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Abstract

Background

Individuals with mild cognitive impairment (MCI) have a substantially increased risk of

developing dementia due to Alzheimer's disease (AD). In this study, we developed a multi-

variate prognostic model for predicting MCI-to-dementia progression at the individual

patient level.

Methods

Using baseline data from 259 MCI patients and a probabilistic, kernel-based pattern classifi-

cation approach, we trained a classifier to distinguish between patients who progressed to

AD-type dementia (n = 139) and those who did not (n = 120) during a three-year follow-up

period. More than 750 variables across four data sources were considered as potential pre-

dictors of progression. These data sources included risk factors, cognitive and functional

assessments, structural magnetic resonance imaging (MRI) data, and plasma proteomic

data. Predictive utility was assessed using a rigorous cross-validation framework.

Results

Cognitive and functional markers were most predictive of progression, while plasma proteo-

mic markers had limited predictive utility. The best performing model incorporated a combi-

nation of cognitive/functional markers and morphometric MRI measures and predicted

progression with 80% accuracy (83% sensitivity, 76% specificity, AUC = 0.87). Predictors of

progression included scores on the Alzheimer's Disease Assessment Scale, Rey Auditory

Verbal Learning Test, and Functional Activities Questionnaire, as well as volume/cortical

thickness of three brain regions (left hippocampus, middle temporal gyrus, and inferior
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parietal cortex). Calibration analysis revealed that the model is capable of generating proba-

bilistic predictions that reliably reflect the actual risk of progression. Finally, we found that

the predictive accuracy of the model varied with patient demographic, genetic, and clinical

characteristics and could be further improved by taking into account the confidence of the

predictions.

Conclusions

We developed an accurate prognostic model for predicting MCI-to-dementia progression

over a three-year period. The model utilizes widely available, cost-effective, non-invasive

markers and can be used to improve patient selection in clinical trials and identify high-risk

MCI patients for early treatment.

Introduction
Alzheimer’s disease (AD) is the leading cause of dementia in the aging population, affecting
more than 30 million people worldwide [1]. AD is a degenerative brain disorder that causes a
progressive decline in cognitive function, most notably memory loss, and other behavioral
changes [2]. Individuals diagnosed with mild cognitive impairment (MCI) have a substantially
increased risk of developing clinical AD, and MCI is often considered to be a transitional phase
between healthy cognitive aging and dementia [3,4]. Thus, MCI represents a key prognostic
and therapeutic target in the management of AD. However, MCI is a heterogeneous syndrome
with varying clinical outcomes. Although up to 60% of MCI patients develop dementia within
a ten-year period, many people remain cognitively stable or regain normal cognitive (NC)
function [5,6].

Increasing efforts have focused on building predictive models of AD dementia using pattern
classification methods based on clinical, imaging, genetic, and fluid biomarkers [7–11]. This
line of research dates back to earlier studies from the late 1980s and 1990s, which tended to use
more conventional statistical modeling methods or focus on univariate prediction, and were
generally limited by relatively small sample sizes. For example, some earlier studies demon-
strated the ability of baseline neuropsychological measures to predict dementia in cognitively
impaired individuals [12–14]. Other earlier studies showed that baseline atrophy of the hippo-
campus or the surrounding medial temporal lobe regions, as measured using structural neuro-
imaging, could predict subsequent progression to dementia [15–17]. Prognostic classification
of MCI at the individual patient level has the potential to improve clinical trial design, identify
patients for early treatment, as well as guide clinical and patient decision-making. In this study,
we develop a multivariate prognostic model [18] for predicting MCI-to-dementia progression
using baseline data from the Alzheimer's Disease Neuroimaging Initiative (ADNI) [19]. We
focus on using widely available, cost-effective, and minimally-invasive data sources, including:
(a) clinical data, such as risk factors and cognitive / functional assessments; (b) morphometric
measures derived from a structural magnetic resonance imaging (MRI) scan of the brain; and
(c) blood plasma-based proteomic data. Much of this data is already routinely collected during
the clinical workup of dementia and clinical trials.

We use a kernel-based classifier to predict future dementia status of MCI patients by incorpo-
rating heterogeneous (clinical, MRI, and proteomic) data. Kernel-based learning algorithms use
“kernel functions” to encode the degree of similarity between examples in a dataset based on
their features [20,21], such as individual MCI patients described by their unique biomarker
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patterns. We apply an extension of this methodology, known as multiple kernel learning (MKL),
which allows integration of complementary information derived from different sources or repre-
sentations of the data using separate kernels [22]. Recent studies suggest that multiple-kernel
classifiers may integrate heterogeneous data more effectively than conventional single-kernel
classifiers, improving classification of AD andMCI subjects by as much as 3–11% [23–25].

The prevailing approach in the literature has been to consider prediction of MCI-to-demen-
tia progression as a non-probabilistic binary classification task, where all patients are unequivo-
cally assigned to either the progressive MCI (P-MCI) or the non-progressive MCI (N-MCI)
group [23,26–28]. Sir William Osler (1849–1919), a pre-eminent physician of the 20th century,
is credited with stating that “medicine is a science of uncertainty and an art of probability”
[29]. In this spirit, we adopt a recently proposed implementation of MKL that generates proba-
bilistic predictions using Bayesian inference [30]. We anticipated that probabilistic prediction
of MCI-to-dementia progression would provide clinically useful information beyond what is
afforded by binary, non-probabilistic classification. Reliable probabilistic prediction would
allow stratification of MCI patients into multiple groups according to the risk of progression.
Alternatively, the probability associated with each individual prediction can be used as a mea-
sure of confidence, which in turn can be used to withhold the decision about future dementia
status for ambiguous (“low confidence”) MCI cases. This approach is often referred to as classi-
fication with a “reject option” [31].

The objectives of this study were to determine whether: (a) clinical, MRI, and plasma prote-
omic data capture complementary information regarding the progression fromMCI to demen-
tia; (b) this information is more effectively learned using a multiple-kernel classifier as opposed
to a single-kernel classifier; (c) the performance of our prognostic model is sensitive to patient
heterogeneity; (d) model performance can be improved by taking into account the confidence
of the predictions; and (e) the model's probabilistic predictions reflect any information regard-
ing the time to progression for P-MCI patients.

Materials and Methods

Alzheimer’s Disease Neuroimaging Initiative (ADNI)
Data used in this study were obtained from the ADNI database (http://adni.loni.usc.edu). The
ADNI was launched in 2003 by the National Institute on Aging (NIA), the National Institute
of Biomedical Imaging and Bioengineering (NIBIB), the Food and Drug Administration
(FDA), private pharmaceutical companies and non-profit organizations as a public-private
partnership. ADNI is an observational study with both cross-sectional and longitudinal follow-
up components. The primary goal of ADNI has been to test whether neuroimaging, fluid and
genetic biomarkers, and cognitive assessments can be combined to measure the progression of
MCI and early AD. The Principal Investigator of this initiative is Michael W. Weiner, MD, VA
Medical Center and University of California–San Francisco. ADNI is the result of efforts of
many co-investigators from a broad range of academic institutions and private corporations,
and subjects have been recruited from over 50 sites across the U.S. and Canada. The first phase
of ADNI (ADNI-1) was completed in 2010 and has been followed by ADNI-GO and ADNI-2.
For up-to-date information, see www.adni-info.org.

In this study, we analyzed baseline visit data collected fromMCI subjects who were
recruited during ADNI-1. The various datasets were downloaded on or before the following
dates: Clinical data–August 20, 2011; Structural MRI data–August 3, 2011; Plasma proteomic
data–June 16, 2012. All subjects and their study partners completed the informed consent pro-
cess, and the study protocols were reviewed and approved by the Institutional Review Board at
each ADNI data collection site.
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Subjects
The general eligibility, inclusion, and exclusion criteria for ADNI subjects can be found on the
ADNI website (www.adni-info.org) and are summarized in section 1.1 in S1 File. MCI subjects
met the Petersen (Mayo Clinic) diagnostic criteria for amnestic MCI [32] as follows: (a) a sub-
jective memory complaint; (b) objective memory loss, as measured by age- and education-
adjusted scores on Wechsler Memory Scale Logical Memory II, but without significant
impairment in other cognitive domains; (c) generally preserved activities of daily living; and
(d) no dementia. MCI subjects also had MMSE scores of 24–30 and a global score of 0.5 on the
Clinical Dementia Rating (CDR) scale.

From a total of 390 individuals with a baseline diagnosis of MCI who were recruited for
ADNI-1, 289 subjects met criteria for inclusion as part of either the P-MCI or N-MCI group in
this study. Thirty (~10%) of these subjects were further excluded due to partially missing base-
line data. Table 1 shows the characteristics of the MCI subjects included in this study (n = 259).
Progressors (P-MCI; n = 139) included MCI subjects who progressed to AD-type dementia
within 36 months (median: 18 months) of entering the study, as indicated by the NINCD-
S-ADRDA criteria for the diagnosis of probable AD [33]. Non-progressors (N-MCI; n = 120)
included MCI subjects who had not progressed to dementia within 36 months of entering the
study. This group included subjects who remained cognitively stable (n = 107; did not revert to
NC status and did not develop dementia) or those who reverted to NC status and remained
dementia-free (n = 13).

Data Collection and Follow-up
At study entry (baseline), all subjects underwent a comprehensive clinical evaluation, cognitive/
functional assessments, and a structural brain MRI scan. Subjects also provided a blood sample
for apolipoprotein E (APOE) genotyping and proteomic analysis. Subjects were then followed
longitudinally at specific time points (6, 12, 18, 24, 36 months). The clinical status of each MCI
subject was re-assessed at each follow-up visit and updated to reflect one of several outcomes
(NC, MCI, AD, or other). The N-MCI and P-MCI group designations were based on this fol-
low-up clinical diagnosis and used as the “ground truth” in our classification experiments.

Clinical Data
We considered a total of 186 clinical variables (features) as potential predictors of MCI-to-
dementia progression in our classification analyses. Clinical features were of two types: risk fac-
tors (16 features) and assessments/markers (170 features). Risk factors included: age, sex, educa-
tion, APOE genotype, family history of dementia, cerebrovascular disease risk factors, body

Table 1. Subject characteristics at baseline.

Characteristic N-MCI (n = 120) P-MCI (n = 139) p-value

Age, years 74.8 ± 7.6 74.8 ± 7.1 >0.5a

Education, years 15.7 ± 2.9 15.6 ± 2.9 >0.5a

Sex, % female 28.3 38.1 0.097b

APOE ε4 carriers, % 41.7 66.2 <0.001b

MMSE score 27.6 ± 1.7 26.7 ± 1.7 <0.001a

Values are shown as mean ± standard deviation or percentage. P-values for differences between N-MCI and P-MCI are based on (a) t-test or (b) chi-

square test. N-MCI = non-progressive MCI; P-MCI = progressive MCI; APOE = apolipoprotein E; MMSE = Mini-Mental State Examination.

doi:10.1371/journal.pone.0138866.t001
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mass index, and history of psychiatric disorders, alcohol abuse, head trauma, and sleep apnea
(see section 1.2 in S1 File). The total scores and sub-scores on the following cognitive, func-
tional, and clinical assessments were considered: Mini-Mental State Examination, Clinical
Dementia Rating scale, Functional Activities Questionnaire, Geriatric Depression Scale, Neuro-
psychiatric Inventory Questionnaire, Modified Hachinski Ischemic Scale, American National
Adult Reading Test, WMS-III Logical Memory, Alzheimer's Disease Assessment Scale–Cogni-
tive sub-scale, Rey Auditory Verbal Learning Test, verbal (category) fluency test, Boston Nam-
ing Test, digit span test, Trail Making Test, Digit-Symbol Coding Test, and Clock-Drawing Test
(see section 1.2 in S1 File for further description). We also included data on whether MCI sub-
jects were on a regimen of ADmedications (cholinesterase inhibitors and memantine), a factor
shown to be associated with greater cognitive impairment and faster progression to dementia
[34]. Recent studies suggest that cognitive and functional markers may be at least as effective as
imaging and fluid biomarkers in predicting MCI-to-dementia progression [26,35–37].

