a net-revenue maximization
model for the selection of BS sites and the calculation of service capacity was presented.
Recently, addressing the point that the majority of contributions to optimized network plan-
ning have focused on the selection of a minimal BS set from a larger candidate fixed BS set,
Khalek et al. [4] presented optimization-based formulations for the problems of joint uplink/
downlink site placement and site selection in cellular networks. In the site-selection algorithm,
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the minimum set of BSs is selected from a fixed set of candidate sites that satisfy quality and
outage constraints. The placement of BSs is then determined in a subset of the deployment
area according to private property limitations or electromagnetic radiation constraints. How-
ever, while the site-selection and site-placement algorithms provide a more locally optimal
solution with a lower number of BS, a larger number of BSs requires more computation time.

Because evolutionary algorithms (EAs) can be characterized as global optimization meth-
ods, they have been utilized successfully in a variety of complicated real-world applications
[13]. Several methods have also been developed spontaneously in the field of radio network
planning, mainly based on EAs [14–16]. Weicker et al. [14] proposed a steady-state EA with
Pareto tournaments (stEAPT), which considers frequency assignment and channel interfer-
ence for BS placement. Most recently, addressing the observation that multiple objectives
(MO) must be taken into account when solving the wireless heterogeneous transmitter place-
ment problem, Ting et al. [15] proposed to integrate a novel variable-length representation and
a new crossover approach into their non-dominated sorting genetic algorithm II (NSGA II)
[16], which is known for its effectiveness in dealing with MO problems. However, one crucial
difficulty in employing EAs is the huge time consumption resulting from the high complexity
of performance analyses for fitness evaluation and the large number of evaluations needed in
evolutionary optimization techniques. Accordingly, the performance of EAs often deteriorates
rapidly with the growth of search space dimensionality.

To overcome the problems mentioned above when designing optimum network deploy-
ments for large-scale LTE HetNets, we attempt to decompose the high-dimensionality problem
and tackle its subcomponents individually. We propose a grouping method to divide the candi-
date solutions (individuals) in the populations into groups. Noting that some HetNet cells have
strong correlations due to inter-cell interference, we propose to use a correlation grouping
approach instead of grouping the individuals randomly with the aim of rapidly converging to
optimal solutions. In this approach, variables with strong correlations (i.e., interfering cells)
form a group when finding the optimal deployment of heterogeneous cells in the HetNet. In
addition, we modify the variable-length genetic algorithm presented in [15] to be applied to the
divided groups.

The rest of this paper is organized as follows: In Section 2, we include a short review of how
EAs and their variants have been applied for solving the problems in various applications
including the BS placement problem. Section 3 presents the mathematical formulation of the
BS deployment problem optimization in the LTE HetNet. Section 4 presents the proposed
grouping method and the strategy for solving the optimization problem based on the variable-
length genetic algorithm [15]. In Section 5, we provide an analytical model of the probability of
two BSs placed in the same group interfering with each other, as well as the corresponding
numerical results, and report simulation results for different user distributions. Finally, conclu-
sions are drawn in Section 6.

2 RelatedWork
EAs are characterized as global optimization methods and are generally known to be robust
optimizers that are well suited for objective functions that are discontinuous and have many
non-smooth changes [17, 18]. For this reason, they have been applied successfully to a variety
of complicated real-world applications such as discovery of link communities in complex net-
works [13], financial and economic applications [19], aircraft conflict avoidance [20, 21],
demand side management in smart grids [22], etc.

The BS placement problem is to find the optimal positions of BSs, considering various con-
trolled and uncontrolled factors of traffic density, capacity, interference, existing BSs, etc. Due
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to the combined effects of these factors, the problem cannot be solved in polynomial time; that
is known to be NP-hard [4]. Some heuristic methods based on the evolutionary paradigm have
also been developed for finding high-quality solutions to such BS placement problems [14, 15].
In [14], the steady-state EA with Pareto tournaments (stEAPT) approach is introduced as a
new MO technique that considers frequency assignment and channel interference for BS place-
ment. This approach combines a steady-state scheme with a very efficient data structure lead-
ing to superior time complexity. Most recently, addressing the observation that MOmust be
taken into account when solving the wireless heterogeneous transmitter placement problem,
Ting et al. [15] proposed to integrate a novel variable-length representation and a new cross-
over approach into their non-dominated sorting genetic algorithm II (NSGA II) [16], which is
known for its effectiveness in dealing with MO problems. However, one crucial difficulty in
employing EAs is the huge time consumption resulting from the high complexity of perfor-
mance analyses for fitness evaluation and the large number of evaluations needed in evolution-
ary optimization techniques. Accordingly, the performance of EAs deteriorates rapidly with
the growth of search space dimensionality. Apparently, this is also the case with the BS place-
ment problem in LTE HetNets because explosive mobile data demands have driven mobile
operators to deploy LTE small cells on a large scale.

