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Abstract
Phylogenetic profiling, a network inference method based on gene inheritance profiles, has

been widely used to construct functional gene networks in microbes. However, its utility for

network inference in higher eukaryotes has been limited. An improved algorithm with an in-

depth understanding of pathway evolution may overcome this limitation. In this study, we

investigated the effects of taxonomic structures on co-inheritance analysis using 2,144 ref-

erence species in four query species: Escherichia coli, Saccharomyces cerevisiae, Arabi-
dopsis thaliana, and Homo sapiens. We observed three clusters of reference species

based on a principal component analysis of the phylogenetic profiles, which correspond to

the three domains of life—Archaea, Bacteria, and Eukaryota—suggesting that pathways

inherit primarily within specific domains or lower-ranked taxonomic groups during specia-

tion. Hence, the co-inheritance pattern within a taxonomic group may be eroded by con-

founding inheritance patterns from irrelevant taxonomic groups. We demonstrated that co-

inheritance analysis within domains substantially improved network inference not only

in microbe species but also in the higher eukaryotes, including humans. Although we

observed two sub-domain clusters of reference species within Eukaryota, co-inheritance

analysis within these sub-domain taxonomic groups only marginally improved network infer-

ence. Therefore, we conclude that co-inheritance analysis within domains is the optimal

approach to network inference with the given reference species. The construction of a

series of human gene networks with increasing sample sizes of the reference species for

each domain revealed that the size of the high-accuracy networks increased as additional

reference species genomes were included, suggesting that within-domain co-inheritance

analysis will continue to expand human gene networks as genomes of additional species

are sequenced. Taken together, we propose that co-inheritance analysis within the domains

of life will greatly potentiate the use of the expected onslaught of sequenced genomes in the

study of molecular pathways in higher eukaryotes.
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Introduction
Functional associations between genes are often inferred from the similar genomic context.
Phylogenetic profiling, which predicts the functional association between two genes via the
correlation of their phylogenetic distributions, has been more thoroughly investigated than
other types of genomic context-based network inference methods [1] because it capitalizes on
the complex evolutionary co-inheritance pattern of pathway genes during speciation [2].
Although phylogenetic profiling could be used for the study of metazoan gene functions via
analysing co-evolving modules [3, 4], its application for the construction of global functional
networks has been ineffective in higher eukaryotes. The demand for an optimal phylogenetic
profiling method increases as the number of sequenced genomes rapidly grows, because a
larger pool of genome data may potentiate this method for the study of functional organization
of molecular systems.

The core idea of inferring pathway links by phylogenetic profiling is that the functional
constraint between interdependent genes of a pathway ensures that genes are gained or lost
together during speciation. Thus, if two genes have similar phylogenetic profiles across refer-
ence species, they seem to have been co-inherited to carry out their joint function. Pathway
reconstruction using phylogenetic profiling may be improved via a better understanding of
pathway evolution. Accounting for ‘profile complexity’ (i.e., the complexity of the inheritance
patterns) can improve network inference: the more complex the phylogenetic profiles (i.e., a
more complex inheritance pattern), the more likely that the inferred co-functional relationship
exists [5]. The incorporation of phylogenetic relationships among reference species also has
been shown to improve network inference [6].

Another feature we may consider in inferring pathway links from phylogenetic profiles is
‘taxonomic structure’—the distribution of inherited genes among reference species. For exam-
ple, some pathways exhibit co-inheritance patterns within a specific group of reference species
only. In these cases, the network inference by co-inheritance analysis may need to be conducted
within the informative group of species only. A previous study [7] reported that the phyloge-
netic profiling method for specific pathways performed optimally with only bacteria as the ref-
erence species. Multiple studies have emphasized the importance of choosing the appropriate
reference species in phylogenetic profiling analysis [8, 9]. We hypothesized that the previously
observed effects of reference species selection on network inference is related to the taxonomic
structures in the phylogenetic profiles. Whereas previous studies were able to use only several
hundred sequenced genomes primarily from prokaryotic species, thousands of species with
sequenced genomes, including several hundred eukaryotes, are now available. Therefore, it
may be timely to revisit the effects of reference species on the phylogenetic profiling method.

