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Abstract

In cognitive science there is a seeming paradox: On the one hand, studies of human judg-
ment and decision making have repeatedly shown that people systematically violate optimal
behavior when integrating information from multiple sources. On the other hand, optimal
models, often Bayesian, have been successful at accounting for information integration in
fields such as categorization, memory, and perception. This apparent conflict could be due,
in part, to different materials and designs that lead to differences in the nature of processing.
Stimuli that require controlled integration of information, such as the quantitative or linguistic
information (commonly found in judgment studies), may lead to suboptimal performance.

In contrast, perceptual stimuli may lend themselves to automatic processing, resulting in
integration that is closer to optimal. We tested this hypothesis with an experiment in which
participants categorized faces based on resemblance to a family patriarch. The amount

of evidence contained in the top and bottom halves of each test face was independently
manipulated. These data allow us to investigate a canonical example of sub-optimal infor-
mation integration from the judgment and decision making literature, the dilution effect.
Splitting the top and bottom halves of a face, a manipulation meant to encourage controlled
integration of information, produced farther from optimal behavior and larger dilution effects.
The Multi-component Information Accumulation model, a hybrid optimal/averaging model of
information integration, successfully accounts for key accuracy, response time, and dilution
effects.

Introduction

Information integration refers to the combination of different sources of information for the
purpose of performing some task. To comprehend speech, for instance, one can attend to both
its visual and auditory components. As another example, to produce an accurate diagnosis, a
doctor needs to consider the patient’s symptoms, family history, diet, and exercise habits. Each
source of information, on its own, provides some predictive or diagnostic value, but integrating
these sources will usually yield better performance. The manner in which these sources are
integrated will determine the probability of success.
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The extant literature provides numerous examples in which observers combine multiple
sources of information in a near-optimal fashion. There are just as many examples, however, in
which integration is far from optimal and clearly follows simple heuristics. The stimuli and
tasks for which these divergent results are found often differ qualitatively. Tasks involving per-
ceptual processing, for example, speech comprehension [1], seem to be less susceptible to the
use of heuristics than tasks involving more quantitative stimuli, for example, probability judg-
ments [2]. The present research directly tests this claim and explores the modulating effect of
stimulus presentation on the use of heuristics in a uniform information integration paradigm.
In particular, the current research tests the hypothesis that sources of information that are eas-
ier to perceptually combine will be more resistant to the dilution effect, a robust information
integration phenomenon whereby additional diagnostic information actually decreases
accuracy.

Information Integration in Judgment and Decision Making

There is abundant evidence from many studies of judgment and decision making that informa-
tion from different sources is often integrated via heuristic strategies. Sometimes simple heuris-
tics produce results that approach optimal decision making [3], but in many other cases the
results fall well short of optimal combination, relative to standard rational theories of inference
[4]. Findings of deviations from rational behavior have had a great influence on theorizing, and
for a large subset of judgment researchers it is now common practice to assume sub-optimal
performance as a starting point for theories of information integration.

The conjunctive fallacy, unpacking effect, and reliance on rule-based heuristic strategies are
a few of the many common findings in the judgment literature that violate normative models
of information integration. The conjunctive fallacy [5, 6] is typically illustrated with the famous
“Linda the bank teller” story. The laws of probability imply that the probability of a conjunc-
tion of two events cannot be larger than the probability of either event separately: e.g., P(XNY |
Z) < P(X | Z). Yet a majority of respondents across a variety of studies claimed that statements
such as “Linda is a bank teller and is active in the feminist movement” to be more likely than
“Linda is a bank teller.” The unpacking effect relates to the finding that breaking an event into
its component parts makes the event seem more likely [7]. According to common normative
models, there should be no such increase in likelihood. Finally, there are many examples of reli-
ance on rule-based heuristic strategies in tasks of judgment. One of the most compelling is the
“Take The Best” heuristic [8]. According to this decision making algorithm, the dimensions
along which a number of choices vary are ranked according to their predictive validity. Rather
than incorporating all cues into a judgment according to their relative validity, a selection is
made based simply on the values of the most valid discriminating dimension. In these situa-
tions (and many more) observers have been shown to violate rational principles of information
integration.