Cooperative co-evolution (CC) has been introduced into EAs with the aim of solving
increasingly large and complex optimization problems through a divide-and-conquer para-
digm [23]. Nonetheless, existing CC algorithms did not take into account variable interdepen-
dencies for nonseparable problems in which tight interactions exist among different decision
variables. To efficiently tackle nonseparable problems, some CC frameworks were proposed
relying on random grouping that randomly allocates the variables to subcomponents in every
co-evolutionary cycle [24–26], instead of using a static grouping. These algorithms do not pro-
vide a systematic procedure to group the interacting variables nor to detect their interdepen-
dencies, even though it was shown in [24] that with random grouping, the probability of
placing two interacting variables in the same subcomponent for several cycles is reasonably
high.

More recently, some algorithms have been proposed to identify and group interacting vari-
ables into common subcomponents in various real-world optimization problems [20, 21, 23].
In [20] and [21], CC frameworks with dynamic grouping strategies were proposed to guarantee
safety in air traffic control. In the dynamic grouping strategy, a large number of aircraft are
divided into several sub-groups based on their interdependence and the sub-groups are
adjusted dynamically as new conflicts appear after each iteration. Omidvar et al. [23] proposed
a decomposition method called differential grouping that is able to group the interacting vari-
ables with high accuracy, focusing on large-scale global optimization problems. Here, it should
be noted that these algorithms focus on discovering the interdependencies between variables,
whereas in the LTE HetNets, the effect of inter-cell interference should be designed as various
levels of interdependence, since the interference is one of the most critical factors to be consid-
ered when deploying small cells. Specifically, the degree of interdependence between cells varies
based on the amount of inter-cell interference, not the existence of interdependence. Thus, we
cannot efficiently group the cells with strong interdependencies by simply applying the existing
grouping methods to the BS placement problem.

In this paper, we propose to use a correlation grouping approach with the aim of rapidly
converging to optimal solutions. In this approach, variables with strong correlations (i.e., inter-
fering cells) form a group when finding the optimal deployment of heterogeneous cells in the
HetNet. In addition, we modify the variable-length genetic algorithm presented in [15] to be
applied to the divided groups.
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3 BS Deployment Optimization Problem Formulation
In this section, we present a formulation of the BS deployment optimization problem in the
LTE HetNet, defining the objective, variables, and constraints for the problem. In this study,
we are given a domain, D, in the HetNet that must be covered by heterogeneous BSs with dif-
ferent transmission powers. For the given domain, we aim to find a BS deployment plan that
maximizes user satisfaction in terms of the throughput provided per unit of traffic demand
from the user.

We assume that there areM BSs in the domain D, and that each BS is located at the position
(xb, yb) 2 D (1� b�M) with the transmission power pb, whereM is a constant value deter-
mined by the network operator. Let pmax be the maximum transmit power and 0� pb � pmax.
It is also assumed that there are N users and that each user is located at the position (Xu, Yu) (1
� u� N) with a traffic demand, du.

The signal-to-interference-plus-noise-ratio (SINR) at the u-th user is then given by

Sb;u ¼
pblb;u

N0 þ
P

1�b0�M;b0 6¼bpb0 lb0;u
; ð1Þ

where N0 is the noise power and lb,u is the path loss between the BS, b, and the user, u, which is

given by lb;u ¼ 10
l̂ b;u

10
for l̂ b;u ¼ 128:1þ 37:6 log

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxb � XuÞ2 þ ðyb � YuÞ2

q
(in dB) [27].

We denote with Tu and Uu the LTE downlink throughput and the user satisfaction for u-th
user, respectively. Given that the u-th user is served by the b-th BS, we can express Tu and Uu

as follows:

Tu ¼ C � Ru � log 2ð1þ Sb;uÞ ð2Þ

and

Uu ¼ min
Tu

du

; 1

� �
; ð3Þ

where Ru is the number of resource blocks (RBs) assigned to the u-th user, and C = 180kHz is
the bandwidth of an RB [27].

For a given ordered set of triples containing the position and the traffic demand of every
user,

U ¼ fðX1;Y1; d1Þ; � � � ; ðXu;Yu; duÞ; � � � ; ðXN ;YN ; dNÞg; ð4Þ

the system satisfaction function FU is defined as

FUðBÞ ¼
X
1�u�N

Uu ð5Þ

for the ordered set of triples containing the position and transmit power of every BS,

B ¼ fðx1; y1; p1Þ; � � � ; ðxb; yb; pbÞ; � � � ; ðxM; yM; pMÞg: ð6Þ

Let A be the set of all possible BS deployments in the domain D with a maximum transmis-
sion power of pmax, and let Hb be the set of all users served by the b-th BS. The problem of find-
ing the optimal BS deployment in A is then formulated as follows:

MaximizeB2AFUðBÞ ð7Þ
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s.t. X
u2Hb

Ru � Rmax ð1 � b � MÞ; ð8Þ

where Rmax is the maximum number of RBs that can be allocated, being set to 50 when using a
20 MHz system bandwidth in LTE frequency division duplex (FDD) downlink [28].

4 Cooperative Co-evolution with BS Grouping
In this section, we describe the proposed grouping method and the EA used to solve the BS
placement optimization problem.

