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Abstract
Neurotransmitter transporter ubiquitination is emerging as the main mechanism for endocy-

tosis and sorting of cargo into lysosomes. In this study, we demonstrate PKC-dependent

ubiquitination of three different isoforms of the glycine transporter 1 (GlyT1). Incubation of

cells expressing transporter with the PKC activator phorbol ester induced a dramatic, time-

dependent increase in GlyT1 ubiquitination, followed by accumulation of GlyT1 in EEA1

positive early endosomes. This occurred via a mechanism that was abolished by inhibition

of PKC. GlyT1 endocytosis was confirmed in both retinal sections and primary cultures of

mouse amacrine neurons. Replacement of only all lysines in the N-and C-termini to argi-

nines prevented ubiquitination and endocytosis, displaying redundancy in the mechanism

of ubiquitination. Interestingly, a 40–50% reduction in glycine uptake was detected in phor-

bol-ester stimulated cells expressing the WT-GlyT1, whereas no significant change was for

the mutant protein, demonstrating that endocytosis participates in the reduction of uptake.

Consistent with previous findings for the dopamine transporter DAT, ubiquitination of GlyT1

tails functions as sorting signal to deliver transporter into the lysosome and removal of ubi-

quitination sites dramatically attenuated the rate of GlyT1 degradation. Finally, we showed

for the first time that PKC-dependent GlyT1 phosphorylation was not affected by removal of

ubiquitination sites, suggesting separate PKC-dependent signaling events for these post-

translational modifications.

Introduction
The neurotransmitter glycine is responsible for the regulation of several essential functions in
the central and peripheral nervous system including motor and sensory signals. It plays a dual
role in the CNS and participates at both inhibitory and excitatory synapses. At inhibitory syn-
apses, glycine released at the synaptic cleft binds to post-synaptic strychnine-sensitive glycine
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receptors, resulting in chloride permeability and hyperpolarization of the post-synaptic neu-
ron. In addition, glycine functions as an essential co-agonist with glutamate at NMDA-receptor
containing synapses, where binding and further activation of the receptor allows Ca++ influx
and propagation of neurotransmission. Termination of neurotransmission at glycinergic syn-
apses is achieved by rapid re-uptake of glycine into the presynaptic neurons and surrounding
glial cells by two glycine transporters, GlyT1 and GlyT2. At NMDA-containing synapse, GlyT1
is in charge of glycine clearance. Several pieces of experimental evidence support the essential
role of GlyT1 in the regulation of NMDA receptor activity by maintaining a sub-saturating
concentration of glycine at the glutamatergic synaptic cleft [1,2,3,4].

The transporters GlyT1 and GlyT2 belong to the SLC6 family of Na+, Cl--dependent neuro-
transmitter transporters, which include the monoamine (DAT, SERT and NET), GABA and
proline carriers. Structurally, the GlyTs are polytopic membrane proteins embedded in the
plasma membrane by 12 transmembrane-spanning domains, a large extracellular loop contain-
ing 3–4 glycosylation sites and intracellular amino- and carboxyl-terminal tails carrying pre-
dicted sites for posttranslational modifications (Fig 1A). Although GlyTs share about 50%
sequence identity, they differ in their tissue-distribution pattern. GlyT2 is found exclusively in
neurons from regions enriched in synapses that contain glycine receptors (glycinergic synap-
ses), predominantly the brain stem, cerebellum and spinal cord. In contrast, it has been pro-
posed that GlyT1 is expressed in glial cells surrounding glycinergic synapses, in addition to
glutamatergic neurons and glial cells from the hippocampus, cortex and other subcortical
regions such as the thalamus [5,6]. Three different amino-terminal GlyT1 splice variants,
encoded by the same gene, have been identified (GlyT1a, b and c) that differ in the length of
the amino terminal tail [7]. The GlyT1a variant represents the shortest isoform followed by
GlyT1b and GlyT1c (Fig 1A).

As with all neurotransmitter transporters, the activities of the GlyTs are dependent on their
localization to the plasma membrane, and internalization results in a reduction in the uptake
capacity. However, the mechanisms by which their localization and activities are regulated
have not been examined in detail until now. For most members of the SLC6 family, both of
these properties are tightly-connected to a signaling pathway that involves Protein Kinase C
(PKC). For several SLC6 family members, including GlyT1, PKC activation by phorbol ester
(PMA) diminishes neurotransmitter maximal transport capacity and increases both trans-
porter phosphorylation and interaction with the SNARE protein syntaxin 1A [8,9,10]. These
properties, which result in inhibition of transporter activity, have been attributed to increased
endocytosis. Additional evidence also supports the role of other signaling molecules in the reg-
ulation of transporter trafficking including protein phosphatase A, Ca++, and tyrosine kinase-
linked pathways. Recent findings on the dopamine and glutamate transporters demonstrated
that PKC activation by PMA resulted in enhanced ubiquitination and endocytosis, while
removal of ubiquitinated residues abolished PKC-dependent ubiquitination and endocytosis
[11,12,13]. Although some proteins that interact with GlyT1 and GlyT2 have been reported,
including syntaxin 1A, a member of the collapsing response mediator protein Ullip6, and syn-
tenin-1, very little is known about their role in modulation of GlyTs trafficking [14,15,16].

Accumulating experimental evidence with closely-related transporters such as DAT, points
to the N-terminal tail as the main region of protein kinase C-dependent posttranslational mod-
ifications such as phosphorylation and ubiquitination [12,17,18], suggesting a regulatory role
of this N-terminal domain. By contrast for the glutamate transporter GLT-1, mutation of all 11
lysine residues within the amino and carboxyl-terminal domains abolished ubiquitination,
showing a role for both termini in posttranslational modifications. Hence, in the present study
we have analyzed whether PKC activation leads to GlyT1 ubiquitination. Surprisingly, PKC
activation by PMA resulted in a time-dependent enhancement of ubiquitination and
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Fig 1. Schematic representation of the predicted topology of GlyT1 isoforms and PKC- induced endocytosis of GlyT1. A) The twelve membrane-
spanning segments are depicted by cylinders, and intracellular N andC termini, loops and extracellular glycosylation sites by solid lines. The position of
lysine residues in the three differentN-terminal splice variants are presented by beads (GlyT1a, 1b and 1c). Conserved lysines are highlighted by gray beads.
B) PAE cells stably expressing FH-GlyT1b andC) PAE cells stably expressing FH-GlyT1c were incubated with DMSO or PMA for 30–60 min at 37°C, fixed
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accelerated endocytosis. Site-directed mutagenesis studies revealed that simultaneous substitu-
tions of all 6–7 lysine residues in the amino- and carboxy-terminus inhibited the PKC-depen-
dent ubiquitination and endocytosis of three GlyT1 isoforms. Furthermore, removal of
ubiquitination sites prevented GlyT1 transporter degradation but did not affect the PKC-
dependent phosphorylation. Altogether, these data demonstrate redundancy in the mechanism
of ubiquitination and suggest that PKC-dependent phosphorylation and ubiquitination may
regulate different GlyT1 transporter properties.