In this article, we first report our observation of the reference species clusters for three
domains of life (Archaea, Bacteria, Eukaryota) based on a principal component analysis of the
phylogenetic profiles, and demonstrate that co-inheritance analysis within these domains of
life substantially improve network inference not only in microbes but also in higher eukaryotes.
We also report our observations of sub-domain clusters of reference species within Eukaryota:
one for an in-group kingdom and the other for out-group kingdoms. However, only marginal
improvements in network inference were observed from the co-inheritance analysis for these
sub-domain clusters of reference species, which suggests that the domain is the optimal taxo-
nomic unit for mining pathway links from co-inheritance analysis. In addition, the construc-
tion of a series of human gene networks with an increasing sample size of the reference species
for each domain suggests that the within-domain co-inheritance analysis will continue to
expand the high-accuracy human gene network as the number of fully sequenced genomes
grows. Taken together, we propose that utilizing co-inheritance patterns within the domains of
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life will greatly potentiate the use of the expected onslaught of sequenced genomes in the study
of molecular pathways in higher eukaryotes.

Materials and Methods

Construction of phylogenetic profiles
The amino acid sequences of all known proteins in the query and reference species were
obtained from various public databases [10–24] (excluding contigs and scaffolds) listed in the
Table 1. If multiple databases provided protein sequences for a species, only one of the data-
bases was selected. For this work, a total of 2,144 genomes (122, 1,626, and 396 genomes for
the Archaea, Bacteria, and Eukaryota domains, respectively) were downloaded in December
2011.

In this study, networks of protein coding genes were constructed for four query species,
Escherichia coli, Saccharomyces cerevisiae, Arabidopsis thaliana, andHomo sapiens, which are
popular in biological research. Each network construction required a phylogenetic profile that
was constructed based on the BLASTP E-value of the best hit of each protein sequence of the
query species to each reference species genome. Each E-value was transformed to a value
between 0 and 1 as follows:

hit score ¼

1

�lnðE valueÞ
415

0

j

j

j

BLAST E value ¼ 0; �lnð0Þis not calculatable; 000 is the most meaningful E value

0 < BLAST E value < 1; �lnð1e� 180Þ � 415; 01e� 1800 is second best E value

BLAST E value � 1; �lnð1Þ ¼ 0; ignoring the meaningless E value > 1

8>>>>><
>>>>>:

This transformation helps discretize the continuous E-values using bins of equal interval for
the calculation of the mutual information score. Although this method evenly distributes the
BLASTP hit-scores of the profiles, we found that bins of equal distribution performed better in
network inference.

Visualization of the relationship among reference species in the
phylogenetic profiles
To visualize the relationship among reference species in the phylogenetic profiles, we used a
principal component analysis (PCA) of the phylogenetic profiles. In the biplot representation,
the homologous query species genes are represented by the first and second principal compo-
nents of phylogenetic profiles, and inheritance profiles on reference species are represented as
vectors. PCA and biplot analysis were performed using R packages. The phylogenetic profiles
were used in singular vector decomposition (SVD) to conduct PCA using the R function
‘prcomp’.

Network inference by co-inheritance analysis using mutual information
scores
Co-functional links were inferred from co-inheritance, which was generally indicated by shared
phylogenetic profiles between two genes. The association between two profiles on the reference
species was measured by the mutual information (MI) score, which is applicable for both the
linear and non-linear relationships of the variables. The MI score between two profiles was
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calculated as described in [5] with some modifications as follows:

MIðA;BÞ ¼ HðAÞ þ HðBÞ � HðA; BÞ

HðAÞ ¼ �
X

pðaÞln½pðaÞ�; HðA;BÞ ¼ �
XX

pða; bÞln½pða; bÞ�

whereH(A) is the marginal entropy of the probability distribution p(a) of gene A in each
genome and H(A,B) is the intrinsic entropy of the joint probability distribution of gene A and
gene B. To calculate the probability, we used distribution-based discretizing bins in which
equal numbers of ordered profile scores were assigned. The optimal number of discretizing
bins was chosen to maximize performance during benchmarking of the network performance
using gold-standard co-functional gene pairs as described below. We found that discretizing
bins of equal distribution outperformed discretizing bins of equal interval.