4.1 BS Grouping Algorithm
As addressed in Section 1, increased wireless data demands have driven mobile operators to roll
out large-scale networks of LTE small cells. Accordingly, the problem domain presented in the
previous section is considered quite large, leading to an increased complexity in solving the prob-
lem. We note that cooperative co-evolution has been proposed to solve large and complex prob-
lems through problem decomposition [29]. Based on this notion, we decompose the BS
placement optimization problem into subproblems by dividing all the BSs into different groups.

Let B1, B2, � � �, BG be disjoint subsets of B, where Bj = {(xb1, yb1, pb1), � � �, (xbnj, ybnj, pbnj)} (1� j
� G). Thus, B can be re-expressed as B = B1 [ B2 [ � � � [ BG. The subset Bj is obtained as
follows:

1. G pivot points are randomly chosen in the domain D, each of which represents each group
Bj.

2. Each BS is included in a subset Bj, in which the BS has the highest received signal strength
among G disjoint subsets.

4.2 Proposed Evolutionary Algorithm
In this section, we present the details of our proposed EA for finding the optimal solution to
the BS placement problem. Following the general concept of EAs, the algorithm starts with a
population P composed of a set of individuals B(i). The proposed EA is iterated until the solu-
tion converges to the optimal placement. Each EA consists of the following four steps: fitness
evaluation, parent selection, crossover and mutation.

1) Fitness evaluation. At the beginning of each iteration, all the individual’s fitnesses are
evaluated by computing the objective function (i.e., fitness function) in Eq (5). Thus, the higher
the system throughput, the higher the fitness value. Then, only the best 50% are retained for
the next generation.

2) Parent Selection. For each of the groups generated by the BS grouping algorithm pre-
sented in Section 4.1, a pair of parents is selected for the next generation. Specifically, for each

group in the individual B(i), BðiÞ
j itself becomes a parent, while the other parent Bði0Þ

j (i0 6¼ i) is

selected from the best 50% of individuals, excluding the parent already selected, with the proba-
bility βi, where

bi ¼
FUðBðiÞÞP

8Bði0 Þ2P;i0 6¼iFUðBði0ÞÞ : ð9Þ

If the typical parent selection strategies available in the literature [14, 15] were applied to our
EA, it would not be possible to decide which of its two parents a child belongs to. However, no
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such ambiguity exists in the parent selection process described above since only one child is
generated for each individual.

3) Crossover. A child individual is produced from the two selected parents through cross-
over and mutation. Given the crossover rate Pc, the hybrid crossover has three ways of produc-
ing a child [15]: 1) perform only uniform crossover with the probability Pc × Pc; 2) perform
both uniform crossover and one-point crossover with the probability Pc × (1 − Pc); or 3) per-
form only one-point crossover with the probability (1 − Pc).

Regarding the representation of the position and transmission power of BS, B(i), (xi, yi, pi)
consists of 24 bits, where the leftmost 16 bits (2 × 8 bits) and the rightmost 8 bits indicate the
position and the transmission power, respectively. Then, we apply the uniform crossover
method equiprobably to choose which of the two parents the child will inherit a bit from.

We now propose to modify the one-point crossover between two parents, BðiÞ
j and Bði0Þ

j . We

denote by jBðiÞ
j j the number of tuples consisting of BðiÞ

j , that is the number of BSs belonging to

the set, BðiÞ
j . Then, the proposed one-point crossover proceeds as follows:

Step 1). A random point is chosen in the range of ½0;minðjBðiÞ
j j; jBði0Þ

j jÞ�. Each parent is

divided into two parts at this point.

Step 2). A child is produced by combining the first part of BðiÞ
j with the second part of Bði0Þ

j ,

which contains the same number of tuples as the second part of BðiÞ
j . If jBðiÞ

j j> jBði0Þ
j j,

then the ðjBði0Þ
j j þ1Þ-th to jBðiÞ

j j-th tuples of BðiÞ
j are combined with the child gener-

ated in this step.

Under the assumption made regardingM, the total number of BSs,M, in the domain, D, is
constant. However, while the length of a child is variable in [15], leading to a value different
fromM, the one-point crossover proposed here maintains the length of the individual to beM
over subsequent generations. Examples of the one-point crossover presented in [15] and the
proposed method are depicted in Fig 1. It can be seen in Fig 1 that the two children have differ-
ent lengths (7 and 4 tuples) from those of Parent 1 and Parent 2 (5 and 6 tuples, respectively)
in the one-point crossover [15], while the proposed EA keeps the length of the child the same
as that of its parent.

4) Mutation. After the crossover, a bit-flip mutation with the mutation rate Pm is per-
formed, giving each of the child’s bits a chance to flip.

5 Results
As explained in the Section 1, the proposed correlation grouping approach, which enables
interfering cells to be placed together in one group, is a key contribution, since some cells have
a strong correlation due to inter-cell interference in the HetNet. Thus, in this section, the prob-
ability of placing two interacting variables into a single group is first analyzed numerically for
our proposed approach and a random grouping scheme [24–26]. We then provide evidence,
based on simulation results, in support of throughput performance improvement of the pro-
posed scheme over the random grouping scheme.