Structural MRI Data
MRI offers a non-invasive, widely available, and more cost-effective alternative for obtaining
imaging biomarkers of AD-related neurodegeneration (e.g. atrophy measures) compared to
positron emission tomography (PET) [38]. We considered 452 region of interest (ROI)-based
morphometric measures computed from individual structural MRI scans as potential predictors
of MCI-to-dementia progression. We generated MRI features for classification using an atlas-
based ROI method rather than a voxel-based method in an effort to reduce the dimensionality
of the MRI dataset and increase the signal-to-noise ratio of the resulting features.

Subjects received high resolution T1-weighted MRI scans of the brain at 1.5 Tesla acquired
using a variety of scanners (General Electric, Philips, or Siemens) and a standardized protocol
[39]. Each MRI dataset was post-processed using FreeSurfer v5.0.0 (http://surfer.nmr.mgh.
harvard.edu) [40–43], an image processing software tool for (a) automated model-based recon-
struction and segmentation of the brain's cortical surface and subcortical structures and (b)
morphometric analysis. Finally, a variety of morphometric measures were computed across
180 anatomically-defined brain regions as MRI features for classification, including cortical
and subcortical volumes, mean cortical thickness (and its standard deviation), surface area,
and curvature. FreeSurfer-derived morphometric MRI measures have been validated in studies
of normal aging, MCI, and AD [44–46]. See section 1.3 in S1 File for details on MRI acquisition
and processing.

Plasma Proteomic Data
Plasma-based proteomic biomarkers have been proposed as an alternative for the early diagno-
sis of AD to cerebrospinal fluid (CSF)-based biomarkers [47,48]. However, the utility of plasma
biomarkers in predicting MCI-to-dementia progression remains controversial given the con-
flicting findings in the literature [49,50]. Moreover, at the time of the present study, there were
no published reports that utilized the ADNI dataset and pattern classification methods to
examine the predictive utility of plasma proteomic biomarkers for predicting MCI-to-dementia
progression in combination with clinical and imaging biomarkers (unlike the case with CSF
biomarkers). For these reasons, and because blood plasma samples are arguably less invasive
and more routinely obtained than CSF samples, we examined plasma proteomic biomarkers as
an alternative to CSF biomarkers. Specifically, in addition to clinical and MRI features, we con-
sidered 149 features based on plasma protein levels in this study. Plasma samples were analyzed
by Rules-Based Medicine (RBM) (Austin, TX) using their Human DiscoveryMAP multiplex
immunoassay, which is based on the Luminex xMAP platform [51]. This immunoassay panel
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of 190 analytes included proteins previously reported to be involved in cell-signaling and/or
associated with a variety of disease processes, including AD, metabolic disorders, inflamma-
tion, cancer, and cardiovascular disease. The ADNI team, in collaboration with the Biomarkers
Consortium, identified 146 (out of 190) analytes that met quality control standards. We used
the cleaned, quality-controlled (QC) dataset containing these 146 analytes, labelled “ADNI
Plasma QCMultiplex 11Nov2010”. Further details about the RBM immunoassay and QC pro-
cedures can be found in the data primer, “Biomarkers Consortium Project: Use of Targeted
Multiplex Proteomic Strategies to Identify Plasma-Based Biomarkers in Alzheimer’s Disease”
(available at http://adni.loni.usc.edu). We also considered the plasma levels of amyloid-β pro-
teins (Aβ42, Aβ40, and Aβ42/Aβ40 ratio), which were assayed by the ADNI Biomarker Core
Laboratory at the University of Pennsylvania. Aβ42 and Aβ40 have been identified as the
major molecular species contributing to the amyloid (“senile”) plaques, a pathological hallmark
of AD [52].

Feature Selection and Pattern Classification Approach
Analyses were conducted using MATLAB R2010b (The MathWorks, Inc., Natick, MA). We
applied a series of transformations to the feature data prior to conducting feature selection and
classification analyses (see section 1.4 in S1 File). Feature selection is a dimensionality reduc-
tion strategy that involves identifying a small but informative subset of the original features for
classification; it can help avoid model overfitting, improve model performance, and produce
models that are easier to interpret and potentially more time- and cost-efficient to develop and
use [53]. We adopted a combined filter-wrapper approach to efficiently identify a subset of fea-
tures that can be used to effectively discriminate between P-MCI and N-MCI. In the “filter”
stage, we defined feature subsets of different sizes (ranging from 1 to 50 features) using the
Joint Mutual Information (JMI) criterion [54], as implemented in the FEAST toolbox (http://
www.cs.man.ac.uk/~gbrown/fstoolbox) [55]. JMI-based feature selection favors features that
are maximally relevant to the classification task while being minimally redundant and maxi-
mally complementary with previously selected features. In the “wrapper” stage, we evaluated
these feature subsets in terms of cross-validated classification accuracy and determined the
optimal number of features to be used as a parameter in the final model. Additional details can
be found in section 1.5 in S1 File.

In this study, we use the probabilistic multiple kernel learning (pMKL) classification
approach proposed by Damoulas et al. (http://www.dcs.gla.ac.uk/inference/pMKL) [30,56,57]
to build several prognostic models of dementia. pMKL is a kernel-based classifier similar to the
widely used support vector machine (SVM) [20,21]. Kernel classifiers rely on the use of kernel
functions to map the original feature data into an inner product space that encodes similarity
between examples (e.g. patients). The algorithm learns to classify new examples based on this
similarity information. The pMKL classifier, like an SVM, can be used in either the single-ker-
nel mode or the multiple-kernel mode. In the latter case, referred to as multiple kernel learning
(MKL), separate kernels are used to encode information from different sources or representa-
tions of the data [22]. For further details on the kernels and MKL, see section 1.6 in S1 File.
While by design the SVM is a non-probabilistic classifier, the pMKL classifier directly produces
probabilistic predictions.

The pMKL classifier is based on a Generalized Linear Model (GLM) regression framework
using the multinomial probit likelihood [30] given by:

P ðYn ¼ ijW; kbYn Þ ¼ Ep ðuÞ
Y
j6¼i

Fðuþ ðwi � wjÞkbYn Þ
( )
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where E is the expectation with respect to the standard normal distribution p(u) = N(0,1) and
Ф is the cumulative distribution function. This function computes the probability P that exam-
ple n belongs to class/outcome i (as opposed to class j) given the feature data (in the form of a
kernel matrix kbYn ) and regression coefficientsW. The regression coefficients reflect the weight
with which training examples used to construct the model vote for a particular class/outcome.
The posterior probability P is determined using Bayesian estimation methods (for details see
[57]) and captures the uncertainty or the degree of confidence associated with each prediction.
Non-probabilistic classification can be achieved by predicting the class/outcome with the larg-
est posterior probability (>50% for binary classification).

Experimental Design and Analysis
We built and examined a series of nine predictive models, each designed to classify individual
patients as belonging to either the N-MCI or the P-MCI group. Models 1–5 were constructed
using a single, linear kernel and were designed to assess the predictive utility of different data
sources, alone and in combination. First, a separate single-source model was constructed for
clinical risk factors (model 1; 'CRF'), clinical assessments / markers (model 2; 'CAM'), MRI
markers (model 3; 'MRI'), and plasma proteomic markers (model 4; 'PPM'). Second, a multi-
source model was constructed where all features across the four data sources (CRF, CAM,
MRI, and PPM) were concatenated and considered jointly during feature selection and classi-
fier training steps (model 5; 'CONCAT'). We also constructed a set of multiple-kernel, multi-
source models (models 6–9) to examine whether multiple kernel learning can be used to
improve upon the predictive performance achieved with the single-kernel model (see section
1.7 in S1 File).

In subsequent analyses, we studied the best performing model from the set of nine models
examined. First, we examined the extent to which patient heterogeneity affects model accuracy;
we examined the effects of age, sex, educational level, APOE genotype, presence of cerebrovas-
cular risk factors, off-label use of AD medications, history of depression, and time to progres-
sion. Second, we examined the relationship between predictive confidence and model
accuracy. Predictive confidence was defined as the difference between the predicted probabili-
ties for the two classes/outcomes (N-MCI and P-MCI). Finally, we examined whether there is
an association between the predicted probabilities and time to progression for P-MCI patients.

Model Performance and Cross-Validation
For each model (1–9), we report several cross-validated measures of predictive performance.
We report sensitivity (percent of P-MCI subjects correctly classified) and specificity (percent of
N-MCI subjects correctly classified) as measures of classification accuracy [58]. The balanced
accuracy rate (BAR), defined as [sensitivity + specificity] / 2, was used as the primary measure
of model performance. We also assessed model calibration as a secondary performance mea-
sure. Calibration is an important measure of performance for probabilistic classification mod-
els and assesses the reliability of the probabilistic predictions [59,60]. The agreement between
predicted and actual probabilities (risk of MCI-to-dementia progression) was quantified using
the concordance correlation coefficient (CCC; see section 1.8 in S1 File) [61]. Finally, we report
the area under the curve (AUC) from the receiver operating characteristic (ROC) analysis as a
measure of model discrimination [62].

We used a nested stratified cross-validation (CV) procedure (Fig 1) to avoid model overfit-
ting and optimistically-biased estimates of model performance [63–65]. The procedure con-
sisted of two nested CV loops, each implementing 10-fold stratified CV: an outer loop,
designed to obtain an unbiased estimate of model performance, and an inner loop, designed to
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select the optimal number of features for the final model (see section 1.9 in S1 File for details).
Although during each CV fold the model was developed using data from 90% of the subjects
and tested using data from the remaining 10% of the subjects, the model was eventually cross-
validated on all 259 subjects. For better replicability, the nested 10-fold CV procedure was
repeated 10 times with different partitions of the data, generating 100 performance estimate
values for significance testing. We used a modified paired sample t-test with 10 degrees of free-
dom calibrated for 10x10 CV experiments [66] to test for significant differences in performance
between model pairs. All statistical tests were considered significant at the P< 0.05 level.