Gold-standard co-functional gene pairs for benchmarking inferred
networks
The inferred networks were assessed by gold-standard co-functional gene pairs derived from
Gene Ontology biological process (GO-BP) terms [25] and MetaCyc terms [26] for all four
query species: E. coli, S. cerevisiae, A. thaliana, and H. sapiens. The GO-BP annotations for the
four species were downloaded in March 2012. Only the annotations supported by experimental
evidence and an equivalent level of reliability were used in the construction of the gold-stan-
dard co-functional gene pairs. GO annotations have a hierarchical organization, in which the
top-level terms for broad concepts (e.g., metabolic processes) may have a large number of
member genes. All-versus-all pairing for such a large group of genes will generate a huge num-
ber of gene pairs that occupy a large portion of the gold-standard set. Network evaluation

Table 1. Sources of protein sequence data used in this study.

Sources of protein sequence data URL Ref.

National Centre for Biotechnology Information (NCBI) ftp://ftp.ncbi.nlm.nih.gov/genomes [10]

European Bioinformatics Institute- European Nucleotide Archive (EBI-ENA) ftp://ftp.ebi.ac.uk/pub/software/ensembl/eg-dumps/blast-11 [22]

ENSEMBL ftp://ftp.ensembl.org/pub/release-65/fasta [12]

Broad Institute Database http://www.broadinstitute.org/scientific-community/data

Department of Energy Joint Genome Institute (DOE-JGI) ftp://ftp.jgi-psf.org/pub/JGI_data

J. Craig Venter Institute (JCVI) ftp://ftp.jcvi.org/pub/data/Eukaryotic_Project

Beijing Genomics Institute (BGI) ftp://ftp.genomics.org.cn/pub [14]

Consensus CDS Project (CCDS) http://www.ncbi.nlm.nih.gov/CCDS [23]

Génolevures http://www.genolevures.org [24]

Genoscope http://www.genoscope.cns.fr/spip/Genoscope-s-Resources.html

Saccharomyces Genome Database (SGD) http://www.yeastgenome.org [11]

Wormbase https://www.wormbase.org [16]

Flybase https://flybase.org [13]

The Arabidopsis Information Resource (TAIR) https://www.arabidopsis.org [18]

Rice Genome Annotation Project http://rice.plantbiology.msu.edu [21]

Genome Database for Rosaceae (GDR) http://www.rosaceae.org [17]

VectorBase https://www.vectorbase.org/downloads [15]

Bioinformatics & Evolutionary Genomics Lab at Ghent University http://bioinformatics.psb.ugent.be/genomes/

SUPERFAMILY http://supfam2.cs.bris.ac.uk/SUPERFAMILY/cgi-bin/index.html [20]

Cyanidioschyzon merolae Genome Project http://merolae.biol.s.u-tokyo.ac.jp/download/ [19]

doi:10.1371/journal.pone.0139006.t001
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based on the gold-standard set then will be biased toward the gene pairs for the large GO
terms. Therefore, we excluded such GO terms to reduce the bias in the network evaluation
[27]. Finally, the metabolic pathway links fromMetaCyc were added to augment the gold-stan-
dard set.

Log-likelihood score and weighted summethod for network integration
The log-likelihood score (LLS) has proven to be useful in the benchmarking and integration of
heterogeneous data [28]. The LLS is calculated as

LLS ¼ ln
PðLjEÞ=Pð� LjEÞ
PðLÞ=Pð� LÞ

� �

where P(L|E) and P(~L|E) represent the frequencies of positive (L) and negative (~L) gold-
standard pathway links observed in the given experimental or computational data (E), and P
(L) and P(~L) represent the prior expectations (i.e., the total frequencies of all positive and neg-
ative gold-standard pathway gene pairs, respectively).

To integrate networks inferred from domain-specific profiles, the LLSs of each network
were integrated using a weighted sum (WS) method [29]:

WS ¼ S0 þ
Xn

i¼1

Si
D � i ; for all S � T

where S0 is the best LLS score among all available LLSs from domain-specific profiles for a
given pathway link, D is a free parameter representing the degree of interrelationship among
the networks, T is a threshold of LLS for all the networks to be integrated, and i is the rank
index in descending order of the n LLSs for each link. The values for the free parameters, D and
T, were chosen to maximize the overall performance of the integrated network.