5.1 Probability of Interacting Variables Belonging to the Same Group
We denote by Pg the probability of two BSs being placed together in a single group at least Nk

times during Nc cycles, where a cycle consists of one complete evolution of all groups. We sim-
ply refer to this probability as the grouping probability in this paper. In the random grouping
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scheme, the grouping probability Pg is derived as follows [24–26]:

Pg ¼
XNc

r¼Nk

Nc

r

� �
1

G

� �r

1� 1

G

� �Nc�r

: ð10Þ

Note that the SINR is subjected to considerable attenuation over distance between the trans-
mitter and the receiver as seen in Eq (1). Thus, we derive the grouping probability in our pro-
posed EA based on the distance between BSs. We assume that BSs are distributed over the
domain D according to a Poisson point process (PPP) with mean density, l ¼ M

AðDÞ, where A(D)

denotes the area of the domain D. It is also assumed that all BSs use the same transmission
power and have circular coverage. Then, we compute the probability that two BSs, bi and bi0 are
placed in the same group for the following two cases: Case 1) Either of bi or bi0 is chosen as the
pivot point; Case 2) Neither bi nor bi0 is chosen as the pivot point.

Case 1). Let di,i0 be the distance between bi and bi0. If bi is chosen as one of G pivot points,
then the other BS, bi0 must belong to the same group as bi. Thus, none of the G pivot points
minus the chosen pivot bi0 can be located within a circle of radius di,i0 centered at the BS bi since
the interferer’s transmission power is known to depend on the distance to the BS, bi0, as can be
seen in Eq (2).

Let fM,G(n) be the probability of selecting n BSs amongM BSs minus G pivot points. We
then calculate the probability fM,G(n) as follows:

fM;GðnÞ ¼
M � G

n

� �
M
n

� ��1

: ð11Þ

Using Eq (11), the probability of selecting the BS bi0 given that bi is the pivot point, P(iji0) is

B1
(1) Bj

(1) Bj+1
(1) BG

(1)

... ...

(x j1 , y j1 , p j1 )
... (x jn j, y jn j, p jnj )

B1
(i) Bj

( i ) Bj+1
(i ) BG

(i )

... ...

B1
(I) Bj

(I) Bj+1
(I) BG

(I)

... ...

Evolutionaly algorithm in [13]

3 BSs
4 BSs
2 BSs

2 BSs
One-point crossover

2 BSs 2 BSs
4 BSs3 BSs

Proposed modification

3 BSs
3 BSs

2 BSs
3 BSs

Refined one-point crossover

3 BSs 2 BSs
3 BSs 3 BSs

In
di

vi
du

al
s

Groups

For chosen
parents

Fig 1. Examples of the one-point crossover presented in [15] and the refined one-point crossover.

doi:10.1371/journal.pone.0139190.g001
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given by

Pði0jiÞ ¼
XM�G�1

n¼1

fM�2;G�1ðnÞpi0 ðdi;i0 ; nÞ; ð12Þ

where pi0(di,i0, n) is the probability that a circle of radius di,i0 centered around bi0 contains

exactly n points, which is given by pi0 ðdi;i0 ; nÞ ¼
ðlpðdi;i0 Þ2Þne

�lpðdi;i0 Þ2

n!
following the PPP model. Then,

in Case 1, we can derive the probability that two certain BSs, bi and bi0, belong to a single group,
Pð1Þ
c , as follows:

Pð1Þ
c ¼ GðM � GÞ

MðM � 1Þ ðPði
0jiÞ þ Pðiji0ÞÞ

¼ 2GðM � GÞ
MðM � 1Þ Pði0jiÞ;

ð13Þ

where the first term, (G(M−G))/(M(M − 1)) indicates the probability of Case 1 occurring.
Case 2). Consider an arbitrary BS and suppose that this BS is the n-th nearest one to the

BS bi (let’s say bi0 0). We are now interested in obtaining the probability that the BS bi belongs to
the group represented by bi0 0, which is denoted by P(iji00). Note that the probability P(iji00) is
equivalent to the probability that the BS bi0 0 becomes the nearest one of bi. Given the distance
di,i0 0 from the BS, bi to the n-th nearest BS, it follows that the probability P(iji00) is given by

Pðiji00Þ ¼
XM�G�1

n¼1

fM�1;Gðn� 1Þ G
M � n

p̂iðdi;i00 ; nÞ; ð14Þ

where p̂iðdi;i00 ; nÞ denotes the probability density function (pdf) of di,i0 0, which is given by

p̂iðdi;i00 ; nÞ ¼
2ðlpÞnðdi;i00 Þ2n�1e

�lpðdi;i00 Þ2

ðn�1Þ! , using the PPP model.

We next derive the probability that the BS bi0 also selects bi0 0 as its pivot point P(i0ji00), condi-
tioned on the fact that the BS bi belongs to the group represented by bi0 0. Let Ai(r) and Ai0(r)
denote circular areas with a radius of r centered around the BSs bi and bi0, respectively. Then,
we can express the probability P(i0ji00) as follows:

Pði0ji00Þ ¼
XM�G�2

n¼0

fM�3;G�1ðnÞ~pi0 ðDi0 ;i00 ; nÞ; ð15Þ

where ~pi0 ðDi0 ;i00 ; nÞ is the probability that a subdomain Di0 ;i00 ¼ D \ fAi0 ðdi0 ;i00 Þ � Aiðdi;i00 Þg con-
tains exactly n points.