Materials and Methods

Materials
[3H]-Glycine was purchased from Perkin Elmer Life Scientific (Boston, MA). Phorbol 12-myr-
istate 13-acetate (PMA), N-ethylmaleimide, anti-FLAGM2 affinity gel and rabbit anti α-actin
antibody were purchased from Sigma (St. Louis MO). Monoclonal anti-DAT antibodies were
from EMDMillipore (Temecula, CA.). Ni-NTA agarose was from Qiagen (Hilden, Germany).
Monoclonal mouse P4D1 to ubiquitin was from Santa Cruz Biotechnology (Santa Cruz, CA).
Monoclonal antibody to EEA1 was purchased from BD transduction laboratories (San Jose,
CA). Fluorescently or HRP-labeled secondary antibodies were from Jackson Immunoresearch
Laboratories, Inc. (West Grove, PA). Rabbit polyclonal antibodies to GlyT1 were kindly
donated by Detlev Boison and Dietmar Benke (University of Zurich).

Plasmid constructs and mutations
The cDNA encoding for the mouse glycine transporter (mGlyT1) was purchased from the
American Type Culture Collection (ATCC) and the human GlyT1b and GlyT1c cDNAs were
kindly provided by Professor Bruno Giros (INSERM, France). The gene encoding for the
human dopamine transporter (DAT) was provided by Dr. A. Sorkin (University of Pittsburg).
All GlyT1 isoforms were tagged with Flag and 10X-His (FH) epitopes at the N-termini and the
resulting constructs cloned into pCDNA 3.1 (FH-GlyT1) as previously described [11]. Single
and multiple lysine substitutions were made using the FH-GlyT1 or FH-DAT as templates and
a QuickChange site-directed mutagenesis kit following the manufacturer’s protocol (Stratagene
Cloning Systems, La Jolla, CA) and the mutations were verified by automatic dideoxynucleo-
tide sequencing.

Cell culture and transfections
Porcine aortic endothelial (PAE-C, available from ATCC) cells were kindly provided by Dr.
A. Sorkin (University of Pittsburg) and grown at 37°C and 5% CO2 in Ham’s F12 medium
containing 10% FBS and antibiotics (Life Technologies, Grand Island, NY). PAE cells were
grown to 50–80% confluence and transfected with appropriate plasmids using Effectene
according to the manufacturer’s recommendation (Qiagen, Hilden, Germany). PAE cells sta-
bly expressing wild-type or GlyT1 mutants were selected by growing them in the presence of
G418 (400 μg/ml).

and immunostained with anti-GlyT1 and anti-EAA1 antibodies followed by incubation with a CY-3 and Alexa 488 labeled secondary antibodies. Images were
selected to represent the cell population and acquired through YFP (green) and CY3 (red) filter channels. Single optical sections through the middle of the
cells are shown. ‘Yellow’ in the merged images signifies co-localization of CY3 (GlyT1) and YFP (EEA1). D) Co-localization was quantified in pixel by pixel
bases from images obtained by confocal microscopy using the Mander’s overlap coefficient of merged images. A value of 1 represents 100% co-localization
of both fluorescence signals in 15 randomly selected endosomes, whereas a zero value denotes complete absence of co-localization. p values were
determine by student’s t-test. Scale bars, 10 μm.

doi:10.1371/journal.pone.0138897.g001
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Affinity chromatography and western blotting
Affinity chromatography was performed as previously described [11]. Briefly, PAE cells stably
expressing WT or mutant FH-GlyT1 were grown for two days in 35 mm dishes to 100% con-
fluence and treated with vehicle (DMSO) or PMA for different periods of time. The cells were
placed on ice for 5–10 min and washed three times with Ca2+- and Mg2+-free cold phosphate-
buffered saline (PBS), and the proteins solubilized in lysis buffer (1% Triton X-100, 25 mM
HEPES, pH 7.6, 10% glycerol, 100 mMNaCl, 10 mM sodium fluoride, 1 mM phenylmethylsul-
fonyl fluoride, 10 μg/ml leupeptin, 10 μg/ml aprotinin, 10 mM N-ethylmaleimide, 15 mM
imidazole) for 10 min at 4°C. The cleared lysate was incubated with Ni-NTA for 1 h, the beads
washed five times with lysis buffer and FH-GlyT1 eluted with 300 mM imidazole in lysis buffer.
The eluate was diluted 10 times with the FLAG binding buffer (50 mM Tris, 150 mMNaCl,
10% glycerol, 1% Triton) and incubated for 4 h with FLAGM2 affinity gel. The mixture was
washed five times with 1 ml of FLAG binding buffer, and GlyT1 was eluted with 0.1 M glycine
(pH 2.8). The eluted fraction was quickly mixed with loading dye and boiled for 5 min. Total
lysates or purified GlyT1 were subjected to electrophoresis in 8.0% SDS-polyacrylamide gels,
and the proteins transferred to nitrocellulose membrane. Membranes were blotted with mono-
clonal mouse antibodies against ubiquitin and rabbit antibodies against GlyT1, followed by
corresponding secondary antibodies conjugated with horseradish peroxidase, and detection
using the enhanced chemiluminescence kit from Pierce (Thermo Fisher Scientific, Rockford,
IL). Quantification was performed using densitometry and Adobe Photoshop software.

Retina preparation and primary cultures
Adult and newborn (Postnatal day 1–5, P1-5) of C57BL/6J black mouse were used for histology
and preparation of primary cultures, respectively. All animal use procedures were in confor-
mance with the Guide for Care and Use of Laboratory Animals (National Institute of Health).
These procedures were performed under a protocol approved by the University of Texas at El
Paso (UTEP) Institutional Animal Care and Use Committee (IACUC). Adult animals were
deeply anesthetized by intraperitoneal injection of pentobarbital (50 mg/kg) and the eyes enu-
cleated and open by cutting along the ora serrata. Following removal of the vitreous, the poste-
rior eyecup was fixed for 10 min by immersion in 4% paraformaldehyde in PBS. After fixation,
the eyecups were cryoprotected by immersion in 10 and 20% sucrose followed by a final incu-
bation of 30% sucrose in PBS overnight at 4°C. The following day, the optic cups were embed-
ded in tissue-tek, and frozen at -20°C. Vertical sections (15 μm) were obtained using a cryostat
and placed onto gelatin-coated slides. Retinal primary cultures were prepared as previously
described [19]. Cells were cultured on coverslips coated with 10 μg/ml laminin and 0.01%
poly-L-lysine and grown at 37°C and 5% CO2 in Neurobasal A medium supplemented with
B27, 0.5 mM Glutamax and antibiotics (Life Technologies, Grand Island, NY). Neurons were
allowed to differentiate and used after 10 days in culture.

Immunofluorescence staining and microscopy
The PAE cells were grown on glass coverslips and treated with DMSO or 1 μM PMA for
30–60 min at 37°C. After treatment, the cells were washed with CMF-PBS, fixed with freshly
prepared 4% paraformaldehyde for 15 min at room temperature and mildly permeabilized
using a 3-min incubation in CMF-PBS containing 0.1% Triton X-100 and 0.5% bovine serum
albumin at room temperature. The cells were then incubated in CMF-PBS containing 0.5%
bovine serum albumin at room temperature for 1 h with primary antibodies, and subsequently
incubated for 60 min with secondary antibodies labeled with CY3 or Alexa-488 (Jackson Labo-
ratories, West-Glove, PA). Both primary and secondary antibody solutions were precleared by
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centrifugation at 100,000 x g for 20 min. After staining, the coverslips were mounted in Mowiol
(Calbiochem). Images were acquired with a Zeiss inverted fluorescence microscope, equipped
with an AxioCamMRm from Carl Zeiss, filter wheel and a Xenon 175 W light source, assisted
with the Axiovision software 7.1 (Carl Zeiss, New York, NY). High resolution digital images
were acquired through the corresponding filter channels (Alexa-488 and CY-3 filters), and the
final arrangement of all images was performed using photoshop software. Images from tissue
sections and transfected PAE cells were acquired with a Zeiss laser scanning confocal micro-
scope (LSM700), assisted with the ZEN 2009 software (Carl Zeiss, New York, NY). Alexa-488
and Cy3 fluorophores were excited with 488 nm and 555 nm lasers respectively, and high reso-
lution optical section images were acquired and processed for quantitation of co-localization
for Alexa-488 and Cy3 fluorescence signals, on a pixel by pixel bases, from 15 endosomes in
different cells, using the co-localization module of ZEN 2009 software [20].