Network construction with the sub-sampling reference species of
phylogenetic profiles
To assess the benefit of additional sequenced genomes on network inference by phylogenetic
profiling, we constructed a series of human gene networks by increasing the number of refer-
ence species at each step. The 2,144 reference species were randomly drawn from each of the
three domains: 122 species for Archaea, 1,626 species for Bacteria, and 396 species for Eukar-
yota. Then we constructed co-functional networks with phylogenetic profiles of the sub-sam-
pled reference species for different sizes: 15, 30, 60, and 122 Archaea species; 200, 400, 800, and
1,626 Bacteria species; and 50, 100, 200, and 396 Eukaryota species. We chose the given test set
sizes to simulate the exponential growth of sequenced genomes in recent years. With the excep-
tion of the networks that used all the reference species in each domain, the networks were con-
structed with three independent random samples for each set size. The high-accuracy networks
were determined by co-functional links with a likelihood at least three times higher than that
by random chance. The effectiveness of network inference was assessed by the size of the high-
accuracy networks, both in terms of the genome coverage and the number of network links.
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Results and Discussion

Reference species are clustered into three domains of life based on
principle component analysis of the phylogenetic profiles
Pathway genes may inherit unevenly among the species, and the detection of taxonomic groups
for pathway gene co-inheritance may provide new insights into improving network inference
based on inheritance profiles (i.e., phylogenetic profiles). To visualize the relationship among
reference species in the phylogenetic profiles, we performed PCA on the phylogenetic profiles
of 2,144 reference species (122, 1,626, and 396 species for the Archaea, Bacteria, and Eukaryota
domains, respectively) in each of four query species: E. coli, S. cerevisiae, A. thaliana, and H.
sapiens. Inheritance profiles of the query species genomes on reference species were repre-
sented as vectors in the PCA biplots, which represent a pair of principal components of the
phylogenetic profiles. The cosine of the angles between the vectors represents the correlation
between the variables, that is, the inheritance information of a query species genome in the cor-
responding reference species. Thus, if vectors are close, the corresponding reference species
have a highly positive correlation in inheritance of the query species genome.

We observed that the vectors for the reference species from the same domains are close,
resulting in clusters of the reference species for the three domains of life in all four query
species, as observed in the PCA biplots (Fig 1). The observed taxonomic structures for the
domains of life in the phylogenetic profiles suggest that pathway genes of query species have
been co-inherited mainly within the domains of life.

Co-inheritance analysis within the domains of life improve network
inference
We hypothesized that the three clusters of reference species for the domains of life in the phylo-
genetic profiles may reflect the co-inheritance of pathway genes within domains, which may
result in three different types of phylogenetic profiles that support the co-inheritance of gene
pairs, as illustrated in Fig 2A. Two genes for a pathway have been co-inherited within i)
Archaea only (genes A and B), ii) Bacteria only (genes C and D), or iii) Eukaryota only (genes
E and F). Note that the inheritance patterns of the same gene pairs in the other domains are
irrelevant. Therefore, if we conduct co-inheritance analysis across all the species of the three
domains, the strong co-inheritance pattern within a specific domain could be eroded by irrele-
vant inheritance patterns from the other domains, which would limit the detectability of the
within-domain co-inheritance patterns for the gene pairs. However, if we restrict the analysis
to individual domains, then the co-inheritance patterns for the gene pairs in a specific domain
can be detected due to a reduction in confounding inheritance patterns. Hence, within-domain
co-inheritance analysis will detect more pathway links.

To investigate whether within-domain co-inheritance analysis can improve network infer-
ence, we compared co-functional networks inferred from phylogenetic profiles on each domain
and the profile on all the reference species using the method described in Materials and Meth-
ods. We determined confident co-functional gene networks as gene pairs that are more likely
to be involved in the same pathways than would be expected by random chance. The inferred
confident networks were visualized with different color codes: red for links inferred from co-
inheritance within Archaea, green for those within Bacteria, blue for those within Eukaryota,
and black for those among all species (Fig 2B). Interestingly, we found that most of the co-
functional links were inferred from co-inheritance patterns within domains rather than among
all reference species in all four query species.