Information Integration in Perception, Categorization, and Memory

In contrast to the judgment literature, there have been numerous highly successful applications
of optimal or rational models of information integration in fields such as perceptual categoriza-
tion and perception. In this article, we use the word optimal in a Bayesian statistical sense (note
that some have argued that Bayesian methods do not always guarantee optimal performance
[9]). The success of such models has moved researchers in these more perceptual fields to
begin with an assumption of optimality and only later investigate sub-optimal or heuristic-
based performance. Examples of optimal information integration are easy to find in these more
perceptual domains, and the following are a very few of many potential examples. Ashby and
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colleagues [10-12] have found categorization performance to be well described by a decision
bound that either nearly optimally integrates information across two dimensions or uses a rule
of the same form as the optimal bound. Using an exemplar model of categorization, Nosofsky
[13] suggested that observers tend to distribute attention among dimensions so as to optimize
categorization performance. Tenenbaum [14, 15] has successfully utilized a Bayesian frame-
work for modeling human concept learning. Anderson [16] has demonstrated that many com-
mon results in both the categorization and memory literatures can be well described by his
Bayesian rational model. The Fuzzy Logic Model of Perception [1, 17] is based on the idea that
observers optimally integrate different sources of information and has been applied success-
fully to a large range of data.

In sensory science, optimal information integration is usually the default assumption and
the starting point for research. Of thousands of potential examples, we mention Burgess, Wag-
ner, Jennings, and Barlow [18] who found the ability of human observers to discriminate visual
patterns in noisy backgrounds to be very close to that of an ideal observer. Geisler and Diehl
[19] used a Bayesian framework to analyze the relationship between statistical properties of the
environment and the evolution of the cognitive and perceptual systems. Kersten, Mamassian,
and Yuille [20] provide a review of recent developments in using Bayesian approaches to
model people’s ability to perceive objects in complex and noisy environments.

The Dilution Effect

Although information integration is an object of study by researchers in both judgment and
decision making domains and in cognitive and sensory domains, these fields often seem to be
operating independently of each other. One source of such independence is the wide difference
in experimental paradigms. The judgment literature focuses mainly on linguistic or quantita-
tive statements of probabilities, and is concerned with the ways in which a person uses infor-
mation to assess, estimate, and infer what events will occur [21]. The other lines of research
discussed above typically rely on more perceptual stimuli, such as images and sounds, and con-
centrate on how the information is produced from external stimulation, often with reference to
particular episodes.

This article focuses on one phenomenon in which sub-optimal information integration has
often been observed: the dilution effect. There are several forms of this effect, but the general
finding is that adding null or weak positive evidence to what is already very strong positive evi-
dence reduces the overall strength of belief about a hypothesis. This “dilution” of the strong evi-
dence with weaker evidence suggests the use of a simple averaging heuristic. The dilution effect
has been replicated in numerous judgment and decision making studies [22, 23] and in such
diverse areas as legal [24] and social [25] reasoning.

Shanteau [26] gives one of the earliest demonstrations of the dilution effect. In this study,
the experimenter drew samples of red (R) and white (W) beads with replacement from one of
two boxes. The 70/30 box had 70% white beads and 30% red beads. The 30/70 box had 30%
white beads and 70% red beads. The participants did not know from which box the beads were
drawn. In one condition, the experimenter drew the sequence WWWRWR from one of the
boxes. After every two beads, the participants were asked to estimate the probability that the
beads came from the 70/30 box. The mean judgments after WW, WWWR, and WWWRWR
were 69.3%, 64.0, and 60.6, respectively. The WW sample provides diagnostic information that
clearly points to the 70/30 box. However the subsequent samples are nondiagnostic; they could
have come from either box with equal probability, and should not have changed the estimated
likelihood that the entire sequence came from the 70/30 box. Yet this non-diagnostic informa-
tion caused the estimated probability to drop.

PLOS ONE | DOI:10.1371/journal.pone.0138481 September 25,2015 3/19



@’PLOS ‘ ONE

Perceptual Dilution Effect

A variation of an example from McKenzie, Lee, and Chen [24] presents a different and nat-
uralistic illustration of the dilution effect. Imagine a defendant standing trial on criminal char-
ges: John Smith is accused of robbing a bank. The prosecution first calls a witness that presents
a strong case for the defendant’s guilt: she is confident that she saw John Smith rob the bank.
The prosecution then calls a second witness who did not get a clear view and claims only to
have seen a male of John Smith’s height and race rob the bank. Although this evidence is
weaker, it should increase rather than decrease belief in the defendant’s guilt because the
description fits John Smith and tends to rule out many other potential robbers. Judgments of
guilt, however, usually decrease after hearing this weakly positive evidence.