Surface Biotinylation
PAE cells expressing GlyT proteins were grown in 35-mm dishes and biotinylated as described
previously [12,21]. Briefly, the cells were washed with cold PBS containing 0.1 mM CaCl2 and
1 mMMgCl2 (PBS) and incubated for 20 min on ice with 1.5 mg/ml sulfo-N hydroxysuccini-
midobiotin (EZ-Link sulfo-NHS-biotin, Pierce) in PBS, followed by a second incubation with
fresh sulfo-NHS-biotin. After biotinylation, the cells were washed twice with cold PBS, incu-
bated on ice with 0.1 M glycine in PBS, and washed with PBS again. The cells were then solubi-
lized in lysis buffer supplemented with 10 mM Tris-HCl (pH 7.5) at 4°C. The lysates were
cleared by centrifugation for 10 min and the biotinylated proteins were precipitated with Neu-
trAvidin beads (Pierce), washed five times with lysis buffer (pH 8.0), and denatured by heating
the beads in sample buffer at 95°C for 5 min. To precipitate non-biotinylated proteins, super-
natants from the NeutrAvidin precipitation were further subjected to Ni-NTA affinity chroma-
tography. The precipitates were washed five times with lysis buffer, the protein was then eluted
in lysis buffer containing 300 mM imidazole and denatured by heating in sample buffer. The
NeutrAvidin beads and Ni-NTA precipitates were subjected to SDS-PAGE and Western blot-
ting with GlyT1 antibodies. Quantifications were performed using densitometry and Photo-
shop software.

Glycine uptake assay
Glycine uptake was performed as previously described with the following modifications [22].
PAE cells were grown to 90–100% confluence and washed three times with HEPES buffer
(10 mMHEPES pH 7.4, 135 mMNaCl, 2 mM KCl, 1 mM CaCl2, 1 mMMgSO4, and 10 mM
glucose). Glycine uptake was initiated by the addition of 0.25 ml HEPES buffer containing
4 μCi of [3H]-glycine/ml and 400 μM cold glycine. After 10 minutes at 37°C, the buffer was
removed and cells washed twice with ice-cold buffer following by extraction with 0.2 N of
NaOH. Glycine uptake was determined by scintillation spectroscopy and specific glycine
uptake is defined as the difference between total glycine uptake and minus glycine uptake mea-
sured simultaneously from parental cells transfected with pCDNA3.1. Protein concentration
was determined as described by Bradford [23].

Protein Degradation Assay
Wild type and GlyT1 mutants expressed in PAE cells were grown to 90–100% confluency. The
cells were incubated for 2 h with cycloheximide (50 μg/ml) to stop the delivery and synthesis of
new proteins followed by treatment with DMSO (6 h) or 1 μM PMA for 6, 4, or 2 h. After incu-
bations, the cells were washed and lysed as previously described. The cleared lysate was quickly
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mixed with loading dye and the proteins denatured by heating as previously described
[10,11,21]. It is worth mentioning that glycine transporters expressed in cultured cells is not
aggregated by heating, unlike the endogenous from tissue that aggregates. Total lysates were
subjected to electrophoresis and western blotting with rabbit antibodies to GlyT1 and α-actin,
followed by corresponding secondary antibodies conjugated with horseradish peroxidase. Pro-
tein detection was performed with the enhanced chemiluminescence kit from Pierce (Thermo
Fisher Scientific, Rockford, IL). Quantification was performed using densitometry and Adobe
Photoshop software.

Results

GlyT1 endocytosis and ubiquitination
Several studies have demonstrated the role of PKC on endocytosis and posttranslational modi-
fications of most transporters of the SLC6 family including GlyT1 [10,24,25]. For the dopamine
transporter, we previously demonstrated that accelerated endocytosis triggered by PKC activa-
tion was a result of enhanced DAT ubiquitination [12,25], events further confirmed by other
groups [26]. In this study, we analyzed PKC-dependent GlyT1 ubiquitination and endocytosis
in three N-terminal isoforms (mouse GlyT1a and human GlyT1b and c isoforms) that differ in
their length and in the number of lysine residues present in this region (Fig 1A).

The selected isoforms were analyzed in stably transfected PAE cells, allowing a detailed
analysis of GlyT1 postranslational modifications in a highly homogenous cell population,
where the majority of GlyT1 transporter is located at the plasma membrane and minor
amounts are found in the endoplasmic reticulum. In our previous study, we reported that tag-
ging the N-terminus of GlyT1a and GlyT1b with Flag and His did not affect the functional and
trafficking properties of the transporter [10]. As shown in Fig 1B, FH-GlyT1b appear at the
plasma membrane in vehicle-treated cells and accumulated into early endosomes labeled by
EEA1 after incubation of the cells with 1 μM PMA at 37°C for 30–60 min, demonstrating that
N-terminal tagging of GlyT1 did not affect retrograde and anterograde trafficking (Fig 1B
[10]). Similarly, FHGlyT1c, included in this study, localized mainly to the plasma membrane
in non-stimulated cells and minor co-localization with EEA1 was found in early endosomes.
As with GlyT1b, PKC-dependent GlyT1c endocytosis was observed after incubation of the cells
with PMA for 30–60 min, with GlyT1 accumulated in a large number of EEA1-positive early
endosomes, as observed by co-localization (Fig 1C, see insets). This event was blocked by pre-
incubation of the cells with 1 μM of the PKC specific inhibitor BIM for 30 min, demonstrating
the PKC-dependence, as demonstrated in previous studies [10,12]. After quantification of the
co-localization signal, we found a significant increase in co-localization after stimulation of
PKC, as suggested by the increase in the Manders’ overlap coefficient and a 5–10 fold increase
in fluorescence intensity (Fig 1D).

Several studies have described the regions in the mouse and rat central nervous systems that
are enriched in glycinergic neurons such as the spinal cord, cerebellum and brain stem but the
projections and connections are still not well defined. [6,27,28]. By contrast, the precise locali-
zation of glycinergic cell bodies, dendrites and connection are better characterized in the mam-
malian retina [29,30]. Therefore, to investigate whether endocytosis is a molecular event that
takes place in glycinergic neurons, we used sections of mouse retina and primary cultures of
mouse glycinergic amacrine neurons to study GlyT1 trafficking to early endosomes. To this
extent, we obtained 15 μm retinal vertical sections and stained them with DAPI and antibodies
specific for GlyT1 or EEA1. As shown in Fig 2A, three layers of cell bodies were clearly demar-
cated, corresponding to 1) the cell bodies of cones and bipolar cells (ONL, outer nuclear layer);
2) the middle layer accounting for cell bodies of horizontal and amacrine cells (INL, inner
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Fig 2. Localization of GlyT1 in mouse amacrine neurons. A) Vertical sections from adult C57BL/6J mouse retinas were stained for GlyT1, DAPI and
EEA1, and analyzed by confocal microscopy. DAPI staining depicts the nuclei in cell bodies of the retina layers. Outer Nuclear Layer, ONL; Outer Plexiform
Layer, OPL; Inner Nuclear Layer, INL; Inner Plexiform Layer, INL and Ganglion cell layer, GCL. B)Retinas from neonatal mouse were isolated, the tissue
digested with papain and the cells plated on poly-L lysine and laminin- coated glass coverslips. Primary cultures were incubated with DMSO or 1 μMPMA for
1 h followed by detection of glycinergic amacrine neurons by immunostaining with GlyT1 and co-localization with EEA1. Single 0.65 μm optical sections were
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nuclear layer), and 3) the cell bodies of ganglion cells (GCL). Strong GlyT1 immunoreactivity
was observed most prominently around cell bodies in the inner nuclear layer and descending
dendrites to the inner plexiform layer that contact the ganglion cells. This arrangement clearly
demonstrates the integrity of the sections and specific GlyT1 staining within the glycinergic
amacrine neurons. As observed in Fig 2A, bottom panel, EEA1 staining appeared as puncta
spread throughout all the retinal layers, which corresponded to early endosomes. Interestingly,
a few discrete puncta showed co-localization between GlyT1 and EEA1 in 0.65 μm confocal
optical sections and demonstrated by quantitative overlap coefficient analysis (Fig 2C), sug-
gesting that GlyT1 uses early endosomes for endocytosis.