Given the occurrence of Case 2, from Eqs (14) and (15), we get the probability that both bi
and bi0 belong to the group represented by a pivot point bi0 0, Pð2Þ

c as follows:

Pð2Þ
c ¼ ðM � GÞðM � G� 1Þ

MðM � 1Þ
ZZ

D

Pðiji00ÞPði0ji00Þ dA
AðDÞ ; ð16Þ

where the first term indicates the probability of Case 2 occurring.

Base Station Placement Algorithm for LTE Heterogeneous Networks

PLOS ONE | DOI:10.1371/journal.pone.0139190 October 13, 2015 9 / 19



Finally, from Eqs (13) and (16), we can derive the grouping probability in our proposed
scheme as follows:

Pg ¼
XNc

r¼Nk

Nc

r

� �
ðPð1Þ

c þ Pð2Þ
c Þrð1� Pð1Þ

c � Pð2Þ
c ÞNc�r

: ð17Þ

5.2 Numerical Results
The results presented in [24] confirmed that their random-grouping approach performs better
than EAs without grouping when tackling large optimization problems. Thus, in order to assess
the accuracy of our analysis in terms of grouping probability, we carried out simulation tests
for both the random and proposed grouping schemes, and compared the predictions of the
analytical model from the previous section with these simulations. Figs 2 and 3 present both
numerical and simulated grouping probabilities against di,i0 for the cases of Nc = 1 and Nc = 30,
respectively, under three different values ofM and G. In Figs 2 and 3, ‘Num’ and ‘Sim’ indicate
the numerical and simulated results, respectively. D is assumed to have a circular shape with a
radius of 1,000 m. We examined the grouping behavior of the two schemes under heteroge-
neous inter-cell distances (di,i0, 1� i, i0 �M) ranging from from 50 m to 500 m, and in the sim-
ulationM BSs were placed randomly, with only the first two BSs set to be a distance of di,i0
from each other. Each simulated data point was obtained by averaging the results of 105 simu-
lation runs.

It can be seen in Fig 2(a) that both the numerical and the simulated grouping probabilities
decrease as di,i0 increases in the proposed grouping scheme. This is because inter-cell interfer-
ence decreases with an increase in the distance between the two BSs. On the other hand, as
seen in Fig 2(b), all the curves for the random grouping are flat in the entire range of di,i0 since
the random grouping scheme does not consider inter-cell distance.

When producing the results for Nc = 30, Nk is set to 15, which indicates the probability that
two BSs are assigned to one group for at least 15 cycles. The grouping probability in the pro-
posed grouping decreases quickly when di,i0 rises above 400 m and 300 m for G = 5 and 9,
respectively, and the decrease for G = 9 is more rapid than that for G = 5. Even for G = 2, the
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Fig 2. Grouping probability versus inter-cell distance per cycle forNc = 1 andNk = 1.

doi:10.1371/journal.pone.0139190.g002
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grouping probability is flat regardless of the change in inter-cell distance. The reason for this
phenomenon is that the smaller the number of groups, the lower the probability that two BSs
belong to the same group. We also observe from Fig 3(b) that the grouping probability is the
same regardless of the value of di,i0 when random grouping is employed.

As can be seen in Figs 2 and 3, the predicted and the observed results correspond closely,
with only a slight difference between the two.

5.3 Simulation Environment
To evaluate the advantages of the proposed EA by means of simulation, we distributed users in
a square area of 2 km × 2 km. To simulate an urban area with high user density [30], the user
density was set to 10 users/km and 15 users/km, which are equivalent to 400 and 900 users, in
the entire simulation area, respectively. Note that the user distribution affects the amount of
traffic demand in an area, which should be considered when placing the BSs as presented in
Section 3. To evaluate the effectiveness of the proposed EA in different user distributions, we
used three user distribution models in the simulations: a uniform distribution, a Gaussian dis-
tribution, and a four-Gaussian hotspot distribution [4]. The three different user distributions
are illustrated in Fig 4. In the uniform distribution, users are distributed uniformly over the
entire area. The Gaussian distribution models a hot spot with user density at a maximum
located at the center, and gradually decreasing toward the boundary. The four-Gaussian hot-
spot distribution models four hot spots with very densely located users. We omit the illustra-
tions of the three distributions for the case of 15 users/km because, except for the density, they
are the same as those shown in Fig 4.