Perceptual Stimuli

The current research explores the dilution effect using perceptual stimuli, which impart a num-
ber of advantages (also see [27]). First, issues of interpretation and language understanding do
not come into play. Numerous papers have suggested that participants often do not properly
understand what is asked of them when presented with standard judgment and decision mak-
ing stimuli. For example, the conjunction rule is violated less often if participants interpret
“Linda is a bank teller” to mean that she is a bank teller and not active in the feminist move-
ment (see [5] for a short review). Furthermore, observers often misinterpret probability values,
and sometimes perform more effectively when data are, instead, presented as frequencies [28].
In contrast, the present task simply requires perceptual matching, thereby greatly reducing any
confounding influence of language conventions or mathematical training.

Although the dilution effect has commonly been studied using traditional judgment and
decision making stimuli, it easily lends itself to exploration in a perceptual setting. The present
research explores the combination of weak and strong evidence from different parts of a face.
To continue the above example, say you are trying to identify whether a face captured on a
security camera is the defendant John Smith. The photo is indeed that of John Smith, but only
the top half of the face is relatively clear; the bottom half is in partial shadow and harder to see.
The top and bottom halves of the face lend strong and weak evidence to the decision, respec-
tively. In this way, using face stimuli allows for precise control of the amount of information in
an image.

To preview the current experiment, the appearance of each test face stimulus is manipulated
by morphing two target faces representing patriarchs of the Jones and Smith families. A morph
comprised of 90% Jones and 10% Smith would provide very strong evidence that the test face
belonged to the Jones family. Likewise, a 60% Jones and 40% Smith morph would provide only
weak support for Jones. The observer’s goal is to categorize the faces into one of the two fami-
lies, based on resemblance. Critically, the top and bottom halves of the test face are morphed
independently and so provide different levels of support for the two families. The key idea is
that, in direct analogy to standard work on the dilution effect, the two half faces act as two
sources of information to be combined before making a choice.

The primary goal of this research is to determine whether the two sources of information in a
face combine in a near-optimal fashion, as predicted by models of perceptual integration, or
whether the information will be combined in a sub-optimal manner, as exemplified by the dilu-
tion effect. Using perceptual stimuli allows us to bridge the methodological divide between these
areas through use of a common experimental paradigm and uniform methods of analysis.

Automatic and Controlled Processing

How will observers combine the information contained in each half face? Analogous to the
conflicting results from perceptual and judgment and decision making paradigms, the answer
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may depend, in part, on the type of processes that are engaged. As a first step towards address-
ing this issue, we hypothesize that information integration is more susceptible to the dilution
effect when information is combined by controlled, cognitive processes than when it is com-
bined by automatic, perceptual processes.

Distinguishing automatic from controlled processing is very common, both in theory and in
empirical research. Whereas automatic processing is usually assumed to be fast and indepen-
dent of conscious manipulation, controlled processing is assumed to be slow and conscious.
Although less flexible, automatic processing is usually assumed to be more robust, less prone to
large errors, less based on heuristics, and closer to optimal than controlled processing
(although, see for example [3, 29]).

Theories differentiating automatic and controlled processing are common in both judgment
and decision making (e.g., [21, 30-35]) and in perceptual categorization (e.g. [36-38]), mem-
ory (e.g. [39]), and perception (e.g. [40-44]).

Although both automatic and controlled processes are typically engaged in most judgment
and decision making and perceptual tasks, the contrasting information integration paradigms
discussed previously can be seen as prototypes for tasks encouraging automatic and controlled
processes. That is, whereas efficiently matching visual stimuli, faces in particular, is a highly
automated task [45, 46], the integration of quantitative values is often deliberative and con-
trolled [8, 47, 48]. This distinction suggests that the stimuli used in traditional dilution effect
paradigms may be more likely to encourage heuristic processing. Closer to optimal integration
is more likely for tasks that invite automatic processing.