To get insights into the PKC-dependent endocytosis in neurons, we prepared primary cul-
tures from P1-P3 mouse retinas and after 10 days in culture, the cells were incubated with vehi-
cle DMSO or PMA for 1 h. As illustrated in Fig 2B, GlyT1 staining clearly defines the plasma
membrane in cell bodies of amacrine neurons and appears in a few intracellular vesicles in
DMSO treated cells. We observed a few vesicles inside the cell body that showed co-localization
with EEA1, likely representing constitutive endocytosis, as has been described for the endoge-
nous dopamine transporter [25,31]. By contrast, we could show a modest increased number of
endosomes with co-localization between those proteins after PKC activation with PMA, mainly
in cell bodies and a few in neuronal varicosities (see arrowheads in Fig 2B). However, a clear
and significant effect in enhancement of endocytosis by PMA could not be determine in neu-
rons given that, in non-stimulated cells, a large number of EEA1 positive endosomes contained
low levels of GlyT1. Unfortunately, the low yields of GlyT1 protein recovered from the combi-
nation of several primary cultures were not sufficient to perform biochemical studies, likely
due to the low amount of glycinergic neurons obtained from developing animals. Thus, prepa-
ration of primary cultures from brain regions enriched in GlyT1 expression could allow bio-
chemical analysis; however, the precise location of glycinergic circuits is still under
development. Nevertheless, these results suggest that GlyT1 endocytosis into EEA1 endosomes
occurs in neurons from the retina and that PKC activation may increase the localization of
GlyT1 in endosomes.

To investigate the role of ubiquitination on PKC-dependent endocytosis of the three N-ter-
minal GlyT1 isoforms, we used wild type and mutants expressed in stable PAE cell lines. By
using stable cell lines, we are sure to work with a homogenous cell population where the major-
ity of the cells have similar levels of plasma membrane expression and guarantee consistency
from experiment to experiment. To investigate whether GlyT1 isoforms were ubiquitinated in
response to PKC, PAE cells expressing the FH-GlyT1s were incubated with PMA for various
lengths of time and the transporter isoforms were purified to near homogeneity and analyzed
by western blotting. As shown in Fig 3A–3C, when GlyT1 was purified from DMSO-treated
cells and analyzed with ubiquitin-specific antibodies, a faint smear was detected at ~90–120
kDa, depending on the isoform. By contrast, when GlyT1 was purified from PMA-treated cells,
a dramatic increase in ubiquitin immune-reactivity was observed for all isoforms (a, b and c)
with maximum signal at 30 min, maintained at 60 min and decreased with continued incuba-
tion time, as depicted after normalization of ubiquitinated GlyT1 for the total GlyT1 trans-
porter, in the densitometry analysis (Fig 3). In addition, enhanced GlyT1 ubiquitination was
abolished by 30 min pre-incubation with the PKC inhibitor BIM prior to stimulation with
PMA, demonstrating a PKC-dependent mechanism. Western blotting with GlyT1 antibodies

acquired by confocal microscopy and analyzed with ZEN 2009 software, as described in Fig 1D. Scale bars, 10 μm. C) Co-localization was measured for 10
EEA1- and 10 EEA1/GlyT1-positive endosomes from retinal sections depicted in panel A. Data is represented as described for Fig 1D and analyzed by
Student’s t-test.

doi:10.1371/journal.pone.0138897.g002
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Fig 3. Time course of PKC-induced ubiquitination of GlyT1 isoforms. A) PAE cells stably expressing FH-GlyT1a were incubated with PMA (1μM) for 0 to
120 min. After incubation, the proteins were solubilized and GlyT1 purified by tandem affinity chromatography using Ni-NTA-agarose and FLAGM2 gel.
Purified GlyT1 transporter was subjected to SDS-PAGE and western blotting using ubiquitin and GlyT1 antibodies.B) FH-GlyT1b isoform.C) FH-GlyT1c
isoform. Blots were subjected to densitometry analysis using image J software and the relative amount of ubiquitinated GlyT1 was normalized to the total
GlyT1 transporter. The Y axes represent the relative amount of ubiquitinated GlyT1. Data are expressed as the mean ± SEM, n = 4. ** A value of p<0.05 (*)
was obtained when each experimental sample was compared with untreated control cells via one-way analysis of variance (ANOVA) and Student’s t-test.
GlyT1-Ub, ubiquitinated glycine transporter; FH-GlyT1, Flag, His-tagged glycosylated glycine transporter; ng-GlyT1, non-glycosylated glycine transporter.

doi:10.1371/journal.pone.0138897.g003
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confirmed the presence of FH-GlyT1 migrating as a smeared band at ~70–90 kDa, in agree-
ment to that observed for tagged and untagged GlyT1 isoforms. The results of the densitometry
analysis showed higher levels of ubiquitinated GlyT1b and GlyT1c compared to those for
GlyT1a (represented as an increase in arbitrary units). This difference can be accounted by the
extra lysine residues in the isoforms b and c, available for ubiquitination. These data together
suggest that PKC activation triggers GlyT1 ubiquitination and endocytosis in a time dependent
fashion.

Mutations of lysine residues in the N- and C-termini abolish
ubiquitination and endocytosis
Ubiquitination and phosphorylation of several transporters such as DAT, NET and SERT have
been shown to involve residues at either N- or the C-terminus of these proteins. A recent study
expressing the rat GlyT1b isoform in transiently transfected MDCK cells by Fernandez-San-
chez et al. [24], showed PKC-dependent ubiquitination and proposed that the C-terminal tail
of the rat GlyT1b isoform contains endocytic determinants, pointing to Lys-619 as responsible
for ubiquitination and internalization. By contrast, we and others have reported the presence
of multiple lysines as ubiquitin-conjugation sites in the dopamine and glutamate transporters
[12,13], pointing to multiple lysine residues as potential conjugation sites rather than a single
lysine residue.

To identify the ubiquitin conjugation sites for the GlyT1 isoforms (Fig 1A), we performed
site-directed mutagenesis followed by endocytosis and ubiquitination analysis. Fluorescence
microscopy analysis showed that the single and pairwise lysine mutations did not impair the
trafficking when they were expressed in PAE cells, since GlyT1 mutants were efficiently deliv-
ered to the plasma membrane, and not affected in endocytosis by PMA. Similarly, western blot
analysis demonstrated that these mutants were not affected in PMA-induced GlyT1 ubiquiti-
nation, including mutations at the homologs residue to K619 (data not shown).