All users were assumed to have the same traffic demand of 1 Mbps. With regard to the num-
ber of BSs,M was set to N/10, which is 10 users per BS. In the simulation, the value of the muta-
tion rate is configured using Pm = 1/substring_length, where the substring length is 24 and the
crossover rate is set to 0.9 [15]. As suggested in [23] and [31], the population size is set to 50.
We set the maximum transmission power, pmax, to 46 dBm [27, 30]. The simulation parame-
ters are summarized in Table 1.
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Fig 3. Grouping probability versus inter-cell distance per cycle forNc = 30 andNk = 15.

doi:10.1371/journal.pone.0139190.g003
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5.4 Simulation Results
As mentioned in Section 3, we started initially withM randomly located BSs, which will be
referred to simply as ‘M-Random’ and then ran the proposed EA presented in Section 4 to find
the optimal locations of the BSs. The simulation was performed in two scenarios, without and
with macro BSs being installed initially. We first compare the performance of the proposed EA
with that ofM-Random to demonstrate that large gains cannot be achieved merely by installing
more BSs.

Fig 5 shows the system throughput performance FU of bothM-Random and the proposed
EA for each of the three user distributions. WithM set to N/10, which are 40 and 90 for the
two cases of 10 and 15 users/km, respectively, we simulate the proposed EA by increasingM by
10 from 20 to 40 and 90. ForM-Random,M is increased from 20 to 80 and 120, respectively,
when there are 10 and 15 users/km. In Fig 5, the horizontal lines indicate FU in the BS deploy-
ment obtained by the proposed EA. For example, the horizontal line annotated as “M = 20”
shows the system throughput of the proposed EA when starting the proposed EA with theM-
Random forM = 20.
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Fig 4. Different user distributions with 10 users/km (i.e., 400 users in the entire simulation area).

doi:10.1371/journal.pone.0139190.g004

Table 1. Simulation parameters.

Parameter Value

population size 50

crossover rate Pc 0.9

mutation rate Pm 1/24

number of groups G M/10 groups

number of cycles Nc 30 cycles

total number of users N 400 (10 users/km)

900 (15 users/km)

maximum tx power pmax 46 dBm

doi:10.1371/journal.pone.0139190.t001
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It is shown in Fig 5 that inM-Random, the slope of the increase tapers off even though the
system throughput increases asM increases. This is because deploying too many BSs randomly
can cause severe interference; that is to say, it is more likely for a user to suffer severe interfer-
ence from a neighbor cell covering the same area as the serving cell of the user. Notably, the BS
deployment that is obtained from the proposed EA starting withM = 40 (M = 90) achieves a
system throughput almost as high as inM-Random withM = 80 (M = 120). That is, the pro-
posed EA is able to achieve the same throughput by deploying a much smaller number of BSs
than the random deployment approach. We can also see that the proposed EA shows a higher
system throughput for the two Gaussian distributions than that for the uniform distribution,
whereas the contrary phenomenon is observed inM-Random because the proposed EA finds
the BS deployment that maximizes system throughput, as can be seen in Eq (7).

5.5 System Throughput Improvement
We now present the simulation results for the proposed EA, compared to the random-group-
ing based EA (RG-EA) [24–26] and an EA that detects interacting variables by monitoring the
changes in the objective function and groups them as in [23]. We name the latter algorithm as
EA with grouping based on interaction-detection (IDG-EA). When simulating IDG-EA, the
threshold to identify the interacting variables is set to 10−3, as recommended in [23].

Because we aim to maximize the system throughput per user (i.e., FU) in this study, the sys-
tem throughput improvement (denoted by ΔFU) is used as the main metric to evaluate the per-
formance of the three algorithms. More specifically, ΔFU indicates the amount of throughput
improvement (in percentage) by the three algorithms over the initial random deployment ofM
BSs.

Tables 2–4 show the average, standard deviation, minimum and maximum of ΔFU in
RG-EA, IDG-EA, and the proposed EA for each of the three user distributions, without any
macro BS being initially installed. Observe in Tables 2–4 that the proposed EA improves the
performance of RG-EA by up to 18.97% and 20.68% for the two user densities of 10 and 15
users/km, respectively. Notably, when the uniform distribution is used and the user density is
10 users/km, the minimum value of ΔFU in the proposed EA is even greater than that of
RG-EA. We also observe that the statistics of ΔFU in the proposed EA are higher than those in
RG-EA for the other two user distributions. Specifically, ΔFU of the proposed EA is up to

Table 2. System throughput improvement without any pre-installed macro BSs for the uniform distribution.

RG-EA IDG-EA Proposed EA

User Density M Avg. Min. Max. Avg. Min. Max. Avg. Min. Max.

10 (users/km) 20 40.75 37.78 42.97 31.33 25.63 39.63 48.48 47.27 50.04

30 50.88 50.52 51.37 41.22 37.47 45.59 54.93 51.88 56.29

40 28.55 27.41 29.75 22.20 21.79 23.34 32.15 30.99 33.54

15 (users/km) 20 87.26 83.28 90.17 61.57 47.12 72.30 105.31 102.73 107.84

30 111.18 109.71 113.16 77.97 68.14 89.78 122.50 114.47 132.84

40 119.13 114.95 124.40 97.23 89.06 107.07 124.13 121.38 125.59

50 114.31 110.38 118.61 99.59 87.80 111.72 117.46 113.37 123.63

60 99.23 96.45 102.13 79.50 77.11 82.37 105.63 100.22 109.80

70 89.08 85.25 91.75 75.01 70.84 85.45 97.76 95.45 100.16

80 84.89 81.35 87.33 69.24 61.51 77.63 85.95 84.30 87.88

90 74.88 73.06 77.12 60.96 50.98 67.28 77.16 76.22 78.48

doi:10.1371/journal.pone.0139190.t002
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16.64% and 12.33% (17.08% and 12.52%) higher than that of RG-EA for the Gaussian distribu-
tion (the four-Gaussian hotspot distribution) when there are 10 and 15 users/km, respectively.