Another benefit of using perceptual stimuli is that the test faces can be designed to bias pro-
cessing toward controlled or automatic processing in a common experimental paradigm with
minimal variation across conditions. In one set of conditions, the together conditions, the two
half faces are shown atop one another, in a normal configuration. Because identification of
faces is an over-learned task, these conditions should promote automatic processing and were
predicted to be less prone to simple heuristics. That is, in contrast to the dilution effect, weak
evidence in the together conditions, when added to strong evidence from the same category,
should increase classification accuracy. In a second set of conditions, the split conditions, the
two half faces were separated horizontally. Because our perceptual systems have rarely dealt
with the need to combine face parts separated horizontally in space, it seems likely that each
half face would be processed separately, and that the results would later be combined with con-
trolled strategies. If so, the well-known cognitive difficulties of combining information might
come into play, encouraging heuristic use. That is, weak and strong evidence should produce a
dilution effect.

A Perceptual Information Integration Experiment

The goal of this experiment is to demonstrate dilution effects using perceptual stimuli (i.e.,
faces) and to determine whether dilution is modulated by stimulus presentation format. In par-
ticular, this experiment tests whether two sources of information that are combined in a more
controlled, rather than automatic, manner will be more likely to produce dilution.

On each trial, two target faces representing the Jones and Smith family patriarchs were dis-
played on either side of a test face created by morphing the targets. Depending on the propor-
tion of the Jones and Smith target present in the morph, the top and bottom halves of the test
faces provide weak, medium, or strong evidence for either the Jones or Smith family. Test faces
were either a half face (top or bottom) or a whole face (both top and bottom). The whole faces
were presented either split to promote controlled processing (top and bottom half faces shifted
horizontally) or together to promote automatic processing (top and bottom half faces in a
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normal configuration). The observer’s task was to determine which target better matched the
test face.

Based on the many studies showing near-optimal combination of perceptual information,
in the together condition, two half faces favoring Jones should produce even stronger Jones
responses relative to either half face alone. Alternatively, as in more traditional judgment and
decision making studies, in the split condition, weak evidence might detract from strong evi-
dence to produce a dilution effect. That is, splitting a face, which disrupts normal face process-
ing, should result in greater dilution than when the face is presented normally.

As discussed previously, the dilution effect is typically defined as non-optimal information
integration in which weak evidence reduces the influence of strong evidence. It is important to
note, however, that this definition is a strong form of dilution, originating from the standard
dilution effect paradigm in which strong evidence is combined with weak or neutral evidence
(e.g. [23]). The current work extends this paradigm by allowing for a weaker form of dilution.
In particular, weak evidence may not reduce the influence of strong evidence, but should still
combine less efficiently for the split faces relative to the together faces. The present study also
generalizes the standard paradigm by factorially combining weak, medium, and strong
evidence.

In addition to empirically testing for the presence of dilution, we also evaluate a model of
information integration that might explain such data. We propose the Multi-component Infor-
mation Accumulation model to account for our findings. This model describes a process by
which information is repeatedly drawn from multiple sources during deliberation until a deci-
sion threshold is reached. The model simultaneously accounts for choice proportions and
response times, providing insight into the possible cognitive processes that might underlie
information integration in our study.

Method
Ethics Statement

This study, and its procedure for obtaining consent, was approved by the Institutional Review
Board at the Office of Research Administration at Indiana University Bloomington (protocol
07-12475). All participants read and signed an informed consent form before beginning the
experiment.

Participants

Nineteen students from Indiana University (undergraduate and graduate) were paid $10 per
hour to participate in this study. Participants received points based on performance. The par-
ticipant with the highest performance received a $20 bonus.

Stimuli

First, two target faces were generated. Second, these target faces were used to calibrate the
weak, medium, and strong half faces individually for each participant. Finally, these half faces
were used to create the test faces.