We therefore expected that several lysine residues were able to function as ubiquitin accep-
tor sites. For that reason, we stably expressed in PAE cells GlyT1 mutants devoid of any lysine
residues in the amino and/or carboxy-terminal tails and analyzed the ubiquitination levels by
western blotting. Although we present in Fig 4 the results obtained for GlyT1c isoform, it is
worth mentioning that the same findings were obtained for the isoforms GlyT1a and b (data
not shown). As shown in Fig 4A, even substitution of all of the lysine residues in either the
amino (NTK) or carboxy (CTK) terminal tail with arginines failed to prevent ubiquitination
for all GlyT1 isoforms. By contrast, substitutions at both tails (NTK-CTK) abolished the
PKC-dependent ubiquitination to levels similar to those obtained for GlyT1 purified from
non-stimulated cells. Interestingly, the mouse GlyT1a N-terminus contains two lysines that are
consecutive (K20 and K21) and two that are closely spaced (K4 and K7). Combination of single
or pairwise substitutions at these residues, in a mutant devoid of lysine residues at the C-termi-
nus, also failed to abolish ubiquitination (data not shown), discarding a possible role of two
closely spaced lysines as responsible for ubiquitination, as suggested previously [12]. This is
consistent with findings described for the dopamine transporter, in which pairwise mutations
of ubiquitin acceptor sites (K19, K27 and K35) did not abolish ubiquitination of DAT [12].
These results clearly demonstrate that any lysine residues present in either tail represent poten-
tial sites to conjugate with ubiquitin moieties and may serve as an acceptor site.

Consistent with these findings, fluorescence microscopy analysis of the NTK and CTK
mutants showed that the mutant transporters trafficked to the plasma membrane and endocy-
tosed into early endosomes in response to PMA stimulation, at rates similar to the wild-type
GlyT1 (Fig 4B). In contrast, removal of all N- and C-terminal lysine residues in the NTK-CTK
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Fig 4. Ubiquitination and endocytosis of multi-lysine GlyT1cmutants. A) PAE cells expressing WT FH-GlyT1c, NTK-1c, CTK-1c, and NTK-CTK-1c
were incubated with DMSO or PMA (1μM) for 30 min. After incubation, the proteins were solubilized and GlyT1 purified by tandem affinity chromatography
using Ni-NTA-agarose and FLAGM2 gel. Purified transporter was subjected to SDS-PAGE and western blot with ubiquitin and GlyT1 antibodies.
Densitometry analysis was performed as described for Fig 3 and expressed as a mean ± SEM, n = 4. B) PAE cells expressingWT FH-GlyT1c, NTK-1c, CTK-
1c, and NTK-CTK-1c were incubated with DMSO or PMA (1 μM) for 30 min. at 37°C, fixed and immunostained with anti-GlyT1 and anti-EAA1 antibodies
followed by incubation with a CY-3 and Alexa 488 labeled secondary antibodies, respectively. A z-stack of optical sections was acquired through YFP (green)
and CY3 (red) filter channels. Single optical sections through the middle of the cells are shown. ‘Yellow’ in the merged images signifies co-localization of CY3
(GlyT1) and YFP (EEA1). Images were selected to represent the cell population. Scale bars, 10 μm. C) Manders’ overlap coefficient of merged images
captured from doubly-labeled PAE cells with anti-GlyT1 (red) and anti-EEA1 (green) antibodies; a value of 1 represents 100% of both fluorescence signals
co-localized in all the pixels involved in the regions of interest (ROIs). Values are presented for 15 randomly selected endosomes in different cells from wild-
type and mutants. Statistical analysis was performed as described in Fig 1.

doi:10.1371/journal.pone.0138897.g004
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mutant abolished the PMA-induced endocytosis of the transporter and co-localization between
transporter and EEA1 was no longer observed. These results together suggest not only that
endocytosis of GlyT1 is dependent on ubiquitination but also that this post-translational modi-
fication is redundant and involves conjugation of ubiquitin to any of the multiple potential
conjugation sites at, either the N- or C-terminal tails, rather than to a specific lysine residue.
Interestingly, similar findings were described for the plasma membrane glutamate transporter,
where endocytosis was only abolished after 11 lysine substitutions from both N- and C-termi-
nal tails [13].

Internalization and degradation of GlyT1 is impaired by lysine
substitutions
To determine whether mutations at ubiquitination sites prevented endocytosis and degrada-
tion of GlyT1, we incubated cells expressing the WT GlyT1c isoform or the mutant NTK-CTK
with vehicle DMSO or PMA for 30 min. We then labeled the total cell surface proteins by incu-
bation of the cells with the impermeant reagent sulfo-N-hydroxysuccinimido biotin. Total bio-
tinylated cell surface proteins were precipitated with Neutravidin beads and biotinylated
proteins subjected to western blotting with GlyT1-specific antibodies. As shown in Fig 5A,
PMA induced a consistent 50–70% reduction in WT transporter at the cell surface when com-
pared to vehicle-treated cells. In the other hand, PMA treatment of cells expressing the
NTK-CTK mutant showed no change in the amount of cell surface transporter, as compared to
non-treated cells, suggesting that ubiquitination is critical for accelerated endocytosis (Fig 5B).
This data is consistent with a poor localization of the mutant transporter NTKCTK into early
endosomes in PMA-stimulated cells (Fig 4B).

It has been demonstrated previously that PKC activation triggers endocytosis and degrada-
tion of the dopamine and glutamate transporters and that removal of ubiquitin-conjugating
sites abolished these processes [12,13,32]. To test whether PKC-dependent ubiquitination and
endocytosis result in GlyT1 degradation, we incubated WT GlyT1c or mutants NTK, CTK or
NTK-CTK with cycloheximide (CHX) for two hours to abolish new protein synthesis and
allow the delivery of previously synthesized transporter to the plasma membrane, followed by
the addition of PMA for 2, 4 or 6 h or DMSO for 6 h. In these experiments, at the end of the
incubation time with PMA or DMSO, all of the cells had been treated with CHX for a total of
8 h (Fig 6A–6D). The cells were lysed and proteins analyzed by SDS-PAGE and western blot-
ting with GlyT1 antibodies. As illustrated in Fig 6A (lanes 1–4), the WT GlyT1c was degraded
over time, with a half-life of ~4 h. Similar to the WT, PKC activation led to degradation of both
NTK and CTK mutants, suggesting that any lysine residues present in either the N- or C-termi-
nal tail can be ubiquitinated, thereby targeting the transporter for degradation (Fig 6B and 6C,
lanes 1–4). Noteworthy, whereas NTK mutant showed a similar rate of degradation to the wild
type, the CTK mutant had a diminished half-life of ~2 h. By contrast, similar levels of total
transporter were detected after 2, 4, and 6 h incubation with PMA for the double mutant
NTK-CTK, indicating that the loss of all possible ubiquitination sites resulted in stabilization
of the transporter and suggesting that ubiquitination is the signal that targets GlyT1 trans-
porter for endocytosis and further degradation (Fig 6D, lanes 1–4).