Results

Predictive Performance of Single-Source and Multi-Source Models
Table 2 and S1 Table summarize the predictive performance of models 1–9. Validation and test
set accuracies (V-BAR and T-BAR) were within 3% of each other for all models, and in many
cases<1% apart, indicating that model overfitting was minimal and that our nested cross-vali-
dation procedure was effective. We compared the various models in terms of their classification
accuracy (indicated by the balanced accuracy rate on the test set, T-BAR) and calibration (indi-
cated by the CCC). The accuracies of all four single-source models (1–4: CRF, CAM, MRI,
PPM) exceeded chance-level (all P< 0.01, one-sample t-test), although they varied from a low

Fig 1. Nested 10-fold cross-validation (CV) procedure for model development and evaluation. (1) In the
outer CV loop, the dataset was partitioned into the 'Model Development Set' and 'Test Set'. (2) In the inner CV
loop, the 'Model Development Set' was further partitioned into the 'Training Set' and 'Validation Set'. (3)
Several classifiers were trained using only the 'Training Set' and a varying number (1–50) of the most
informative features, as identified with the Joint Mutual Information (JMI) method. (4) These classifiers were
evaluated on the 'Validation Set', and (5) the number of features that producedmaximal classification
accuracy was selected as the optimal number of features (DOPTIMAL). (6) The final model was then
constructed by training a classifier using the 'Model Development Set' and the optimal number of JMI-based
features, DOPTIMAL. (7) An unbiased estimate of model performance was obtained by evaluating the final
model on the held out 'Test Set', which was not used during feature selection, model (parameter) selection, or
final model construction. Both the outer and inner CV loops used a 10-fold CV design.

doi:10.1371/journal.pone.0138866.g001
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of 53.2% for PPM to a high of 76.1% for CAM. The CAMmodel outperformed the other three
single-source models on accuracy (all P< 0.001, paired-sample t-test). The CAM and MRI
models were well-calibrated, as indicated by high positive CCC (both P< 0.001) while the
PPMmodel showed poor calibration (CCC not different from zero, P> 0.3). The single-kernel,
multi-source model 5 (CONCAT), in which all features across the four data sources were con-
sidered jointly, outperformed all four single-source models (all P< 0.001, paired-sample t-test)
with an accuracy of 80.0%. The calibration of the CONCAT model, as measured by the CCC,
was statistically similar to that of CAM and MRI models (both P> 0.3) and better than that of
the PPMmodel (P< 0.001). None of the four multiple-kernel, multi-source models considered
(models 6–9) outperformed the single-kernel CONCAT model in terms of classification accu-
racy. However, model 6 ('MKL-Gaussian', a multi-source model constructed using 5 Gaussian
kernels) outperformed the single-kernel CONCAT model in terms of calibration, as indicated
by a higher CCC (P< 0.05), while maintaining a similar accuracy of 79.9%. Based on its classi-
fication accuracy and calibration, model 6 (MKL-Gaussian) was selected as the best performing
model to be studied in subsequent analyses. Fig 2 shows the learning, ROC, and calibration
curves that further characterize the predictive performance of the MKL-Gaussian model. In the
case of our best performing model (MKL-Gaussian), a median of 10 ± 3 features were selected
as predictors of MCI-to-dementia progression.

Predictors of MCI-to-Dementia Progression
Fig 3 shows the top 10 features that were most frequently selected as baseline predictors of
MCI-to-dementia progression for each of the single-source models (CRF, CAM, MRI, PPM)
and two multi-source models (CONCAT and MKL-Gaussian). Fig 4 shows the topography of
the brain regions selected as predictors in the single-source MRI model and the multi-source
models (CONCAT and MKL-Gaussian). Among the features considered for selection in the
CRF model, only the number of APOE epsilon 4 alleles was selected with a high degree of con-
sistency. Other candidate CRF features, including age, were selected infrequently. The features
most frequently selected in the CAMmodel included total scores and sub-scores on three

Table 2. Cross-validated performance estimates for single-source andmulti-source models.

Model (#) V-BAR (%) T-BAR (%) Sn (%) Sp (%) AUC-ROC CCC DOPTIMAL / Total

Single Source

CRF (1) 62.0 ± 1.4 61.8 ± 7.7 65.3 ± 12.7 58.3 ± 11.7 0.61 ± 0.12 # 1 ± 0 / 16

CAM (2) 77.9 ± 1.4 76.1 ± 7.2 76.9 ± 9.5 75.3 ± 11.2 0.83 ± 0.07 0.92 ± 0.03 15 ± 10 / 170

MRI (3) 71.4 ± 1.6 69.1 ± 8.5 68.5 ± 11.8 69.6 ± 12.4 0.76 ± 0.09 0.91 ± 0.03 10 ± 5 / 452

PPM (4) 56.0 ± 2.7 53.2 ± 10.0 51.2 ± 12.9 55.3 ± 14.1 0.54 ± 0.11 0.10 ± 0.31 40 ± 10 / 149

Multi-Source

CONCAT (5) 79.7 ± 1.4 80.0 ± 7.3 80.3 ± 10.6 79.8 ± 10.9 0.86 ± 0.07 0.93 ± 0.02 10 ± 3 / 787

MKL-Gaussian (6) 80.3 ± 1.3 79.9 ± 6.8 83.4 ± 9.9 76.4 ± 12.3 0.87 ± 0.07 0.95 ± 0.01 10 ± 3 / 787

For each model, several measures of predictive performance are shown (mean ± standard deviation), including balanced accuracy rate on the validation

set (V-BAR) and the test set (T-BAR), sensitivity (Sn), specificity (Sp), area under the curve (AUC), and concordance correlation coefficient (CCC).

DOPTIMAL is the optimal number of features (shown as median ± median absolute deviation); this parameter was determined via cross-validation (see text).

The total number of potential features considered when building each model is shown for reference. Performance estimates for models 7–9 are shown in

S1 Table. CRF = Clinical Risk Factors, CAM = Clinical Assessments/Markers, MRI = Magnetic Resonance Imaging, PPM = Plasma Proteomic Markers.

Models 1–4: single linear kernel using features only from the given data source (CRF, CAM, MRI, PPM). Model 5 (CONCAT): single linear kernel,

concatenating features from all data sources. Model 6 (MKL-Gaussian): 5 Gaussian kernels using features from all data sources. # Robust estimate of

CCC could not be obtained for model 1 because only <10 probability sub-intervals could be defined when conducting calibration analysis.

doi:10.1371/journal.pone.0138866.t002
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assessments: Alzheimer's Disease Assessment Scale–Cognitive sub-scale (ADAS-Cog), Func-
tional Activities Questionnaire (FAQ), and Rey Auditory Verbal Learning Test (RAVLT). In
the MRI model, the most frequently selected features included volume and cortical thickness
measures for several temporoparietal brain regions with a preference toward the left hemi-
sphere (8/10 features). In the PPMmodel, the most frequently selected features included pro-
teins associated with vascular processes, immune function and inflammation, and lipid
metabolism. In the case of multi-source models–both the single-kernel (CONCAT) model and
the best performing, multiple-kernel (MKL-Gaussian) model–only CAM and MRI features
were consistently selected as predictors (Fig 3). CAM predictors included the 13-item total
score and constructional praxis sub-score on the ADAS-Cog, the total score and memory ques-
tion sub-score on the FAQ, as well as the sum of scores across trials 1–5, trial 5 sub-score, and
trial 6 sub-score on the RAVLT. MRI predictors included left hippocampal volume, left middle
temporal cortical thickness, and left inferior parietal cortical thickness (Fig 4).

As a confirmatory analysis, we compared N-MCI and P-MCI groups on each of the baseline
predictors identified in the multi-source models (Fig 5). As expected, there was a robust statis-
tically significant difference between the two MCI groups for all predictor variables (all
P< 0.001, independent sample t-test). P-MCI subjects were more cognitively and functionally
impaired at baseline than N-MCI subjects, as indicated by higher scores on the ADAS-Cog and
FAQ. Relative to N-MCI subjects, P-MCI subjects had a more pronounced verbal memory
impairment at baseline, as indicated by lower scores on the RAVLT. P-MCI subjects also
showed signs of atrophy in temporoparietal brain regions at baseline, as indicated by reduced

Fig 2. Performance curves for the best performing (MKL-Gaussian) model. A: The learning curve shows
validation accuracy as a function of the number of features in the model (line graph with 95% confidence
intervals). Juxtaposed is a histogram showing the frequency with which a given number of features was
identified as the optimal (most accurate) number of features across 100 trials of the 10x10 cross-validation
experiment (median = 10 ± 3). B: Receiver operating characteristic curve (blue line; AUC = 0.87), showing the
trade-off between sensitivity (true positive rate, TPR) and 1 –specificity (false positive rate, FPR). The area
under the curve (AUC) measures how well the model discriminates between N-MCI and P-MCI patients. The
black diagonal line represents random classifier performance (AUC = 0.5). C: Calibration curve, indicating the
degree to which the model's predicted probabilities (risk) of MCI-to-dementia progression agree with the
actual probabilities of progression. With a perfectly calibrated model, we expect complete agreement
between predicted and actual probabilities (diagonal line).

doi:10.1371/journal.pone.0138866.g002
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hippocampal volume as well as reduced middle temporal and inferior parietal cortical thick-
ness relative to N-MCI subjects. In this study, we excluded data from 131 out of 390 (~34%)
MCI subjects in the ADNI-1 database because they either did not meet our inclusion criteria or
due to missing data. No differences were found between included (n = 259) and excluded
(n = 131) subjects on any of the baseline predictor variables (S1 Fig), suggesting that a selection
bias is unlikely to have been introduced due to our exclusion of subjects.

Effect of Patient Characteristics on Model Performance
Further analysis of the best performing (MKL-Gaussian) model revealed that overall the model
generated more accurate predictions regarding MCI-to-dementia progression for subjects with
the following characteristics (Fig 6A–6G): older age; females; higher educational level; APOE
epsilon 4 allele non-carriers; not using ADmedications; multiple cerebrovascular disease risk
factors; or a history of depression. The particular effects on sensitivity and specificity were
more variable. In the case of P-MCI subjects, classification accuracy was inversely related to the
time to progression from MCI to dementia (Fig 6H): 0–6 months (93.1%), 6–12 months
(89.3%), 12–18 months (87.6%), 18–24 months (74.8%), 24–36 months (71.3%). MCI-to-

Fig 3. Top 10most frequently selected features as baseline predictors of MCI-to-dementia
progression. Features are shown separately for each single-source model: CRF (blue), CAM (green), MRI
(red), PPM (yellow). A subset of these features (dashed line) was selected as part of both the single-kernel
(CONCAT) and the multiple-kernel (MKL-Gaussian) multi-source models and included only CAM and MRI
features. The selection frequency across 100 trials of the 10x10 cross-validation experiment is shown in
parentheses as: (#) for single-source model only or (#/#) for both single/multi-source (MKL-Gaussian)
models. APOE = apolipoprotein E, ADAS-Cog = Alzheimer's Disease Assessment Scale–Cognitive sub-
scale, FAQ = Functional Activities Questionnaire, RAVLT = Rey Auditory Verbal Learning Test,
VOL = volume, CT = cortical thickness.

doi:10.1371/journal.pone.0138866.g003

Predicting Dementia in MCI Patients

PLOS ONE | DOI:10.1371/journal.pone.0138866 February 22, 2016 11 / 25



dementia progression could be predicted with substantially greater accuracy if it occurred
within the first 18 months after baseline (89.4%) rather than during months 18–36 (73.3%).

Predictive Confidence and Accuracy
We investigated whether probabilistic outputs from the pMKL classifier could be used to
improve the classification accuracy of our prognostic model by permitting only "high confi-
dence” predictions to be made. As we raised the level of confidence required to make predic-
tions, the accuracy of the model gradually increased (Fig 7). However, this increase in
classification accuracy came at a cost; with increasing minimum level of confidence required,
the model was able to make such "high confidence" predictions for an increasingly smaller pro-
portion of patients. For example, requiring a minimum predictive confidence level of 0.4 (cor-
responding to predicted probabilities of 0.70 for P-MCI and 0.30 for N-MCI or vice versa),
improved model accuracy from 79.9% (83.4% sensitivity, 76.4% specificity) to 87.4% (91.7%
sensitivity, 83.2% specificity). This improved accuracy was achieved by allowing predictions to
be made only for the top ~73% most confident patient cases, while designating the predictions
for the other ~27% of patient cases as “ambiguous” or “low confidence”. We also examined
whether probabilistic outputs from the pMKL classifier reflect the time to progression informa-
tion for individual P-MCI subjects. Correlation analysis revealed that there was a small but sta-
tistically significant negative association between the predicted probability (risk) of progression
and the time to progression (i.e. larger probability of progression was associated with shorter
time to progression; r = -0.20, P< 0.05, Spearman correlation).