Tables 5–7 present the statistics of ΔFU in the case that BSs are already installed in the simu-
lation of an urban area in which some BSs are already installed such that inter-site distance
(ISD) is 750 m [32]. For all three user distributions, the proposed EA shows a larger ΔFU than
that of RG-EA for user densities of both 10 and 15 users/km. Specifically, the average values of
ΔFU in the proposed EA are up to 11.78%, 16.28%, and 8.89% (10.89%, 11.57%, and 7.50%)
higher than those of RG-EA for the uniform, the Gaussian, and the four-Gaussian hotspot user
distributions, respectively, when the user density is 10 users/km (15 users/km).

We see from the six tables that the proposed EA also achieves higher system throughput
than IDG-EA. Specifically, when no macro BS is initially installed, the average values of ΔFU in
the proposed EA are up to 54.76%, 73.41%, and 104.47% (71.04%, 54.06%, and 94.42%) higher
than IDG-EA for the uniform, Gaussian, and four hotspot user distribution, respectively, when
the user density is 10 users/km (15 users/km). In the case that some BSs are installed, the

Table 4. System throughput improvement without any pre-installed macro BSs for the four-Gaussian hotspot distribution.

RG-EA IDG-EA Proposed EA

User Density M Avg. Min. Max. Avg. Min. Max. Avg. Min. Max.

10 (users/km) 20 60.04 57.63 64.31 34.37 29.67 39.16 70.29 62.51 74.09

30 54.10 48.30 57.09 41.10 36.29 47.95 60.33 55.05 66.63

40 52.61 51.92 53.26 44.03 40.01 49.95 56.37 55.80 56.92

15 (users/km) 20 128.12 120.42 138.06 74.14 63.31 81.58 144.15 140.94 147.68

30 163.92 159.22 166.33 115.27 99.78 123.69 180.24 168.59 187.47

40 164.69 158.12 169.18 120.82 107.00 146.33 171.79 164.99 180.47

50 132.79 128.90 139.37 101.65 88.15 109.37 143.64 138.25 149.27

60 123.42 121.16 126.38 97.35 92.59 103.36 130.27 123.82 133.34

70 112.62 108.60 120.19 90.74 86.15 99.58 120.14 115.26 125.18

80 111.32 109.07 112.84 88.22 81.91 100.52 116.44 115.96 117.20

90 104.97 102.30 108.22 71.05 60.94 79.48 108.39 107.14 109.81

doi:10.1371/journal.pone.0139190.t004

Table 3. System throughput improvement without any pre-installed macro BSs for the Gaussian distribution.

RG-EA IDG-EA Proposed EA

User Density M Avg. Min. Max. Avg. Min. Max. Avg. Min. Max.

10 (users/km) 20 51.89 50.01 56.03 34.90 31.65 40.53 60.52 53.64 65.19

30 57.64 56.64 59.95 48.01 42.17 53.57 62.25 59.91 64.63

40 42.56 41.48 43.54 33.03 27.95 38.14 45.02 43.39 47.31

15 (users/km) 20 154.92 147.09 160.76 118.54 108.40 137.65 170.84 165.22 177.03

30 168.34 165.99 172.31 122.74 118.88 130.50 189.09 181.53 202.54

40 183.87 175.69 188.35 141.99 118.71 161.44 197.50 186.71 206.43

50 148.31 144.24 154.72 114.48 104.36 125.06 163.48 158.07 191.20

60 128.11 120.93 131.55 107.58 91.20 116.21 138.41 128.36 149.71

70 114.18 111.69 116.79 98.43 92.60 103.47 117.47 113.46 120.84

80 104.98 102.22 109.23 78.44 64.87 88.24 108.30 102.89 112.75

90 87.74 85.87 89.64 71.05 60.94 79.48 93.86 92.14 97.11

doi:10.1371/journal.pone.0139190.t003
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Table 5. System throughput improvement for the uniform distribution when five macro BSs are already installed in the simulation area.

RG-EA IDG-EA Proposed EA

User Density M Avg. Min. Max. Avg. Min. Max. Avg. Min. Max.

10 (users/km) 20 50.89 50.45 51.32 41.42 39.98 42.65 56.89 54.53 58.75

30 42.37 41.87 43.10 41.39 39.45 42.37 47.30 44.51 50.11

40 39.30 38.21 40.96 36.51 34.97 38.02 41.14 39.75 43.04

15 (users/km) 20 116.63 111.30 121.38 97.54 95.06 100.92 123.52 118.31 125.89

30 117.07 116.37 118.11 118.01 115.31 121.85 128.42 127.28 129.81

40 118.89 115.70 121.71 112.72 108.93 118.48 124.15 119.90 126.91

50 114.47 112.99 114.35 107.39 105.41 109.75 122.81 117.12 131.76

60 109.34 108.75 110.13 80.67 70.09 86.90 111.64 109.33 116.83

70 88.02 86.58 89.93 65.85 56.22 74.79 90.45 88.97 94.91

80 74.10 71.42 78.18 58.47 54.31 61.97 76.89 75.47 78.68

90 51.59 50.24 52.76 39.96 36.75 44.84 57.21 54.41 59.46

doi:10.1371/journal.pone.0139190.t005

Table 6. System throughput improvement for the Gaussian distribution when five macro BSs are already installed in the simulation area.