Network Inference byWithin-Domain Co-Inheritance

PLOS ONE | DOI:10.1371/journal.pone.0139006 September 22, 2015 6 / 12



Notably, the co-functional links inferred from each of the three domains did not exhibit sig-
nificant overlap, which suggests that integrating the three domain-specific networks would
increase the completeness of the networks. Therefore, we constructed co-functional networks
using a divide-and-integrate approach, which consists of three steps: i) dividing all the reference
species into taxonomic groups by clusters based on the first two principal components of the
phylogenetic profiles, ii) inferring the co-functional links from the co-inheritance analysis with
the taxonomic groups, and iii) integrating the networks derived from each of the taxonomic
groups. The networks derived from the divide-and-integrate approach exhibited substantially
improved performance in all four query species compared with those inferred from the whole
phylogenetic profiles (Fig 2C). For example, the human and Arabidopsis co-functional net-
works inferred by divide-and-integrate approach with three domain-specific profiles cover 3–4
times the coding genome (2,500–3,500 genes) than those constructed with the all-genomes
profile.

Co-inheritance analysis within sub-domain taxonomic structures
provides only marginal benefits
Given the substantial improvement in network inference by within-domain co-inheritance
analysis, we next inquired whether the co-inheritance analysis within sub-domain taxonomic
groups could further improve network inference. To address this question, we performed PCA
biplot analysis for phylogenetic profiles based on 396 eukaryotic reference species in three
eukaryotic query species: yeast, Arabidopsis, and human. Contrary to our expectation based on
the earlier observation of three domain-specific clusters in the whole phylogenetic profiles, we
could not observe four taxonomic clusters for the four major kingdoms of the Eukaryota
domain: Protista (58 genomes), Fungi (177 genomes), Planta (38 genomes), and Metazoa (123
genomes). Instead, we observed that the 396 reference eukaryotic species are clustered into two
taxonomic groups: one for a kingdom that includes the query species (in-group) and the other
for the remaining kingdoms (out-group) (Fig 3A). The one exception was for Arabidopsis, in
which the in-group includes only flowering plants of the Planta kingdom. We constructed net-
works based on the two sub-domain taxonomic groups in the three query species using the
divide-and-integrate approach, and observed only a marginal improvement compared with the
network inferred from a single profile based on all the eukaryotic reference species (Fig 3B).
Notably, in all three query species, the networks inferred from the in-group profile exhibited

Fig 1. Clusters of reference species in the phylogenetic profiles. The principal component analysis (PCA) biplot analysis for the 2,144 reference species
revealed three clusters for the domains of life in the four query species: E. coli, yeast, Arabidopsis, and human. Each vector line represents an inheritance
profile on a reference species, which is color-coded for the domain class of the reference species. The angles between the vectors approximate the
correlation between the inheritance patterns of the query genome in the reference species.

doi:10.1371/journal.pone.0139006.g001
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poor performance. These phenomena are not likely to be attributable to the profile size,
because the size of the in-group profile is comparable with that of the out-group profile in yeast
and human. One possible explanation for the poor performance in the in-group profile is its
low complexity in inheritance patterns due to the close phylogenetic relationships between the
query species and the in-group species, which in turn lowers the mutual information score.

Fig 2. Network inference by within-domain co-inheritance analysis. (A) A schematic illustration of the three classes of co-inheritance patterns within the
domains of life. Each rectangle represent the presence (filled) or absence (empty) of a homolog of the given query gene in the reference species. The
presence of homologs might indicate that the ancestor of the query gene also was inherited in the reference species. If two query genes have been co-
inherited in a reference species, then both of their homologs are present in the reference species. For example, gene A and B have been co-inherited in
Archaea, but not in either Bacteria or Eukaryota. The co-inheritance patterns between A and B, C and D, and E and F are evident only within specific domains
(Archaea, Bacteria, and Eukaryota, respectively). (B) The co-functional networks inferred by within-domain co-inheritance analysis in the four query species.
The network in red was inferred by co-inheritance analysis within archaeal species only, the network in green within bacterial species only, the network in
blue within eukaryotic species only, and the network in black within all species. Note that most links were inferred by co-inheritance analysis within each
domain. (C) The performance curves of networks inferred by phylogenetic profiling in four species. The accuracy of each network is depicted by the precision
for the given coverage of the coding genome. For each query species, the co-functional networks inferred from a profile consisting of the Archaea, Bacteria,
or Eukaryota genomes; a profile of all the reference species (All-species); or by integrating the three networks inferred from each domain-specific profile
(Divide-and-integrate) are shown. The divide-and-integrate network outperformed the other networks in all the query species. In contrast, the network
inferred from the all-genomes profile performed poorly, especially in higher eukaryotes.

doi:10.1371/journal.pone.0139006.g002
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Taken together, we conclude that the co-inheritance analysis within the domains of life is the
most effective for network inference.