Fig 4. Regional MRI predictors of MCI-to-dementia progression.Morphometric measures (volumes and
cortical thickness) for brain regions shown in both warm and cool colors were selected as predictors in the
single-source MRI model. Morphometric measures for a subset of these regions, shown in warm colors (red,
orange, yellow), were also selected as predictors in multi-source (CONCAT and MKL-Gaussian) models.
Regions of interest are overlaid on top of 3-D model reconstructions of the brain (gray). Top row: lateral view
of the cerebral hemispheres. Center: close-up view of the hippocampus-amygdala complex. Bottom row:
medial view of the cerebral hemispheres.

doi:10.1371/journal.pone.0138866.g004
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Discussion

Predictive Utility of Clinical, MRI, and Plasma Proteomic Data
Cognitive and functional (CF) assessments proved to be the most accurate (76.1%) in predict-
ing MCI-to-dementia progression. Likewise, other studies have reported that CF markers are
more predictive of MCI-to-dementia progression than structural MRI and CSF biomarkers
during a two-year period [35,26]. Plasma proteomic data had the lowest predictive accuracy
(53.2%), which was only marginally better than chance. In addition, the median number of

Fig 5. Comparison between N-MCI and P-MCI groups on baseline predictor variables. Error bars are 95% confidence intervals. Significant group
differences were present for all predictor variables (all P < 0.001). Vol. = volume, CT = cortical thickness, ADAS-Cog = Alzheimer's Disease Assessment
Scale–Cognitive sub-scale, FAQ = Functional Activities Questionnaire, RAVLT = Rey Auditory Verbal Learning Test, L. = Left, Constr. = Constructional

doi:10.1371/journal.pone.0138866.g005
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Fig 6. Effect of patient characteristics on classification accuracy. The classification accuracy of the model (MKL-Gaussian) varied with baseline
demographic (A-C), genetic (D), and clinical (E-G) characteristics. Panel E compares MCI patients who were on a regimen of ADmedications versus those
who were not. Panel F compares patients according to the number of pre-existing conditions in their medical history that are considered to be
cerebrovascular disease (CVD) risk factors, including diabetes mellitus, coronary artery disease, hypertension, smoking, hyperlipidemia, and stroke. The
classification accuracy of the model varied inversely with time to progression for P-MCI patients (H). The overall accuracy of the model (as found in Table 2)
is shown for reference as a dashed line. Error bars represent 95% confidence intervals across cross-validation trials. BAR = Balanced Accuracy Rate,
Sn = Sensitivity, Sp = Specificity, y/o = years old, H.S. = high school, Hx = history, APOE = apolipoprotein E, AD = Alzheimer's disease.

doi:10.1371/journal.pone.0138866.g006
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plasma proteomic features selected as predictors was substantially larger than that for other
data sources (40 versus 15 or less). This suggests that as a potential source of biomarkers,
plasma proteomic data have a low signal-to-noise ratio and limited utility for predicting MCI-
to-dementia progression over a three-year period. Using a different pattern classification strat-
egy, Johnstone and colleagues [50] also found that plasma-based proteomic measures could
not reliably discriminate between P-MCI and N-MCI subjects. The predictive accuracy of MRI
measures (69.1%) and clinical risk factors (61.8%) was found to be intermediate between that
of CF assessments and plasma proteomic measures. Multi-source models (CONCAT and
MKL-Gaussian) yielded an improvement in predictive accuracy up to ~80%–beyond that
achieved with any single source of data alone. In these more accurate models, only CF assess-
ment scores and morphometric MRI measures were consistently identified as predictors, indi-
cating that these data sources provide complementary information regarding MCI-to-
dementia progression. In contrast, clinical risk factors and plasma proteomic measures were
not consistently selected as predictors, indicating that these data sources provide limited or
redundant information about progression.

Interestingly, we found that our best performing model (MKL-Gaussian) could identify
MCI patients who progressed to AD dementia within 18 months of baseline with substantially
higher accuracy than patients who progressed after 18 months. Thus, CF and MRI markers
appear to be most sensitive to incipient AD during the 18 months prior to the onset of demen-
tia. This finding is consistent with the AD biomarker model proposed by Jack and colleagues
[67], which states that different biomarkers have unique temporal trajectories and may be opti-
mally sensitive to AD-related changes during specific time periods. While clinical measures
and markers of neuronal injury (e.g. MRI-based atrophy) become abnormal during later stages
of AD and may be useful for predicting short-term progression, markers of amyloid deposition
become abnormal early and may be more useful for predicting long-term progression.

Cognitive, Functional, and MRI Predictors
The predictors of MCI-to-dementia progression identified in the multi-source models included
baseline scores on cognitive (ADAS-Cog and RAVLT) and functional (FAQ) assessments as

Fig 7. Model accuracy as a function of predictive confidence. Increasing the minimum confidence
required to make predictions resulted in improved model accuracy (solid and dashed lines; left y-axis), albeit
at the cost of a decreasing proportion of MCI patients for whom "high confidence" predictions could be made
(white bars; right y-axis). Predictive confidence was defined as the difference between the predicted
probabilities for the N-MCI and P-MCI groups. BAR = Balanced Accuracy Rate, Sn = Sensitivity,
Sp = Specificity.

doi:10.1371/journal.pone.0138866.g007
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well as morphometric measures for three brain regions (left hippocampus, middle temporal
gyrus, and inferior parietal cortex). The selection of ADAS-Cog scores as predictors, in addi-
tion to RAVLT scores, suggests that baseline impairment in multiple cognitive domains–not
just memory function–is predictive of future progression to dementia. Consistent with this
finding, previous studies have reported that MCI patients with both memory and non-memory
deficits have a greater risk of progression to AD dementia than those with isolated memory
deficits [68]. A large meta-analysis also concluded that impairments across multiple cognitive
domains are evident several years prior to the clinical diagnosis of AD-type dementia [69].
Alternatively, impairment in multiple cognitive domains, as measured by performance on the
ADAS-Cog, can be viewed as reflecting a more advanced MCI stage. In this “late”MCI stage,
the patient is further along the normal-MCI-dementia continuum and closer to crossing the
clinical threshold from MCI to dementia. The selection of FAQ scores as predictors indicates
that a subtle but reliable impairment in functional status precedes the development of overt
dementia in patients with MCI. This finding challenges one of the principal distinctions
between MCI (as defined by the original Petersen/Mayo Clinic criteria) and dementia–whether
the ability to perform activities of daily living is preserved [32].

It is important to note that in this study, MCI subjects recruited as part of ADNI-1 were
diagnosed based on the original Petersen (Mayo Clinic) criteria for amnestic MCI [32]. Thus,
MCI subjects were limited to those with memory-only impairments (without significant
impairments in other cognitive domains), also termed single-domain amnestic MCI, and those
with preserved activities of daily living. Nevertheless, our results suggest that, even among
these MCI patients diagnosed using the single-domain amnestic MCI definition, subtle impair-
ments in both cognitive domains in addition to memory and in functional status were predic-
tive of MCI-to-AD progression. Importantly, our results provide empirical support to the most
recently revised clinical criteria for MCI, where the concept of “MCI due to AD” is proposed to
include “impairment in one or more cognitive domains” and an allowance for “mild problems
performing complex functional tasks” [70].

The selection of hippocampus, middle temporal gyrus, and inferior parietal cortex as predic-
tors of MCI-to-dementia progression is consistent with the known pattern of grey matter atro-
phy associated with incipient AD, which begins in the medial temporal lobes and then spreads
to temporoparietal association cortices [71]. In both the single-source MRI and multi-source
models, morphometric MRI features were selected as predictors with a preference toward the
left hemisphere, consistent with evidence that AD-related atrophy occurs at a faster rate in the
left hemisphere [71].

Effect of Multiple Kernel Learning (MKL) on Model Performance
The effect of MKL on model performance was modest in this study. MKL did not improve clas-
sification accuracy but modestly improved the calibration of the multi-source model when
using five Gaussian kernels. We used a relatively small number (3–5) of kernels in our MKL
models, which could account for the limited benefit we observed with MKL. Using a larger
number of kernels, as done in some recent studies (e.g. [23]), could yield additional improve-
ments in predictive performance.

Comparison with Models in the Literature
Table 3 shows that our best prediction model (AUC = 0.87, accuracy = 79.9%) performed very
favorably compared with recently published models. For better compatibility with the present
study, we limit this comparison to studies that used baseline data from the ADNI dataset to
predict MCI-to-AD progression within a 24–48 month follow-up period. By incorporating CF
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markers along with other biomarkers (as done in our study), recent studies have achieved
AUCs in the 0.80–0.87 range. Gomar et al. [35] attained an AUC of 0.80 by combining CF and
MRI markers in a logistic regression model. Cui et al. [26] also attained an AUC of 0.80 by
combining CF, MRI, and CSF markers using an SVM classifier, although they trained their
model on data from healthy control and AD subjects rather than on MCI data as we did. Ye
et al. [72] developed an SVM-based model that included CF and MRI markers as well as APOE
genotype, obtaining an AUC of 0.86. Devanand et al. [73] proposed a logistic regression model
that incorporated CF and MRI markers and had an AUC of 0.87 (77% accuracy), although the
predictive accuracy of this model was reported to be higher (85%) in an earlier and smaller, sin-
gle-center, non-ADNI study [74].

Other recent studies using the ADNI dataset have developed models based on various com-
binations of MRI, PET, and CSF markers, attaining AUCs in the 0.74–0.80 range [23,24,28,75].
Similar to our study, Young et al. [75] also used a probabilistic kernel-based classification
approach for predicting MCI-to-AD progression. Their best performing model incorporated
MRI, PET, and APOEmarkers and had an AUC of 0.80 (74.1% accuracy). Two methodological
differences may account for the superior predictive accuracy of our model compared to that of
Young et al. Unlike their model, our model incorporated CF markers. Moreover, while their
model was trained on data from healthy control and AD subjects (and then used to classify
MCI subjects), we trained our model using MCI data to specifically classify N-MCI and P-MCI
subjects. Using a model that incorporated only baseline MRI data, Wee et al. [76] were able to
predict MCI-to-AD progression with surprisingly high accuracy (AUC = 0.84). Although we
achieved better accuracy with our multi-source model, the MRI model of Wee et al. signifi-
cantly outperformed our single-source MRI model (AUC = 0.76). In addition to using ROI-
based morphometric features (as we did in our study), they also used correlational features that
captured the inter-regional similarity in cortical thickness, potentially providing a way to
improve our prediction model in the future. Finally, the predictive accuracy of our model was
not only high but also fairly balanced with a sensitivity/specificity differential of only 7%,
which compares favorably with recent studies where this differential was as high as 48%.

Importance of Patient Heterogeneity
We found that the predictive accuracy of our multi-source model (MKL-Gaussian) varied with
demographic, genetic, and clinical characteristics even though none of these variables were
selected as predictors of progression. For example, accuracy tended to be higher when

Table 3. Comparison of models for predicting MCI-to-AD progression.