To rule out the contribution of altered turnover or any other potential off-effect of CHX
treatment, we performed several control experiments in which we incubated WT GlyT1c or
the lysine mutants with DMSO or PMA for 6 h in the absence of CHX. As shown in S1A–S1D
Fig (lanes 1 and 2), cells incubated with vehicle DMSO showed a modest increase in the
amount of transporter compared to those cells incubated with CHX, likely due to constant
input of newly synthesized GlyT1 from the ER. In the other hand, incubation with PMA led a
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modest, non-significant, reduction in the total transporter compared to DMSO-treated cells.
Although PMA is accelerating endocytosis and degradation in the absence of CHX, we cannot
detect this degradation because it is covered by a strikingly enhanced delivery of GlyT1 from
the ER to the plasma membrane. This enhancement in protein synthesis is highlighted by the

Fig 5. Multi-lysine mutations affect the levels of cell-surface GlyT1. PAE cells expressingA)WT or B)NTKCTK-GlyT1 were incubated with DMSO or
PMA (1 μM) for 30 min at 37°C. The cells were subjected to cell surface biotinylation, and biotinylated proteins were pulled down with Neutravidin (NeuAv)
beads. Non-biotinylated proteins were purified from NeuAv supernatants using Ni-NTA agarose. NeuAv and Ni-NTA precipitates were separated on
SDS-PAGE, transferred to nitrocellulose and the blots were probed with GlyT1 antibodies. C)Quantification of the amount of biotinylated and non-
biotinylated GlyT1. The densitometry analysis was performed using ImageJ and the values are expressed as the mean ± SEM, n = 2.

doi:10.1371/journal.pone.0138897.g005
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Fig 6. PKC-dependent GlyT1 degradation is impaired by lysine mutations. PAE cells expressingWT
and mutant forms of GlyT1 were incubated with 50 μg/ml of cycloheximide (CHX) for 2 h followed by
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increased accumulation of newly synthesized, non-glycosylated GlyT1 that migrated at 55–60
kDa (S1A, S1C and S1D Fig), which was present at very low levels, or absent (S1 Fig, panel B),
in cells incubated with DMSO, and absent in the cells incubated with CHX. These results
together demonstrate that PKC-dependent ubiquitination is the trigger for endocytosis and
further degradation, and that the process of ubiquitination can take place at any lysine residue
lying at either N- or C-terminus of the transporter.

GlyT1 phosphorylation takes place independent of ubiquitination
We previously demonstrated that GlyT1 is phosphorylated in response to PKCβ activation
along with a reduction in glycine uptake capacity. This reduction in uptake is likely due to
endocytosis, as described below. To analyze the relationship between phosphorylation, ubiqui-
tination and further reduction in glycine uptake, we next studied the effects of lysine substitu-
tions on GlyT1c phosphorylation and uptake to define the relationship between
phosphorylation, ubiquitination, and glycine uptake. In control experiments, we subjected
PAE cells transfected with the vector or expressing the WT GlyT1c to 32P-ATP metabolic label-
ing, followed by DMSO or PMA stimulation. After incubation, the cells were lysed, and the
transporter purified and subjected to SDS-PAGE and autoradiography. Consistent with our
previous published findings, incubation of PAE cells transfected with pCDNA3.1 vector with
DMSO or PMA for 60 min failed to identify in any radiolabeled band or immunoreactivitiy to
GlyT1 antibodies (Fig 7A, lanes 1 and 2). In the other hand, a faint smear could be detected
when GlyT1 was purified from DMSO-treated cells. By contrast, in PAE cells expressing WT
GlyT1c stimulated with PMA for varying periods of time (15–120 min), we observed a dra-
matic increase in GlyT1 phosphorylation that decayed after 2 h (lanes 5–8). When cells were
treated with BIM to inhibit PKC and stimulated with PMA, this increase in phosphorylation of
WT GlyT1was lost (Fig 7A, lane 4), demonstrating again its PKC dependence.

GlyT1 phosphorylation and ubiquitination are posttranslational modifications dramatically
enhanced by PKC activation. Whether they regulate different properties of transporter or both
depend of each other is something that needs to be explored. To get insights into the role of
ubiquitination on phosphorylation, we then used the same experimental approach to compare
phosphorylation in PAE cells expressing the NTK, CTK, and NTK-CTK forms of GlyT1c.
Cells were subjected to 32P-ATP metabolic labeling followed by PMA stimulation for 60 min as
above. As depicted in Fig 7B, PMA stimulation led to a significant ~10 fold increase in WT
GlyT1 phosphorylation compared to vehicle-treated cells, as determined by densitometry of
three independent experiments (p =<0.05). Interestingly, the PKC-dependent increase in
phosphorylation was not affected for the three mutants tested NTK, CTK and NTK-CTK (Fig
7B, lanes 4, 6, and 8), demonstrating that phosphorylation can take place independent of ubi-
quitination (Fig 7B). As depicted in Fig 7B and confirmed by the densitometry shown at right,
a slight increase in basal and PKC-dependent phosphorylation was observed for the mutant
NTK, which could be due to increased accessibility of phosphorylated residues. In any case,
consistent with the WT, this mutant also exhibited an 8–10 fold enhancement of phosphoryla-
tion after PKC activation (Fig 7B, lane 6; p =<0.002). These results confirmed the ability of the
mutant NTK-CTK of GlyT1 to be phosphorylated despite the lysine mutations and

treatment with 1μMPMA for 0–6 h. In all conditions, cells were incubated in the presence of CHX for a total of
8 h. After incubations, the cells were lysed and total lysates subjected to SDS-PAGE and western blot with
GlyT1 and actin antibodies. A)WT-FH-GlyT1c, and mutantsB) NTK-1c,C) CTK-1c, andD) NTK-CTK-1c.
Densitometry was as described in Fig 3 and values expressed as a mean of three to five independent
experiments ± SEM, n = 3–5. A value of p<0.05 (*) was obtained from each experimental sample, as
compared with untreated control cells, via one-way analysis of variance (ANOVA) and Student’s t-test.

doi:10.1371/journal.pone.0138897.g006
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abolishment of ubiquitination, further underlining the separation between the phosphorylation
and ubiquitination mechanisms under consideration here.

Fig 7. GlyT1 phosphorylation and glycine uptake. A) PAE cells stably expressing FH-GlyT1 were labeled with 50 μCi 32P-orthophosphate/ml followed by
incubation with DMSO or 1 μMPMA for 0 to 120 min. Labeled GlyT1 was purified by tandem affinity chromatography and analyzed by autoradiography and
Western blotting with GlyT1 antibodies.B) PAE cells expressingWT FH-GlyT1c, or the mutants NTK-1c, CTK-1c, and NTK-CTK-1c were labeled with 50 μCi
32P-orthophosphate/ml followed by incubation with DMSO or 1 μMPMA for 60 min and treated as described in A. The autoradiography and GlyT1 blots were
subjected to densitometry analysis and the resulting values are expressed as mean ± SEM, n = 3, C) For uptake experiments, cells were incubated with
vehicle (DMSO) or 1μMPMA for 30 min followed by a 10 min incubation with 400 μM of [3H]-Gly at 37°C. Values are represented as % of control DMSO for
each cell line, calculated from the following average specific activities in nmol/min/mg of protein: WT-1c, 41.3+/-3; NTK-1c,51.2+/-6; CTK-1c 39.4+/-3:
NTK-CTK-1c, 56.8+/- 4;. Error bars represent the mean ± SE, n = 3, *p = 0.002, **p <0.001.D) PAE cells expressingWT-DAT, and the mutant DAT were
labeled with 50 μCi 32P-orthophosphate/ml followed by incubation with DMSO or 1 μMPMA for 60 min. Total DAT was purified by tandem affinity
chromatography and analyzed by autoradiography andWestern blotting with DAT antibodies. Values are expressed as mean + SEM, n = 3. A value of
p<0.05 was obtained when each experimental sample was compared with untreated control cells via one-way analysis of variance (ANOVA) and Student’s
t-test.