RG-EA IDG-EA Proposed EA

User Density M Avg. Min. Max. Avg. Min. Max. Avg. Min. Max.

10 (users/km) 20 50.05 48.72 51.08 34.43 31.39 38.80 58.20 56.50 60.58

30 57.02 55.23 58.94 50.44 46.91 53.41 58.80 56.18 62.59

40 40.54 38.37 42.56 36.74 33.46 41.10 43.23 41.49 44.98

15 (users/km) 20 151.00 148.90 153.13 105.53 99.89 110.42 165.15 160.94 172.24

30 187.66 184.37 193.76 110.24 101.58 118.06 209.38 204.18 214.03

40 152.81 150.21 154.65 150.58 145.22 156.22 160.22 153.03 169.78

50 134.39 130.14 137.68 120.33 116.99 128.03 138.42 131.13 142.80

60 129.17 126.21 132.38 114.45 110.2 117.68 133.38 130.24 136.34

70 120.22 114.96 125.47 97.45 88.29 107.66 123.32 117.78 127.83

80 104.53 102.74 106.14 87.42 78.04 99.33 109.97 106.46 111.88

90 90.59 87.80 91.91 79.63 74.94 82.79 94.50 91.92 98.44

doi:10.1371/journal.pone.0139190.t006

Table 7. System throughput improvement for the four-Gaussian hotspot distribution when five macro BSs are already installed in the simulation
area.

RG-EA IDG-EA Proposed EA

User Density M Avg. Min. Max. Avg. Min. Max. Avg. Min. Max.

10 (users/km) 20 77.13 71.67 79.95 60.10 58.93 62.15 79.56 75.77 84.89

30 54.66 53.07 56.18 48.68 45.29 53.02 58.01 55.05 60.67

40 52.39 45.00 54.08 47.57 45.44 50.74 57.05 53.94 59.16

15 (users/km) 20 143.03 140.17 144.90 109.21 91.73 129.88 153.59 148.85 159.40

30 163.92 159.67 166.91 121.79 115.55 126.21 171.68 165.59 175.47

40 152.70 149.28 156.53 130.78 117.23 144.09 159.90 157.32 164.99

50 132.20 130.29 133.39 119.62 117.06 121.40 141.47 135.04 144.39

60 130.66 127.07 132.64 114.80 108.72 121.41 140.45 134.10 148.50

70 123.03 121.28 129.09 103.87 100.47 105.87 126.95 122.13 140.40

80 121.00 116.93 122.99 101.33 85.54 103.63 123.84 119.49 128.47

90 110.79 108.05 112.61 94.71 86.02 100.26 115.61 112.06 120.55

doi:10.1371/journal.pone.0139190.t007
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average values of ΔFU in the proposed EA are up to 37.34%, 69.02%, and 32.38% (43.18%,
89.84%, and 40.97%) higher than IDG-EA for the uniform, Gaussian, and four hotspot user
distribution, respectively, when the user density is 10 users/km (15 users/km). We also observe
that RG-EA outperforms IDG-EA as well. This is because in IDG-EA, more separable variables
are classified as nonseparable ones.

Interestingly, we also find in the tables that maximum system throughput improvements
are achieved forM = 20 or 30 when there are 10 users/km, whileM = 30 or 40 when there are
15 users/km, and that after the point at which the maximum occurs, the throughput improve-
ment starts to decrease. This is because installing more BSs causes harmful inter-cell interfer-
ence, leading to a reduction in the system throughput improvement. Finally, we can say that
the proposed EA outperforms both RG-EA and IDG-EA, not only for the uniform user distri-
bution, but also for the other two practical user distributions.

6 Conclusion
In this paper, we have presented a correlation grouping approach for the application of an EA
with the aim of designing an optimum network planning algorithm for large-scale LTE Het-
Nets that results in the rapid convergence to optimal solutions. Noting that some HetNet cells
have a strong correlation due to inter-cell interference, the correlation grouping approach
makes variables with strong correlations (i.e., interfering cells) form groups, instead of group-
ing the individuals randomly when finding the optimal deployment of heterogeneous cells. We
have also modified the variable-length genetic algorithm presented in [15] to be applied to the
divided groups. To evaluate the performance of the proposed algorithm, we have analyzed the
grouping probabilities and conducted simulations. Both numerical and simulation results con-
firm that the proposed algorithm outperforms both RG-EA and IDG-EA in terms of system
throughput, not only for the uniform user distribution, but also for the practical Gaussian and
four-Gaussian hotspot user distribution models.
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