Study Time (months) Markers AUC-ROC Acc (%) Sn (%) Sp (%)

Present study 36 CF, MRI 0.87 79.9 83.4 76.4

Cui et al. (2011) 24 CF, MRI, CSF 0.80 67.1 96.4 48.3

Gomar et al. (2011) 24 CF, MRI 0.80 71.9 56 82

Hinrichs et al. (2011) 36 MRI, PET 0.74 — — —

Westman et al. (2012) 36 MRI, CSF 0.76 68.5 74.1 63.0

Ye et al. (2012) 48 CF, MRI, APOE 0.86 — — —

Zhang and Shen (2012) 24 MRI, PET, CSF 0.80 73.9 68.6 73.6

Wee et al. (2013) 36 MRI 0.84 75.1 63.5 84.4

Young et al. (2013) 36 MRI, PET, APOE 0.80 74.1 78.7 65.6

AUC = area under the curve, Acc = accuracy, Sn = sensitivity, Sp = specificity, CF = cognitive/functional markers, MRI = magnetic resonance imaging,

CSF = cerebrospinal fluid, PET = positron emission tomography, APOE = apolipoprotein E genotype.

doi:10.1371/journal.pone.0138866.t003
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classifying older MCI patients but lower for carriers of the APOE epsilon 4 allele. A possible
mechanism for this interaction between predictive accuracy and patient characteristics is that
variables such as age and APOE genotype may be exerting moderator effects on the CF and
MRI predictors in our model. Supporting this explanation is evidence that aging and AD exert
independent but partially overlapping effects on cognitive function and brain structure, includ-
ing converging effects on the hippocampus and temporoparietal cortex [77,78]. In the case of
APOE genotype, epsilon 4 allele has been linked with temporal lobe atrophy, an effect seen
even in healthy control subjects [79]. We did not explicitly account for such potential modera-
tor effects in our classification analyses, as this was beyond the scope of our study. However,
we did consider patient characteristics such as age and APOE genotype as predictors of pro-
gression and examined their interaction with other predictor variables insofar as these interac-
tions were identified using the JMI-based multivariate feature selection technique used in this
study. Future studies may be able to improve predictive accuracy further by removing modera-
tor-related variability from the data via stratification or regression methods [80]. Nevertheless,
our findings suggest that it is important to consider the effects of patient heterogeneity when
developing predictive models of dementia. It is not safe to assume that a model performs
equally well across different strata of the patient population. An analysis of predictive accuracy
stratified according to various patient characteristics could identify if the model performs
poorly for specific subgroups of individuals and highlight areas for improvement.

Probabilistic Classification of MCI: Advantages and Applications
A unique aspect of this study is our adoption of a probabilistic kernel-based classifier (pMKL)
for the prediction of MCI-to-dementia progression. Calibration analysis revealed that the prob-
abilistic predictions generated by our model reliably reflect the actual risk of progression. Thus,
the model could be used to stratify MCI patients according to the risk of progression. The
probabilistic predictions also reflected some information about the time to progression for
P-MCI patients, a surprising finding since the model was not explicitly trained to predict time
to progression but rather to classify P-MCI versus N-MCI subjects. It may be possible to adapt
our pattern classification approach to explicitly predict time to progression, which would allow
staging of MCI patients along the MCI-AD continuum.

Importantly, we showed that the probabilistic outputs could be used as a measure of predic-
tive confidence to further improve the accuracy of the model. When using the model in con-
ventional, non-probabilistic mode, where no information about predictive confidence was
taken into account, we obtained an accuracy of 79.9% (83.4% sensitivity, 76.4% specificity).
When using the model in probabilistic mode, where predictions were allowed to be made only
for the top ~73% most confident patient cases, we obtained an improved accuracy of 87.4%
(91.7% sensitivity, 83.2% specificity). By assuming a 30% risk of progression over a three-year
period (~10% annually) as the pre-test probability [3,6], we obtain positive post-test probabili-
ties of 60.2% (non-probabilistic) and 70.1% (probabilistic) and a negative post-test probabilities
of 8.5% (non-probabilistic) and 4.1% (probabilistic) via application of Bayes' rule ([29]. This
means that 60.2% (non-probabilistic) and 70.1% (probabilistic) of amnestic MCI patients that
our model designates as “progressors” would progress to dementia within a three-year period.
Conversely, only 8.5% (non-probabilistic) and 4.1% (probabilistic) of patients that our model
designates as “non-progressors” would progress to dementia within a three-year period.

Our probabilistic prognostic model could be used to stratify MCI patients into high and low
risk groups as a way to enrich a patient sample in a clinical trial, resulting in up to a 57% reduc-
tion in the required sample size to detect the effect of a potential treatment. The extent of amy-
loid deposition in the brain based on CSF proteomic analysis or PET imaging is already being
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used as a biomarker to select “amyloid positive” individuals in clinical trials. For example, the
ongoing A4 clinical trial (Anti-Amyloid Treatment in Asymptomatic Alzheimer’s Disease) is
designed to examine whether an anti-amyloid treatment can slow down cognitive decline
among non-demented older adults who have amyloid deposition in their brains, as determined
using PET-based amyloid scans [81]. Our predictive model offers an alternative approach for
selection of individuals at risk for developing AD in clinical trials. The model could also be used
to more accurately identify high-risk MCI patients for early treatment with disease-modifying
agents. In cases where the model cannot make a confident prediction, the clinician can then
choose to order additional biomarker tests. Through the use of our prognostic model, more
expensive, more invasive, or less widely available tests (e.g. PET-based amyloid imaging) could
thus be used more sparingly, to the great benefit of the healthcare economy and the patients.

Limitations and Future Directions
An inherent limitation of this and other pattern classification studies using the ADNI dataset is
the reliance on the clinical diagnosis of AD as the "ground truth" (gold standard). The clinical
diagnosis of probable AD has an accuracy of 70–90% relative to the pathological diagnosis [82]
The implication of this is that models developed to predict progression fromMCI to clinically-
diagnosed AD can only be as accurate as the clinical diagnosis itself. Also, the relative uncer-
tainty of the clinical diagnosis means that additional variability (noise) is introduced into the
model development process, making the prediction task more challenging. Furthermore, the
use of clinical criteria to identify when MCI-to-AD progression occurs may in part explain
why baseline clinical assessments–which capture similar information–are often more predic-
tive of progression than other types of biomarkers. We recognize that there may be potential
concern about circular reasoning when using clinical assessment scores as predictors of MCI-
to-dementia progression. However, we believe the prospective nature of the clinical assess-
ments as predictors in the present study (which were collected 6–36 months prior to the clini-
cal outcome of interest) substantially mitigates this concern. To further address these issues,
future research on predictive models of AD should incorporate not only data from clinically-
diagnosed patients but also from those diagnosed using established pathological criteria.

Another limitation of this study is the relatively short follow-up period of three years.
Although the development of prognostic models for long-term dementia prediction is warranted,
short-term dementia prediction can be useful for selecting high-risk MCI patients in clinical tri-
als. For example, some recent clinical trials investigating disease-modifying anti-amyloid agents
for the treatment (e.g. [83]) or prevention (e.g. [81]) of AD have been 1.5 and 3 years in duration,
respectively. It is also important to note that the majority of MCI patients who subsequently
develop AD-type dementia do so within the first few years of follow-up [84]. Finally, although in
this study we considered only the APOE genotype as a generic predictor of progression, genome-
wide association studies have been used to identify several other genes that likely contribute to
the development of AD [85]. These AD-related susceptibility genes should be investigated in
future work to determine their utility in predicting MCI-to-dementia progression.

The present work can be extended in several ways. First, our model was developed using
data only from patients with the single-domain amnestic subtype of MCI, based on the inclu-
sion criteria of ADNI-1. Thus, the use of this relatively narrow inclusion criteria means that
multiple-domain amnestic MCI patients, who tend to be more severely impaired and likely
closer in their transition to AD-type dementia, were excluded. From a predictive modeling
standpoint, the exclusion of these MCI cases likely made the task of predicting MCI-to-demen-
tia progression more challenging. To enhance the clinical utility of our predictive model, future
work should incorporate data from patients with both amnestic and non-amnestic as well as
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single-domain and multiple-domain MCI subtypes. Second, our model was specifically
designed to predict progression fromMCI to AD. In practice, there are multiple other types of
dementia in addition to AD (e.g. dementia with Lewy bodies, frontotemporal dementia, vascu-
lar dementia), and many cases of dementia are of a mixed etiology (e.g. AD combined with vas-
cular dementia). The probabilistic pattern classification approach adopted in this study can be
naturally extended for use in the differential diagnosis of dementia, such that a multi-class clas-
sifier could be designed to assign a probability for each type of dementia. Third, we considered
only clinical, structural MRI, and plasma proteomic data in this study. Our pattern classifica-
tion approach could also be applied to biomarker sources such as CSF, PET, and other neuro-
imaging data. The incorporation of imaging measures of brain connectivity, such as those
based on diffusion tensor imaging [86] and resting-state functional MRI [87], may add further
predictive information to our model. Furthermore, the incorporation of PET-based amyloid
imaging [88] may be particularly useful for improving our model's ability to identify MCI
patients who progress to AD more than 18 months after baseline. Finally, we evaluated the pre-
dictive performance of our models using cross-validation, a form of internal validation in
which a model is developed and evaluated using the same dataset. As the next step, it will be
important to externally validate our model on an independent dataset [18,59].

Conclusions
In summary, we developed a model for predicting progression fromMCI to AD-type dementia
during a three-year period using a probabilistic, kernel-based pattern classification approach
and data from 259 patients with MCI. Using cognitive/functional markers and morphometric
MRI markers, the model predicted progression in individual patients with a cross-validated
accuracy of 80% and reliably estimated the actual risk of progression. The predictive accuracy
of the model varied with demographic, genetic, and clinical characteristics and could be further
improved by taking into account the confidence of the predictions. Our prognostic model can
potentially improve patient selection in clinical trials and identify high-risk MCI patients for
early treatment.

Supporting Information
S1 Fig. Comparison between included (n = 259) and excluded (n = 131) MCI subjects on
baseline predictor variables. Error bars are 95% confidence intervals. No group differences
were found for any of the predictor variables (all P> 0.4). Vol. = volume, CT = cortical thick-
ness, ADAS-Cog = Alzheimer's Disease Assessment Scale–Cognitive sub-scale,
FAQ = Functional Activities Questionnaire, RAVLT = Rey Auditory-Verbal Learning Test, L.
= Left, Constr. = Constructional
(PDF)

S1 File. Supplemental Materials and Methods.
(PDF)

S1 Table. Cross-validated performance estimates for single-kernel (5) and multiple-kernel
(6–9) multi-source models. In terms of classification accuracy (T-BAR), the CONCAT model
performed similarly to MKL-LPG, MKL-Poly, and MKL-Gaussian models (all P> 0.3, paired-
sample t-test) and outperformed the MKL-Linear model (P< 0.001). While MKL-LPG and
MKL-Poly models were as equally well-calibrated as the CONCAT model (as indicated by the
CCC; both P> 0.2), the MKL-Linear model was less well calibrated (P< 0.01) and the
MKL-Gaussian model was better calibrated (P< 0.05) than the CONCAT model.
(PDF)

Predicting Dementia in MCI Patients

PLOS ONE | DOI:10.1371/journal.pone.0138866 February 22, 2016 20 / 25

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0138866.s001
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0138866.s002
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0138866.s003


Acknowledgments
Data used in preparation of this article were obtained from the Alzheimer’s Disease Neuroim-
aging Initiative (ADNI) database (http://adni.loni.usc.edu). As such, the investigators within
the ADNI contributed to the design and implementation of ADNI and/or provided data but
did not participate in analysis or writing of this report. A complete listing of ADNI investiga-
tors can be found at: http://adni.loni.usc.edu/wp-content/uploads/how_to_apply/ADNI_
Acknowledgement_List.pdf. We would like to thank Dr. Rong Jin, Dr. David Zhu, Dr. Justin
McCormick, Dr. Kevin Berger, Bethany Heinlen, and Suzanne Kohler for helpful discussions
and feedback; and Monica Gentchev for help with data coding. We wish to acknowledge the
support of the Michigan State University High Performance Computing Center and the Insti-
tute for Cyber-Enabled Research. We are grateful to the patients and their families who partici-
pated in the ADNI.

Author Contributions
Conceived and designed the experiments: IOK LLS ACB. Performed the experiments: IOK.
Analyzed the data: IOK. Contributed reagents/materials/analysis tools: ADNI. Wrote the
paper: IOK LLS ACB.

References
1. Barnes DE, Yaffe K. The projected effect of risk factor reduction on Alzheimer’s disease prevalence.