doi:10.1371/journal.pone.0138897.g007
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It has been previously postulated that transporter endocytosis could explain the reduction
in glycine uptake observed after PKC activation. To examine whether glycine uptake was
affected, we measured uptake of radiolabeled glycine in PAE cells expressing the WT and lysine
mutant forms of GlyT1c following 30 min incubation of the cells with DMSO or PMA. As
expected for the WT GlyT1, glycine uptake was reduced to ~40–50% in PMA-treated cells
when compared to DMSO, while the NTK and CTK mutants showed a ~50–60% reduction in
uptake, consistent with the ability of these mutants to undergo PKC-dependent endocytosis
and further down-regulation of transporter activity (Fig 7C). By contrast, the mutant
NTK-CTK showed only a modest 10% reduction in uptake after PMA stimulation that was not
statistically significant, demonstrating that the reduction in uptake capacity is due to ubiquitin-
dependent transporter endocytosis, as previously suggested. These results together clearly pro-
vide the first evidence that PKC-dependent phosphorylation takes place independent of ubi-
quitination and that these posttranslational modifications likely regulate different transporter
properties. To lend support to this hypothesis, we subjected PAE cells expressing the dopamine
transporter, either the WT DAT or a DAT mutant devoid of lysines at its N-terminus to 32P-
metabolic labeling after PKC activation by 60 min incubation with PMA. This DAT mutant
was previously shown to exhibit defects in PKC-dependent endocytosis and ubiquitination. As
shown in Fig 7D, PMA treatment resulted in enhanced phosphorylation of both WT and the
mutant DAT, suggesting that PKC-dependent phosphorylation of DAT occurs independent of
ubiquitination and confirming that these separate PKC-dependent modifications are shared by
several SLC6 family members, perhaps highlighting similar regulatory mechanisms between
members of the family. In agreement with this hypothesis, our previous published data demon-
strate that pharmacological inhibition of PKCβ abolished phosphorylation but had no effect on
the PKC-dependent reduction of glycine uptake, suggesting that abolishment of transporter
phosphorylation is not required for endocytosis [10]. Perhaps transporter ubiquitination
involves activation of PKCα.

Discussion
The mechanism of PKC-dependent endocytosis of neurotransmitters transporters has been
intensively studied for more than two decades and it is becoming accepted that PKC activation
triggers several changes in these carriers. Of these, the best studied modifications are phosphor-
ylation and ubiquitination [12,13,25,33,34]. Interestingly, PKC-dependent ubiquitination of
neurotransmitter transporters is emerging as the main mechanism to explain transporter endo-
cytosis; and in many instances, it also explains transporter degradation.

Although we have previously shown for the dopamine transporter that three lysine residues
at the N-terminus of the dopamine transporter serve as the main ubiquitin-conjugation sites, a
specific consensus sequence that may serve as signal for ubiquitination is far from being
described [12]. Likewise, previous studies on glycine transporters have shown that pharmaco-
logical activation of PKC trigger transporter endocytosis [22]. Based on this evidence regarding
glycine transporters endocytosis, we analyzed the role of ubiquitination on endocytosis and
mapped the location of ubiquitination sites in stably transfected cells using three different N-
terminal splice variants of GlyT1. In agreement with results obtained for DAT and other trans-
porters, we showed that GlyT1 ubiquitination is a redundant mechanism and that there is no
preference for a specific lysine residue in the terminal tails of this transporter. We report that
replacement of three conserved lysine residues at the C-terminal tail of GlyT1 did not affect
PKC-dependent ubiquitination and endocytosis, nor did the replacement of those in the N-ter-
minal tail. However, replacement of both N- and C-terminal lysines resulted in abrogation of
PKC-dependent ubiquitination. These findings demonstrate that any available and exposed
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lysine in either the N- or C-terminal tail can serve as an ubiquitin acceptor site and only
replacement of lysines at both N and C-termini abolish ubiquitination and endocytosis. It is
worth mentioning that this redundancy in the mechanism of GlyT1 ubiquitination was
observed for three isoforms, mouse GlyT1a, human GlyT1b, and human GlyT1c; although we
present only the GlyT1c data here, this redundancy was independent on the number of lysines
contained within the N- or C-terminal tails of each. The redundancy in the mechanism of
lysine selection for ubiquitination has been also observed for the glutamate transporter GLT-1,
where PKC-dependent ubiquitination was abolished only after substitution of 11 lysine resi-
dues in the N- and C-terminal tails with arginines [13].

Although these transporters DAT, GLT-11 and GlyT1 contain several potential ubiquitin
acceptor sites, we believe that only one lysine per transporter molecule becomes K63 poly-ubi-
quitinated and this modification involves the attachment of a single chain of 2–3 ubiquitin
moieties. The experimental evidence comes from our previous work on DAT, where we dem-
onstrate by mass spectrometry analysis that the transporter undergoes K63 poly-ubiquitina-
tion. Moreover, the shift in molecular mass between the ubiquitinated and unmodified GlyT1
that is observed by western blot analysis corresponds to a consistent difference of 20–30 kDa,
suggesting that two or three ubiquitin moieties are added to a lysine residue at the N- or C-ter-
minus of GlyT1. Identical shifts in electrophoretic mobility have been reported for GLT-1 and
DAT [11,13]. Also, our results show that removal of either the three lysines near the C-termi-
nus on all GlyT1 isoforms or those near the N-terminus does not affect the increase in 20–30
kDa mobility of the ubiquitinated mutant GlyT1, again indicating that a single lysine residue is
modified with 2–3 ubiquitin moieties.

Similar findings were observed for GLT-1, where the re-introduction of a single lysine, in a
mutant devoid of lysine residues at the N- and C-terminus, was sufficient to induce the PKC-
dependent endocytosis and ubiquitination. Not surprisingly, the shift in mobility of the ubiqui-
tinated mutant form was identical to that of the WT GLT-1. These results together suggest a
common mechanism for the PKC-mediated ubiquitination whereby a single accessible lysine
residue is modified with 2–3 ubiquitin moieties followed by endocytosis into endosomes. The
E3 ubiquitin ligase Nedd4-2 has been shown to be involved in neurotransmitter transporter
ubiquitination, although it remains to be explored whether the E3 ubiquitin ligase recognizes a
target lysine randomly or shows a preference for a specific lysine residue, for example the most
exposed or accessible residue [25,35].