Morphing will be used to create the weak, medium, and strong half faces. In this context, a
morph is a linear combination of the gray-scale values at every pixel from two images. For
example, consider a morph between the Jones and Smith faces. Each pixel of the 75% Jones
morph is determined by weighting the gray-scale value of each pixel in the Jones and Smith
faces by .75 and .25, respectively, and then adding the values.
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The following notation is used to describe the stimuli. Weak, medium, and strong half faces
are denoted as w, m, and s, respectively. A weak, medium, and strong top half face is designated
as w/, m/, and s/, respectively. Likewise, bottom half faces are designated as /w, /m, and /s.
Whole faces are specified as two half faces. For example, w/s, is a face with a weak top and a
strong bottom. Leaving out the slash indicates that the data were averaged regardless of top or
bottom status. For example, ws specifies all faces with one weak and one strong half, regardless
of location (i.e., w/s and s/w). This notation averages over family. Where appropriate, these fac-
tors will be designated with subscripts. For example, Wjones/Sjones 18 @ face with a weak Jones top
and a strong Jones bottom.

Target Faces. All of the stimuli used in the experiment were derived from two gray-scale
target faces, the Jones and Smith targets. Two faces were selected from the FERET database
[49]. These faces were warped so that their major facial features aligned and were then cropped
to remove the hair and head outline. Using pilot data, the bottom halves of the two faces were
morphed so that the discriminability of the top and bottom half faces were roughly equivalent.
The cropped areas of the 256 x 384 pixel images were filled with a sinusoidal grating. See Fig 1
for the targets.

Stimulus Calibration. The purpose of calibration was to determine the morph levels that
provide weak, medium, and strong evidence for the Jones and Smith targets individually for
each participant. A staircase algorithm was used to find a medium morph level for each half

Jones Target Smith Target

Fig 1. Target faces and sample together whole, split whole, and half test faces.

doi:10.1371/journal.pone.0138481.g001
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face and for each family. Linear interpolation from this medium level was used to determine
weak and strong levels.

The top and bottom halves of each target face were calibrated separately. Consider calibra-
tion for the top half of the upright Jones target. On each trial, participants were shown a top
half face flanked by the two targets and were asked to select the target face it more closely
resembled. Feedback was given after each response. Because this is calibration for the top half
of the Jones face, a response of Jones was considered correct. A 2-up, 1-down staircase algo-
rithm was used to find the morph level that produced roughly 71% accuracy [50]. In particular,
the proportion of Jones present in the morph was reduced by 5.6% (minimum of 50%) after
every two consecutive correct responses and was increased by 5.6% (maximum of 100%) after
each incorrect response. This process continued for 18 trials. The half face morph on the first
calibration trial was very similar to the Jones target face (a 94% Jones, 6% Smith morph). Cali-
bration of the other half faces proceeded independently, in a similar fashion.

The staircases for the top and bottom halves for Jones and Smith were randomly intermixed.
There were 72 (2 top/bottom x 2 Jones/Smith x 18 repetitions) half-face trials. To reduce the
probability that participants would develop strategies tailored only to half faces, 48 whole-face
trials (24 together and 24 split faces of fixed morph levels) were randomly interspersed with
the half-face trials. The whole-face trials did not affect the half-face staircases or any further
analysis.

This procedure resulted in top and bottom half morph levels for each target that produced
an intermediate level of accuracy. These morph levels were used as the medium strength. On
the basis of pilot data, weak levels were defined as the morph midway between the medium
level and a 50% morph and strong levels were defined as the morph two-thirds between the
medium level and a 100% morph. For example, if the medium level for the top face Jones target
was an 82% Jones morph. Then the weak level would be a 66% Jones morph and the strong
level would be a 94% Jones morph.

Test Faces. The 56 test faces were generated from the calibrated weak, medium, and strong
levels as follows. The test faces are subdivided into half, whole, and opposite faces each of
which can be together or split.

Twelve (3 morph levels x 2 top/bottom x 2 Jones/Smith) half test faces were generated
directly from the weak, medium, and strong calibration morph levels. Eighteen (3 top morph
levels x 3 bottom morph levels x 2 Jones/Smith) whole test faces were created by crossing the
w/, m/, and s/ top-half faces for each target with the /w, /m, and /s bottom-half faces for that
same target, resulting in whole faces in which the two halves support the same response. Four
(2 top morph levels x 2 top Jones/Smith) opposite faces combined m and w evidence from
opposite families, and were included as a check that the half faces from the weaker category
were not taken as evidence for the stronger category. In the figures, opposite faces are desig-
nated as wom-weak, opposite medium. As was done for the targets, all test faces were superim-
posed on a sinusoidal grating.