Lancet Neurol. 2011; 10: 819–828. doi: 10.1016/S1474-4422(11)70072-2 PMID: 21775213

2. Holtzman DM, Morris JC, Goate AM. Alzheimer’s disease: the challenge of the second century. Sci
Transl Med. 2011; 3: 77sr1. doi: 10.1126/scitranslmed.3002369 PMID: 21471435

3. Petersen RC, Roberts RO, Knopman DS, Boeve BF, Geda YE, Ivnik RJ, et al. Mild cognitive
impairment: ten years later. Arch Neurol. 2009; 66: 1447–1455. doi: 10.1001/archneurol.2009.266
PMID: 20008648

4. Korolev IO. Alzheimer’s Disease: A Clinical and Basic Science Review. Medical Student Research
Journal. 2014; 4: 24–33.

5. Manly JJ, Tang M-X, Schupf N, Stern Y, Vonsattel J-PG, Mayeux R. Frequency and course of mild cog-
nitive impairment in a multiethnic community. Ann Neurol. 2008; 63: 494–506. doi: 10.1002/ana.21326
PMID: 18300306

6. Mitchell AJ, Shiri-Feshki M. Rate of progression of mild cognitive impairment to dementia—meta-analy-
sis of 41 robust inception cohort studies. Acta Psychiatr Scand. 2009; 119: 252–265. doi: 10.1111/j.
1600-0447.2008.01326.x PMID: 19236314

7. Klöppel S, Stonnington CM, Chu C, Draganski B, Scahill RI, Rohrer JD, et al. Automatic classification
of MR scans in Alzheimer’s disease. Brain. 2008; 131: 681–689. doi: 10.1093/brain/awm319 PMID:
18202106

8. Perrin RJ, Fagan AM, Holtzman DM. Multimodal techniques for diagnosis and prognosis of Alzheimer’s
disease. Nature. 2009; 461: 916–922. doi: 10.1038/nature08538 PMID: 19829371

9. Chen R, Herskovits EH. Machine-learning techniques for building a diagnostic model for very mild
dementia. NeuroImage. 2010; 52: 234–244. doi: 10.1016/j.neuroimage.2010.03.084 PMID: 20382237

10. Haller S, Lovblad KO, Giannakopoulos P. Principles of classification analyses in mild cognitive
impairment (MCI) and Alzheimer disease. J Alzheimers Dis. 2011; 26 Suppl 3: 389–394. doi: 10.3233/
JAD-2011-0014 PMID: 21971478

11. Klöppel S, Abdulkadir A, Jack CR Jr, Koutsouleris N, Mourão-Miranda J, Vemuri P. Diagnostic neuroim-
aging across diseases. NeuroImage. 2012; 61: 457–463. doi: 10.1016/j.neuroimage.2011.11.002
PMID: 22094642

12. Flicker C, Ferris SH, Reisberg B. Mild cognitive impairment in the elderly: predictors of dementia. Neu-
rology. 1991; 41: 1006–1009. PMID: 2067629

13. Tierney MC, Szalai JP, SnowWG, Fisher RH, Nores A, Nadon G, et al. Prediction of probable Alzhei-
mer’s disease in memory-impaired patients: A prospective longitudinal study. Neurology. 1996; 46:
661–665. PMID: 8618663

Predicting Dementia in MCI Patients

PLOS ONE | DOI:10.1371/journal.pone.0138866 February 22, 2016 21 / 25

http://adni.loni.usc.edu
http://adni.loni.usc.edu/wp-content/uploads/how_to_apply/ADNI_Acknowledgement_List.pdf
http://adni.loni.usc.edu/wp-content/uploads/how_to_apply/ADNI_Acknowledgement_List.pdf
http://dx.doi.org/10.1016/S1474-4422(11)70072-2
http://www.ncbi.nlm.nih.gov/pubmed/21775213
http://dx.doi.org/10.1126/scitranslmed.3002369
http://www.ncbi.nlm.nih.gov/pubmed/21471435
http://dx.doi.org/10.1001/archneurol.2009.266
http://www.ncbi.nlm.nih.gov/pubmed/20008648
http://dx.doi.org/10.1002/ana.21326
http://www.ncbi.nlm.nih.gov/pubmed/18300306
http://dx.doi.org/10.1111/j.1600-0447.2008.01326.x
http://dx.doi.org/10.1111/j.1600-0447.2008.01326.x
http://www.ncbi.nlm.nih.gov/pubmed/19236314
http://dx.doi.org/10.1093/brain/awm319
http://www.ncbi.nlm.nih.gov/pubmed/18202106
http://dx.doi.org/10.1038/nature08538
http://www.ncbi.nlm.nih.gov/pubmed/19829371
http://dx.doi.org/10.1016/j.neuroimage.2010.03.084
http://www.ncbi.nlm.nih.gov/pubmed/20382237
http://dx.doi.org/10.3233/JAD-2011-0014
http://dx.doi.org/10.3233/JAD-2011-0014
http://www.ncbi.nlm.nih.gov/pubmed/21971478
http://dx.doi.org/10.1016/j.neuroimage.2011.11.002
http://www.ncbi.nlm.nih.gov/pubmed/22094642
http://www.ncbi.nlm.nih.gov/pubmed/2067629
http://www.ncbi.nlm.nih.gov/pubmed/8618663


14. Kluger A, Ferris SH, Golomb J, Mittelman MS, Reisberg B. Neuropsychological prediction of decline to
dementia in nondemented elderly. J Geriatr Psychiatry Neurol. 1999; 12: 168–179. PMID: 10616864

15. De Leon MJ, George AE, Stylopoulos LA, Smith G, Miller DC. Early marker for Alzheimer’s disease: the
atrophic hippocampus. Lancet. 1989; 2: 672–673.

16. De Leon MJ, Golomb J, George AE, Convit A, Tarshish CY, McRae T, et al. The radiologic prediction of
Alzheimer disease: the atrophic hippocampal formation. AJNR Am J Neuroradiol. 1993; 14: 897–906.
PMID: 8352162

17. Jack CR, Petersen RC, Xu YC, O’Brien PC, Smith GE, Ivnik RJ, et al. Prediction of AD with MRI-based
hippocampal volume in mild cognitive impairment. Neurology. 1999; 52: 1397–1403. PMID: 10227624

18. Steyerberg EW, Moons KGM, van der Windt DA, Hayden JA, Perel P, Schroter S, et al. Prognosis
Research Strategy (PROGRESS) 3: Prognostic Model Research. PLoS Med. 2013; 10: e1001381. doi:
10.1371/journal.pmed.1001381 PMID: 23393430

19. Weiner MW, Veitch DP, Aisen PS, Beckett LA, Cairns NJ, Green RC, et al. The Alzheimer’s Disease
Neuroimaging Initiative: a review of papers published since its inception. Alzheimers Dement. 2012; 8:
S1–68. doi: 10.1016/j.jalz.2011.09.172 PMID: 22047634

20. Ben-Hur A, Ong CS, Sonnenburg S, Schölkopf B, Rätsch G. Support vector machines and kernels for
computational biology. PLoS Comput Biol. 2008; 4: e1000173. doi: 10.1371/journal.pcbi.1000173
PMID: 18974822

21. Hofmann T, Schölkopf B, Smola AJ. Kernel methods in machine learning. Ann Statist. 2008; 36: 1171–
1220. doi: 10.1214/009053607000000677

22. Gönen M, Alpaydın E. Multiple Kernel Learning Algorithms. J Mach Learn Res. 2011; 12: 2211–2268.

23. Hinrichs C, Singh V, Xu G, Johnson SC. Predictive Markers for AD in a Multi-Modality Framework: An
Analysis of MCI Progression in the ADNI Population. Neuroimage. 2011; 55: 574–589. doi: 10.1016/j.
neuroimage.2010.10.081 PMID: 21146621

24. Zhang D, Shen D. Multi-Modal Multi-Task Learning for Joint Prediction of Multiple Regression and Clas-
sification Variables in Alzheimer’s Disease. Neuroimage. 2012; 59: 895–907. doi: 10.1016/j.
neuroimage.2011.09.069 PMID: 21992749

25. Zhang D, Shen D. Predicting future clinical changes of MCI patients using longitudinal and multimodal
biomarkers. PLoS ONE. 2012; 7: e33182. doi: 10.1371/journal.pone.0033182 PMID: 22457741

26. Cui Y, Liu B, Luo S, Zhen X, Fan M, Liu T, et al. Identification of Conversion fromMild Cognitive
Impairment to Alzheimer’s Disease Using Multivariate Predictors. PLoS One. 2011; 6: e21896. doi: 10.
1371/journal.pone.0021896 PMID: 21814561

27. Davatzikos C, Bhatt P, Shaw LM, Batmanghelich KN, Trojanowski JQ. Prediction of MCI to AD conver-
sion, via MRI, CSF biomarkers, pattern classification. Neurobiol Aging. 2011; 32: 2322.e19–2322.e27.
doi: 10.1016/j.neurobiolaging.2010.05.023

28. Westman E, Muehlboeck J-S, Simmons A. Combining MRI and CSFmeasures for classification of Alz-
heimer’s disease and prediction of mild cognitive impairment conversion. Neuroimage. 2012; 62: 229–
238. doi: 10.1016/j.neuroimage.2012.04.056 PMID: 22580170

29. Westover MB, Westover KD, Bianchi MT. Significance testing as perverse probabilistic reasoning.
BMCMed. 2011; 9: 20. doi: 10.1186/1741-7015-9-20 PMID: 21356064

30. Damoulas T, Girolami MA. Probabilistic multi-class multi-kernel learning: on protein fold recognition
and remote homology detection. Bioinformatics. 2008; 24: 1264–1270. doi: 10.1093/bioinformatics/
btn112 PMID: 18378524

31. Herbei R, WegkampMH. Classification with reject option. Canadian Journal of Statistics. 2006; 34:
709–721. doi: 10.1002/cjs.5550340410

32. Petersen RC. Mild cognitive impairment as a diagnostic entity. J Intern Med. 2004; 256: 183–194. doi:
10.1111/j.1365-2796.2004.01388.x PMID: 15324362

33. McKhann G, Drachman D, Folstein M, Katzman R, Price D, Stadlan EM. Clinical diagnosis of Alzhei-
mer’s disease: report of the NINCDS-ADRDAWork Group under the auspices of Department of Health
and Human Services Task Force on Alzheimer’s Disease. Neurology. 1984; 34: 939–944. PMID:
6610841

34. Schneider LS, Insel PS, Weiner MW. Treatment with cholinesterase inhibitors and memantine of
patients in the Alzheimer’s Disease Neuroimaging Initiative. Arch Neurol. 2011; 68: 58–66. doi: 10.
1001/archneurol.2010.343 PMID: 21220675

35. Gomar JJ, Bobes-Bascaran MT, Conejero-Goldberg C, Davies P, Goldberg TE. Utility of Combinations
of Biomarkers, Cognitive Markers, and Risk Factors to Predict Conversion FromMild Cognitive
Impairment to Alzheimer Disease in Patients in the Alzheimer’s Disease Neuroimaging Initiative. Arch
Gen Psychiatry. 2011; 68: 961–969. doi: 10.1001/archgenpsychiatry.2011.96 PMID: 21893661