In spite of this redundancy in residues that can be ubiquitinated, it is important to note that
transporter ubiquitination has been reported to take place at lysines located at or near either
the N- or C-terminus of several neurotransmitter transporters including DAT, GLT-1, GlyT1b
and GlyT2, pointing to these terminal tails as potential regulatory domains of various trans-
porter properties, including trafficking [12,13,36]. Although lysine residues exist in the intra-
cellular loops of neurotransmitter transporters, no evidence has been provided to suggest
ubiquitination in those regions of the carriers. In addition, it is not surprising that PKC-depen-
dent phosphorylation sites have been extensively identified, in or near either N- and/or C-ter-
minal tails of several neurotransmitter transporters such as those for dopamine, glutamate,
glycine and glutamine [17,18,35,37,38,39,40]. To date, accumulated experimental evidence
demonstrates that PKC-dependent transporter phosphorylation is mediated by serine and
threonine rather tyrosine phosphorylation [10,35]. The role of these modifications, mostly
obtained for DAT, are related to changes in overall conformation and kinetic constants; for
example, it has been suggested that phosphorylation of Ser-7 of DAT shifts the equilibrium
from a high to a low affinity cocaine binding state whereas phosphorylation of Thr-53 is
involved in the AMPH-mediated substrate efflux and modulation of Vmax [33,34]. It has also
been suggested that acidic substitutions at Lys-422, Thr-419 and Ser-420 in the intracellular
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loop 2 of the GlyT2 abolishes the PMA-induced internalization; however, it has not yet been
determined whether these residues undergo posttranslational modifications or these pheno-
typic effects are due to a change in transporter conformation nor how these mutations abol-
ishes endocytosis [41]. By contrast, our results suggest that transporter ubiquitination is the
main mechanism of endocytosis and that PKC-dependent phosphorylation is independent of
ubiqutination and endocytosis, as has been suggested for DAT [10,18]. Altogether, these find-
ings support our hypothesis that the transporter tails represent domains that are involved in
regulation of transporter properties, highlighting ubiquitination as responsible for endocytosis
and degradation whereas phosphorylation could be a mechanism to regulate substrate binding
and translocation or the kinetic properties of these transporters.

In contrast to our results that suggest the presence of several ubiquitin acceptor sites in the
tails of GlyT1 isoforms and the redundancy in transporter ubiquitination, a previous report on
the rat GlyT1b isoform suggests that ubiquitination of K619 near the C-terminus played a
prominent role in both constitutive and PMA-induced endocytosis. In that work, substitution
of the three lysine residues in the C-terminus to arginine abolished both constitutive and
PMA-induced endocytosis; surprisingly, identical results were obtained for the single mutant
K619R, pointing to a single residue as responsible for GlyT1b ubiquitination and endocytosis
[24]. Moreover, the same group reported a single lysine K791 ubiquitination in the C-terminal
tail of GlyT2 as the main mechanism underlying the PKC-induced endocytosis. These data
suggest that GlyT1 and GlyT2 transporter ubiquitination is specific for a single lysine residue
at the C-terminus [40]. On the other hand, rather innovative but contradictory, later findings
for GlyT2 by the same group suggested that ubiquitination of four C-terminus lysine residues
is required for constitutive endocytosis and only combined mutations to arginine abolished
constitutive endocytosis [42].

The contradictory results between redundancy and specificity in the mechanism of GlyT1 ubi-
quitination can be explained by the following reasons: (i) In the present work, we report ubiquiti-
nation analysis using the mouse GlyT1a and human GlyT1b and c isoforms, whereas the group of
Fernandez-Sanchez et al. (2009) performed the analysis using the rat GlyT1b isoform. Interest-
ingly, the rat and human isoforms share the same number and position of lysine residues at the C-
terminus; (2) Fernandez-Sanchez et al. used transient transfection of MDCK cells to express
GlyT1b; by contrast, we used PAE cell lines that stably express GlyT1. In our experience, the stud-
ies on DAT and GlyT transporter ubiquitination suggest that only a minor portion of the total
transporter can be detected as ubiquitinated, suggesting that large quantities of purified protein
should be analyzed to detect consistent differences in the levels of ubiquitination. Stable cell lines
offer the advantage of a more homogeneous cell population where the majority of the cells express
transporter at the plasma membrane and allow the assays to be performed with larger quantities of
transporter protein. This is compared to transient transfection assays, where expression is more
heterogeneous and many cells can remain untransfected, in addition to lower protein yields.

Multiple reports support our hypothesis of redundancy and multiple choices of lysine resi-
due used for modification. Consistent with our results, abolishment of ubiquitination for the
glutamate transporter GLT1 required a total of 11 mutations, corresponding to all N- and C-
terminus lysines. Similar findings were obtained for the choline transporter CHT1, which
required 10 substitutions of the 12 intracellular lysine residues to reduce the levels of ubiquiti-
nation [13,43]. The classical example of redundancy is provided by the epidermal growth factor
receptor (EGFR), where substitution of a minimum of six lysines in the kinase domain resulted
in a dramatic decrease in the overall ubiquitination, but it was still not completely abolished
[44]. Interestingly, these authors reported that receptor ubiquitination was responsible for tar-
geting to the lysosome but did not affect ligand-induced internalization. Finally, in a recent
report on the hedgehog 7-transmembrane domain receptor Smo1 from Drosophila, the authors
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demonstrated that only replacement of all 48 cytosolic lysines to arginine abolished ubiquitina-
tion and the mutant largely accumulated on the cell surface, suggesting defective endocytosis
[45]. Altogether, these findings demonstrated the lack of preference in lysine selection during
the mechanism of GlyT1 transporter ubiquitination and its implication in glycine capacity,
endocytosis and intracellular sorting to the lysosome.

Although the majority of data describing transporter postranslation modifications have been
obtained by expressing the transporter in model cells, the components of such mechanisms are
beginning to be elucidated in the brain. For example, a physical association of PKCβ with DAT
has been shown by co-immunoprecipitation from rat striatal synaptosomes [46], suggesting a
direct interaction of both proteins. In addition, a dramatic reduction in dopamine efflux was
observed in striatal synaptosomes from a PKCβ knockout mice, providing additional evidence of
PKCβ as the potential kinase that phosphorylate transporter and induces substrate efflux[47]. Con-
sistent with these findings, in heterologous models we have observed abolishment of GlyT1 phos-
phorylation by pharmacological inhibition of PKCβ, pointing to this kinase as responsible for
phosphorylation [10]. [48,49,50] By contrast, to demonstrate PKC-dependent transporter ubiquiti-
nation in neurons has been technically difficult, in part due to low levels of total transporter immu-
noprecipitated from cultured neurons or brain slices. In addition, the low levels of ubiquitinated
transporters recovered after PKC activation from heterologous systems suggest that large quanti-
ties of transporter must be purified in order to observe the signal of ubiquitinated transporters.

For GlyTs, the lack of knowledge about the precise location of glycinergic circuits has compli-
cated the analysis of many mechanisms with the endogenous transporters. However, based on
findings described in this manuscript for GlyT1 and other family members we can speculate
about the physiological relevance of these modifications in the CNS. It has been shown for the
close relative, the dopamine transporter, that the pool of endogenous transporter is distributed at
the cell surface and in EEA1-, Rab7- and Rab11-positive endosomes, showing the dynamics
between endocytosis, recycling and sorting of transporter to late endosomes in neurons [51,52].
Moreover, PKC activation promotes DAT endocytosis above constitutive levels, leading to a tran-
sient or sustained inhibition [53,54]. These results support a model whereby depolarization-
dependent Ca2+ influx will trigger fast synaptic vesicle fusion and neurotransmitter release,
accompanied by Ca2+-dependent activation of conventional PKC. Activated PKC could directly
or indirectly lead to phosphorylation of the E3 ligase Nedd4, which has been shown to be
involved in transporter ubiquitination, ultimately increasing the affinity for transporter and
resulting in transporter ubiquitination and enhanced endocytosis. Nedd4-2 phosphorylation has
been shown to increase its affinity for TrkA and promote receptor ubiquitination [55]. Trans-
porter endocytosis could prevent neurotransmitter re-uptake to allow activation of postsynaptic
receptors. Further de-ubiquitination and transporter recycling back to the cell surface will make
possible re-uptake of neurotransmitter and termination of neurotransmission. However, future
analysis of the endogenous transporter will shed light into the direct role of these posttransla-
tional modifications on trafficking and glycinergic neurotransmission.
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