Within-domain co-inheritance analysis will potentiate the phylogenetic
profiling method in the era of next-generation sequencing
Tens of thousands of sequenced genomes will be available in the near future as a result of revo-
lutions in DNA sequencing technology. To investigate whether within-domain co-inheritance
analysis can continue to improve network inference with the rapid expansion of sequenced
genomes, we simulated the growth in the number of genomes by sub-sampling the 2,144 refer-
ence species genomes. Subsets of the reference species were randomly drawn from each domain
to generate four sets of increasing profile size for each domain, and human gene networks were
inferred from these sub-sampled profiles. To assess the benefit of an increase in the number
of reference species genomes in network inference, we compared the size of high-accuracy
networks (i.e., those in which the likelihood of co-functional links was three times higher than
would be expected by chance), and observed an increase in the size of the high-accuracy net-
works, in terms of both genome coverage and the number of links, as more reference genomes
were used for profiling (Fig 4). This observation was true for all three domains, and there was
no sign of significant discovery saturation. Notably, the retrieval rate of human co-functional
links by within-domain co-inheritance analysis abruptly increases once more than 100 eukary-
otic or 800 bacterial reference genomes were included. Such numbers of genomes have become
available only recently. Previous reports of the poor performance of phylogenetic profiling

Fig 3. Network inference by co-inheritance analysis within sub-domain taxonomic groups. (A) The PCA biplot analysis for the 396 eukaryotic
reference species revealed two clusters of reference species, one for an in-group kingdom and the other for out-group kingdoms, in the three eukaryotic
query species. The description of these plots is the same as in Fig 1. (B) The performance curves of the networks inferred based on 396 eukaryotic reference
species genomes, as for Fig 2C. The networks inferred from a profile by an in-group kingdom, an out-group kingdom, a single profile of all the reference
species (i.e., all-genomes profile), or by a divide-and-integrate approach with the two clusters are shown for each query species.

doi:10.1371/journal.pone.0139006.g003
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methods on eukaryotic query species [7, 30] may be due to an insufficient number of reference
genomes: no more than 50 eukaryotic genomes were used in these previous studies. Therefore,
we anticipate that within-domain co-inheritance analysis will facilitate eukaryotic gene net-
work inference in the era of next-generation sequencing.

Conclusions
By disclosing clusters of reference species based on the first two principal components of the
phylogenetic profiles, we recognized the importance of taxonomic structures in phylogenetic
profiling analysis. We demonstrated substantially improved network inference by within-
domain phylogenetic profiling analysis, and found that the domains of life are the most effec-
tive taxonomic unit for co-inheritance analysis in network inference. As the number of
sequenced genomes explodes, understanding of the principles underlying pathway evolution
during speciation becomes increasingly important for network inference based on phylogenetic
profiles. Our proposed within-domain phylogenetic profiling analysis will make a critical
contribution to the construction of genome-scale functional networks using the expected
onslaught of sequenced genomes in the near future.

Fig 4. Within-domain phylogenetic profiling improves the human co-functional network asmore
genomes are used. The construction of human co-functional networks with sub-sampling of the reference
species genomes demonstrated that the size of the high-accuracy networks inferred by the within-domain co-
inheritance analysis is directly proportional to the growth in the number of sequenced genomes in terms of
both (A) the genome coverage and (B) the number of network links. Human gene networks were constructed
using subsets of the reference genomes. First, networks were constructed for the Archaea, Bacteria, and
Eukaryota domains separately using all genomes available for each domain (122, 1,626, and 396,
respectively); next, three subsets of randomly selected genomes were used for network inference by
phylogenetic profiling for each domain (sets of 15, 30, and 60 genomes for Archaea; 200, 400, and 800
genomes for Bacteria; and 50, 100, and 200 genomes for Eukaryota). The lines connect the median
performance scores of the triplicated test results.

doi:10.1371/journal.pone.0139006.g004
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