Predicting Dementia in MCI Patients

PLOS ONE | DOI:10.1371/journal.pone.0138866 February 22, 2016 22 / 25

http://www.ncbi.nlm.nih.gov/pubmed/10616864
http://www.ncbi.nlm.nih.gov/pubmed/8352162
http://www.ncbi.nlm.nih.gov/pubmed/10227624
http://dx.doi.org/10.1371/journal.pmed.1001381
http://www.ncbi.nlm.nih.gov/pubmed/23393430
http://dx.doi.org/10.1016/j.jalz.2011.09.172
http://www.ncbi.nlm.nih.gov/pubmed/22047634
http://dx.doi.org/10.1371/journal.pcbi.1000173
http://www.ncbi.nlm.nih.gov/pubmed/18974822
http://dx.doi.org/10.1214/009053607000000677
http://dx.doi.org/10.1016/j.neuroimage.2010.10.081
http://dx.doi.org/10.1016/j.neuroimage.2010.10.081
http://www.ncbi.nlm.nih.gov/pubmed/21146621
http://dx.doi.org/10.1016/j.neuroimage.2011.09.069
http://dx.doi.org/10.1016/j.neuroimage.2011.09.069
http://www.ncbi.nlm.nih.gov/pubmed/21992749
http://dx.doi.org/10.1371/journal.pone.0033182
http://www.ncbi.nlm.nih.gov/pubmed/22457741
http://dx.doi.org/10.1371/journal.pone.0021896
http://dx.doi.org/10.1371/journal.pone.0021896
http://www.ncbi.nlm.nih.gov/pubmed/21814561
http://dx.doi.org/10.1016/j.neurobiolaging.2010.05.023
http://dx.doi.org/10.1016/j.neuroimage.2012.04.056
http://www.ncbi.nlm.nih.gov/pubmed/22580170
http://dx.doi.org/10.1186/1741-7015-9-20
http://www.ncbi.nlm.nih.gov/pubmed/21356064
http://dx.doi.org/10.1093/bioinformatics/btn112
http://dx.doi.org/10.1093/bioinformatics/btn112
http://www.ncbi.nlm.nih.gov/pubmed/18378524
http://dx.doi.org/10.1002/cjs.5550340410
http://dx.doi.org/10.1111/j.1365-2796.2004.01388.x
http://www.ncbi.nlm.nih.gov/pubmed/15324362
http://www.ncbi.nlm.nih.gov/pubmed/6610841
http://dx.doi.org/10.1001/archneurol.2010.343
http://dx.doi.org/10.1001/archneurol.2010.343
http://www.ncbi.nlm.nih.gov/pubmed/21220675
http://dx.doi.org/10.1001/archgenpsychiatry.2011.96
http://www.ncbi.nlm.nih.gov/pubmed/21893661


36. Palmqvist S, Hertze J, Minthon L, Wattmo C, Zetterberg H, Blennow K, et al. Comparison of Brief Cog-
nitive Tests and CSF Biomarkers in Predicting Alzheimer’s Disease in Mild Cognitive Impairment: Six-
Year Follow-Up Study. PLoS ONE. 2012; 7: e38639. doi: 10.1371/journal.pone.0038639 PMID:
22761691

37. Gomar JJ, Conejero-Goldberg C, Davies P, Goldberg TE, Alzheimer’s Disease Neuroimaging Initiative.
Extension and refinement of the predictive value of different classes of markers in ADNI: Four-year fol-
low-up data. Alzheimer’s & Dementia: The Journal of the Alzheimer’s Association. 2014;

38. Karow DS, McEvoy LK, Fennema-Notestine C, Hagler DJ, Jennings RG, Brewer JB, et al. Relative
capability of MR imaging and FDG PET to depict changes associated with prodromal and early Alzhei-
mer disease. Radiology. 2010; 256: 932–942. doi: 10.1148/radiol.10091402 PMID: 20720076

39. Jack CR, Bernstein MA, Fox NC, Thompson P, Alexander G, Harvey D, et al. The Alzheimer’s Disease
Neuroimaging Initiative (ADNI): MRI methods. J Magn Reson Imaging. 2008; 27: 685–691. doi: 10.
1002/jmri.21049 PMID: 18302232

40. Dale AM, Fischl B, Sereno MI. Cortical surface-based analysis. I. Segmentation and surface recon-
struction. Neuroimage. 1999; 9: 179–194. doi: 10.1006/nimg.1998.0395 PMID: 9931268

41. Desikan RS, Ségonne F, Fischl B, Quinn BT, Dickerson BC, Blacker D, et al. An automated labeling
system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest.
Neuroimage. 2006; 31: 968–980. doi: 10.1016/j.neuroimage.2006.01.021 PMID: 16530430

42. Fischl B, Sereno MI, Dale AM. Cortical surface-based analysis. II: Inflation, flattening, and a surface-
based coordinate system. Neuroimage. 1999; 9: 195–207. doi: 10.1006/nimg.1998.0396 PMID:
9931269

43. Fischl B, Salat DH, Busa E, Albert M, Dieterich M, Haselgrove C, et al. Whole brain segmentation: auto-
mated labeling of neuroanatomical structures in the human brain. Neuron. 2002; 33: 341–355. PMID:
11832223

44. Desikan RS, Cabral HJ, Hess CP, Dillon WP, Glastonbury CM, Weiner MW, et al. Automated MRI mea-
sures identify individuals with mild cognitive impairment and Alzheimer’s disease. Brain. 2009; 132:
2048–2057. doi: 10.1093/brain/awp123 PMID: 19460794

45. Salat DH, Greve DN, Pacheco JL, Quinn BT, Helmer KG, Buckner RL, et al. Regional white matter vol-
ume differences in nondemented aging and Alzheimer’s disease. Neuroimage. 2009; 44: 1247–1258.
doi: 10.1016/j.neuroimage.2008.10.030 PMID: 19027860

46. Shen L, Saykin AJ, Kim S, Firpi HA, West JD, Risacher SL, et al. Comparison of manual and automated
determination of hippocampal volumes in MCI and early AD. Brain Imaging Behav. 2010; 4: 86–95. doi:
10.1007/s11682-010-9088-x PMID: 20454594

47. Graff-Radford NR, Crook JE, Lucas J, Boeve BF, Knopman DS, Ivnik RJ, et al. Association of low
plasma Abeta42/Abeta40 ratios with increased imminent risk for mild cognitive impairment and Alzhei-
mer disease. Arch Neurol. 2007; 64: 354–362. doi: 10.1001/archneur.64.3.354 PMID: 17353377

48. Ray S, Britschgi M, Herbert C, Takeda-Uchimura Y, Boxer A, Blennow K, et al. Classification and pre-
diction of clinical Alzheimer’s diagnosis based on plasma signaling proteins. Nat Med. 2007; 13: 1359–
1362. doi: 10.1038/nm1653 PMID: 17934472

49. Hansson O, Zetterberg H, Vanmechelen E, Vanderstichele H, Andreasson U, Londos E, et al. Evalua-
tion of plasma Abeta(40) and Abeta(42) as predictors of conversion to Alzheimer’s disease in patients
with mild cognitive impairment. Neurobiol Aging. 2010; 31: 357–367. doi: 10.1016/j.neurobiolaging.
2008.03.027 PMID: 18486992

50. Johnstone D, Milward EA, Berretta R, Moscato P. Multivariate protein signatures of pre-clinical Alzhei-
mer’s disease in the Alzheimer’s disease neuroimaging initiative (ADNI) plasma proteome dataset.
PLoS ONE. 2012; 7: e34341. doi: 10.1371/journal.pone.0034341 PMID: 22485168

51. Soares HD, Potter WZ, Pickering E, Kuhn M, Immermann FW, Shera DM, et al. Plasma Biomarkers
AssociatedWith the Apolipoprotein E Genotype and Alzheimer Disease. Archives of Neurology. 2012;
1–8. doi: 10.1001/archneurol.2012.1070

52. Iwatsubo T, Odaka A, Suzuki N, Mizusawa H, Nukina N, Ihara Y. Visualization of A beta 42(43) and A
beta 40 in senile plaques with end-specific A beta monoclonals: evidence that an initially deposited spe-
cies is A beta 42(43). Neuron. 1994; 13: 45–53. PMID: 8043280

53. Saeys Y, Inza I, Larrañaga P. A review of feature selection techniques in bioinformatics. Bioinformatics.
2007; 23: 2507–2517. doi: 10.1093/bioinformatics/btm344 PMID: 17720704

54. Yang HH, Moody J. Feature Selection Based on Joint Mutual Information. Proceedings of International
ICSC Symposium on Advances in Intelligent Data Analysis. 1999. pp. 22–25.

55. Brown G, Pocock A, Zhao M-J, Luján M. Conditional Likelihood Maximisation: A Unifying Framework
for Information Theoretic Feature Selection. J Mach Learn Res. 2012; 13: 27–66.

Predicting Dementia in MCI Patients

PLOS ONE | DOI:10.1371/journal.pone.0138866 February 22, 2016 23 / 25

http://dx.doi.org/10.1371/journal.pone.0038639
http://www.ncbi.nlm.nih.gov/pubmed/22761691
http://dx.doi.org/10.1148/radiol.10091402
http://www.ncbi.nlm.nih.gov/pubmed/20720076
http://dx.doi.org/10.1002/jmri.21049
http://dx.doi.org/10.1002/jmri.21049
http://www.ncbi.nlm.nih.gov/pubmed/18302232
http://dx.doi.org/10.1006/nimg.1998.0395
http://www.ncbi.nlm.nih.gov/pubmed/9931268
http://dx.doi.org/10.1016/j.neuroimage.2006.01.021
http://www.ncbi.nlm.nih.gov/pubmed/16530430
http://dx.doi.org/10.1006/nimg.1998.0396
http://www.ncbi.nlm.nih.gov/pubmed/9931269
http://www.ncbi.nlm.nih.gov/pubmed/11832223
http://dx.doi.org/10.1093/brain/awp123
http://www.ncbi.nlm.nih.gov/pubmed/19460794
http://dx.doi.org/10.1016/j.neuroimage.2008.10.030
http://www.ncbi.nlm.nih.gov/pubmed/19027860
http://dx.doi.org/10.1007/s11682-010-9088-x
http://www.ncbi.nlm.nih.gov/pubmed/20454594
http://dx.doi.org/10.1001/archneur.64.3.354
http://www.ncbi.nlm.nih.gov/pubmed/17353377
http://dx.doi.org/10.1038/nm1653
http://www.ncbi.nlm.nih.gov/pubmed/17934472
http://dx.doi.org/10.1016/j.neurobiolaging.2008.03.027
http://dx.doi.org/10.1016/j.neurobiolaging.2008.03.027
http://www.ncbi.nlm.nih.gov/pubmed/18486992
http://dx.doi.org/10.1371/journal.pone.0034341
http://www.ncbi.nlm.nih.gov/pubmed/22485168
http://dx.doi.org/10.1001/archneurol.2012.1070
http://www.ncbi.nlm.nih.gov/pubmed/8043280
http://dx.doi.org/10.1093/bioinformatics/btm344
http://www.ncbi.nlm.nih.gov/pubmed/17720704


56. Damoulas T, Girolami MA. Combining feature spaces for classification. Pattern Recognition. 2009; 42:
2671–2683. doi: 10.1016/j.patcog.2009.04.002

57. Damoulas T, Girolami MA. Pattern recognition with a Bayesian kernel combination machine. Pattern
Recognition Letters. 2009; 30: 46–54. doi: 10.1016/j.patrec.2008.08.016

58. Altman DG, Bland JM. Diagnostic tests. 1: Sensitivity and specificity. BMJ. 1994; 308: 1552. PMID:
8019315

59. Bouwmeester W, Zuithoff NPA, Mallett S, Geerlings MI, Vergouwe Y, Steyerberg EW, et al. Reporting
and methods in clinical prediction research: a systematic review. PLoSMed. 2012; 9: 1–12. doi: 10.
1371/journal.pmed.1001221

60. Kim KI, Simon R. Probabilistic classifiers with high-dimensional data. Biostatistics. 2011; 12: 399–412.
doi: 10.1093/biostatistics/kxq069 PMID: 21087946

61. Lin LI. A concordance correlation coefficient to evaluate reproducibility. Biometrics. 1989; 45: 255–268.
PMID: 2720055

62. Altman DG, Bland JM. Diagnostic tests 3: receiver operating characteristic plots. BMJ. 1994; 309: 188.
PMID: 8044101

63. Cawley GC, Talbot NLC. On Over-fitting in Model Selection and Subsequent Selection Bias in Perfor-
mance Evaluation. Journal of Machine Learning Research. 2010; 11: 2079–2107.

64. Smialowski P, Frishman D, Kramer S. Pitfalls of supervised feature selection. Bioinformatics. 2010; 26:
440–443. doi: 10.1093/bioinformatics/btp621 PMID: 19880370

65. Varma S, Simon R. Bias in error estimation when using cross-validation for model selection. BMCBioin-
formatics. 2006; 7: 91. doi: 10.1186/1471-2105-7-91 PMID: 16504092

66. Bouckaert RR. Choosing between Two Learning Algorithms Based on Calibrated Tests. In ICML’03.
Morgan Kaufmann; 2003. pp. 51–58.

67. Jack CR, Knopman DS, Jagust WJ, Shaw LM, Aisen PS, Weiner MW, et al. Hypothetical model of
dynamic biomarkers of the Alzheimer’s pathological cascade. Lancet Neurol. 2010; 9: 119–128. doi:
10.1016/S1474-4422(09)70299-6 PMID: 20083042

68. Bozoki A, Giordani B, Heidebrink JL, Foster NL. Mild cognitive impairments predict dementia in nonde-
mented elderly patients with memory loss. Arch Neurol. 2001; 58: 411–416. PMID: 11255444

69. Bäckman L, Jones S, Berger A-K, Laukka EJ, Small BJ. Cognitive impairment in preclinical Alzheimer’s
disease: a meta-analysis. Neuropsychology. 2005; 19: 520–531. doi: 10.1037/0894-4105.19.4.520
PMID: 16060827

70. Albert MS, DeKosky ST, Dickson D, Dubois B, Feldman HH, Fox NC, et al. The diagnosis of mild cogni-
tive impairment due to Alzheimer’s disease: recommendations from the National Institute on Aging-Alz-
heimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers
Dement. 2011; 7: 270–279. doi: 10.1016/j.jalz.2011.03.008 PMID: 21514249

71. Thompson PM, Hayashi KM, de Zubicaray G, Janke AL, Rose SE, Semple J, et al. Dynamics of gray
matter loss in Alzheimer’s disease. J Neurosci. 2003; 23: 994–1005. PMID: 12574429

72. Ye J, FarnumM, Yang E, Verbeeck R, Lobanov V, Raghavan N, et al. Sparse learning and stability
selection for predicting MCI to AD conversion using baseline ADNI data. BMC Neurology. 2012; 12: 46.
doi: 10.1186/1471-2377-12-46 PMID: 22731740

73. Devanand DP, Liu X, Brown PJ, Huey ED, Stern Y, Pelton GH. A two-study comparison of clinical and
MRI markers of transition frommild cognitive impairment to Alzheimer’s disease. Int J Alzheimers Dis.
2012; 2012: 483469. doi: 10.1155/2012/483469 PMID: 22482070

74. Devanand DP, Liu X, Tabert MH, Pradhaban G, Cuasay K, Bell K, et al. Combining early markers
strongly predicts conversion frommild cognitive impairment to Alzheimer’s disease. Biol Psychiatry.
2008; 64: 871–879. doi: 10.1016/j.biopsych.2008.06.020 PMID: 18723162

75. Young J, Modat M, Cardoso MJ, Mendelson A, Cash D, Ourselin S. Accurate multimodal probabilistic
prediction of conversion to Alzheimer’s disease in patients with mild cognitive impairment. Neuroimage
(Amst). 2013; 2: 735–745. doi: 10.1016/j.nicl.2013.05.004

76. Wee C-Y, Yap P-T, Shen D, Alzheimer’s Disease Neuroimaging Initiative. Prediction of Alzheimer’s dis-
ease and mild cognitive impairment using cortical morphological patterns. Hum Brain Mapp. 2013; 34:
3411–3425.

77. Raji CA, Lopez OL, Kuller LH, Carmichael OT, Becker JT. Age, Alzheimer disease, and brain structure.
Neurology. 2009; 73: 1899–1905. doi: 10.1212/WNL.0b013e3181c3f293 PMID: 19846828

78. Stricker NH, Chang Y-L, Fennema-Notestine C, Delano-Wood L, Salmon DP, Bondi MW, et al. Distinct
profiles of brain and cognitive changes in the very old with Alzheimer disease. Neurology. 2011; 77:
713–721. doi: 10.1212/WNL.0b013e31822b0004 PMID: 21832223

Predicting Dementia in MCI Patients

PLOS ONE | DOI:10.1371/journal.pone.0138866 February 22, 2016 24 / 25

http://dx.doi.org/10.1016/j.patcog.2009.04.002
http://dx.doi.org/10.1016/j.patrec.2008.08.016
http://www.ncbi.nlm.nih.gov/pubmed/8019315
http://dx.doi.org/10.1371/journal.pmed.1001221
http://dx.doi.org/10.1371/journal.pmed.1001221
http://dx.doi.org/10.1093/biostatistics/kxq069
http://www.ncbi.nlm.nih.gov/pubmed/21087946
http://www.ncbi.nlm.nih.gov/pubmed/2720055
http://www.ncbi.nlm.nih.gov/pubmed/8044101
http://dx.doi.org/10.1093/bioinformatics/btp621
http://www.ncbi.nlm.nih.gov/pubmed/19880370
http://dx.doi.org/10.1186/1471-2105-7-91
http://www.ncbi.nlm.nih.gov/pubmed/16504092
http://dx.doi.org/10.1016/S1474-4422(09)70299-6
http://www.ncbi.nlm.nih.gov/pubmed/20083042
http://www.ncbi.nlm.nih.gov/pubmed/11255444
http://dx.doi.org/10.1037/0894-4105.19.4.520
http://www.ncbi.nlm.nih.gov/pubmed/16060827
http://dx.doi.org/10.1016/j.jalz.2011.03.008
http://www.ncbi.nlm.nih.gov/pubmed/21514249
http://www.ncbi.nlm.nih.gov/pubmed/12574429
http://dx.doi.org/10.1186/1471-2377-12-46
http://www.ncbi.nlm.nih.gov/pubmed/22731740
http://dx.doi.org/10.1155/2012/483469
http://www.ncbi.nlm.nih.gov/pubmed/22482070
http://dx.doi.org/10.1016/j.biopsych.2008.06.020
http://www.ncbi.nlm.nih.gov/pubmed/18723162
http://dx.doi.org/10.1016/j.nicl.2013.05.004
http://dx.doi.org/10.1212/WNL.0b013e3181c3f293
http://www.ncbi.nlm.nih.gov/pubmed/19846828
http://dx.doi.org/10.1212/WNL.0b013e31822b0004
http://www.ncbi.nlm.nih.gov/pubmed/21832223


79. Wishart HA, Saykin AJ, McAllister TW, Rabin LA, McDonald BC, Flashman LA, et al. Regional brain
atrophy in cognitively intact adults with a single APOE ε4 allele. Neurology. 2006; 67: 1221–1224. doi:
10.1212/01.wnl.0000238079.00472.3a PMID: 17030756

80. Koikkalainen J, Pölönen H, Mattila J, van Gils M, Soininen H, Lötjönen J, et al. Improved Classification
of Alzheimer’s Disease Data via Removal of Nuisance Variability. PLoS ONE. 2012; 7: e31112. doi: 10.
1371/journal.pone.0031112 PMID: 22348041

81. Sperling RA, Rentz DM, Johnson KA, Karlawish J, Donohue M, Salmon DP, et al. The A4 study: stop-
ping AD before symptoms begin? Sci Transl Med. 2014; 6: 228fs13. doi: 10.1126/scitranslmed.
3007941 PMID: 24648338

82. Beach TG, Monsell SE, Phillips LE, Kukull W. Accuracy of the clinical diagnosis of Alzheimer disease
at National Institute on Aging Alzheimer Disease Centers, 2005–2010. J Neuropathol Exp Neurol.
2012; 71: 266–273. doi: 10.1097/NEN.0b013e31824b211b PMID: 22437338

83. Salloway S, Sperling R, Fox NC, Blennow K, KlunkW, Raskind M, et al. Two phase 3 trials of bapineu-
zumab in mild-to-moderate Alzheimer’s disease. N Engl J Med. 2014; 370: 322–333. doi: 10.1056/
NEJMoa1304839 PMID: 24450891

84. Mitchell AJ, Shiri-Feshki M. Temporal trends in the long term risk of progression of mild cognitive
impairment: a pooled analysis. J Neurol Neurosurg Psychiatr. 2008; 79: 1386–1391. doi: 10.1136/jnnp.
2007.142679 PMID: 19010949

85. Lambert JC, Ibrahim-Verbaas CA, Harold D, Naj AC, Sims R, Bellenguez C, et al. Meta-analysis of
74,046 individuals identifies 11 new susceptibility loci for Alzheimer’s disease. Nat Genet. 2013; 45:
1452–1458. doi: 10.1038/ng.2802 PMID: 24162737

86. Bozoki AC, Korolev IO, Davis NC, Hoisington LA, Berger KL. Disruption of limbic white matter pathways
in mild cognitive impairment and Alzheimer’s disease: a DTI/FDG-PET study. Hum Brain Mapp. 2012;
33: 1792–1802. doi: 10.1002/hbm.21320 PMID: 21674695

87. Zhu DC, Majumdar S, Korolev IO, Berger KL, Bozoki AC. Alzheimer’s disease and amnestic mild cogni-
tive impairment weaken connections within the default-mode network: a multi-modal imaging study. J
Alzheimers Dis. 2013; 34: 969–984. doi: 10.3233/JAD-121879 PMID: 23313926

88. Nordberg A, Carter SF, Rinne J, Drzezga A, Brooks DJ, Vandenberghe R, et al. A European multicentre
PET study of fibrillar amyloid in Alzheimer’s disease. Eur J Nucl Med Mol Imaging. 2013; 40: 104–114.
doi: 10.1007/s00259-012-2237-2 PMID: 22961445

Predicting Dementia in MCI Patients

PLOS ONE | DOI:10.1371/journal.pone.0138866 February 22, 2016 25 / 25

http://dx.doi.org/10.1212/01.wnl.0000238079.00472.3a
http://www.ncbi.nlm.nih.gov/pubmed/17030756
http://dx.doi.org/10.1371/journal.pone.0031112
http://dx.doi.org/10.1371/journal.pone.0031112
http://www.ncbi.nlm.nih.gov/pubmed/22348041
http://dx.doi.org/10.1126/scitranslmed.3007941
http://dx.doi.org/10.1126/scitranslmed.3007941
http://www.ncbi.nlm.nih.gov/pubmed/24648338
http://dx.doi.org/10.1097/NEN.0b013e31824b211b
http://www.ncbi.nlm.nih.gov/pubmed/22437338
http://dx.doi.org/10.1056/NEJMoa1304839
http://dx.doi.org/10.1056/NEJMoa1304839
http://www.ncbi.nlm.nih.gov/pubmed/24450891
http://dx.doi.org/10.1136/jnnp.2007.142679
http://dx.doi.org/10.1136/jnnp.2007.142679
http://www.ncbi.nlm.nih.gov/pubmed/19010949
http://dx.doi.org/10.1038/ng.2802
http://www.ncbi.nlm.nih.gov/pubmed/24162737
http://dx.doi.org/10.1002/hbm.21320
http://www.ncbi.nlm.nih.gov/pubmed/21674695
http://dx.doi.org/10.3233/JAD-121879
http://www.ncbi.nlm.nih.gov/pubmed/23313926
http://dx.doi.org/10.1007/s00259-012-2237-2
http://www.ncbi.nlm.nih.gov/pubmed/22961445