The 22 whole and opposite test faces were then formatted to encourage automatic or con-
trolled processing. In the fogether configuration, top and bottom halves aligned normally. In
the split configuration, there was a sixty pixel offset between top and bottom halves. To empha-
size that the two halves were originally from the same face, the background was split along with
the face, giving the impression of a single edited image. Because there was no effect after exten-
sive pilot testing, half faces were not split. Sample test faces are provided in Fig 1.

Procedure

The experiment was broken into two phases, the calibration phase and the integration phase.
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The calibration phase was described previously. During each trial of the integration phase,
participants viewed a test face flanked by the two target faces. After a two-second presentation,
the face was masked by a scrambled sets of target-face features. After an additional 250ms, par-
ticipants were first asked to select the target that better resembled the test face and then to pro-
vide “the likelihood that you are correct” on a 6-point scale from 50% to 100%. No feedback
was provided on the integration trials. For whole faces, participants were told to treat both
halves of an image as coming from a single face, even in the split condition.

During each integration block, each test face appeared once, with the exceptions of w/w, m/
m, and s/s stimuli, which appeared twice, for a total of 68 trials per block (12 half, 36 whole, 8
opposite, and 12 additional w/w, m/m, s/s faces). Participants completed two sessions of the
experiment on separate days. During the first session they completed calibration and one inte-
gration block. During the second session, they completed three integration blocks. In separate
experimental blocks, the participants were also calibrated and tested on upside-down versions
of the stimuli. Data from these trials are not discussed.

To randomize starting eye fixations relative to the stimuli and thereby reduce a potential
top/bottom starting bias, trials began with a test face appearing in one of nine positions on the
screen. These positions were defined by crossing three vertical locations (0, +100, -100 pixel
offset from y-center) with three horizontal locations (0, +100, -100 pixel offset from x-center).

Results

The present analysis focuses on participants’ choice proportions during the integration phase.
Confidence judgments produced a very similar pattern of results and are provided in the
Appendix.

Trials with a confidence rating of 50% or a response time of less than 150ms or greater than
5s were removed from analysis. This procedure removed approximately 13% of all trials. 2.25%
of together trials and 2.91% of split trials had a confidence rating of 50%.

In the whole and half face conditions, responses were coded as correct if they matched the
appropriate target face. For example, given a Wjones/Sjones test face, Jones was the correct
response. For opposite faces, where the top and bottom halves favor different responses, the
correct response was the one supported by the stronger evidence. For example, given a myypes/
Wsmith test face, Jones was the correct response.

The main graphs of Fig 2 shows the accuracy, response time, and deviation scores for each
combination of evidence strength separately for the together and split conditions. For display
purposes, the data were collapsed across family and top and bottom half faces.

Whole face accuracy, response times, and dilution were initially analyzed using linear
mixed-effects models ([51, 52]). The following fixed effects were included in the model:
together/split (coded as-.5 and .5), top and bottom face strength (weak = -1, medium = 0,
strong = 1), and all interactions. Because they were not of theoretical interest, block, trial, and
family were not included in the model. Including these factors as fixed, main effects, however,
had no qualitative effect on the reported results. Subjects were included as a random effect with
a random intercept. For accuracy, a logistic model was used to model performance on each
trial. Model comparison with the full model was used to determine p-values. The results of
these analyses are provided in Table 1 and will be discussed below.

Accuracy

Quick checks of the accuracy data (Fig 2, top panel) suggest that the strength levels were appro-
priately calibrated. Half-face accuracy was higher than desired, but was ordered correctly:
w < m < s. Both together and split ww, mm, and ss whole face accuracy increased in that
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Fig 2. Data and model predictions for accuracy (top), response time (middle), and deviation scores
(bottom) for weak (w), medium (m), and strong (s) half faces and averaged within the weak-weak (ww),
weak-medium (wm), weak-strong (ws), medium-medium (mm), medium-strong (ms), strong-strong
(ss), and weak-opposite medium (wom) together and split whole-face conditions. Error bars are
between-subject standard errors. The far right error bars and circles in the top two panels are the standard
errors and model predictions for the half faces.

doi:10.1371/journal.pone.0138481.9g002

order. The mean accuracies for both together and split wom trials were greater than chance, ¢
(18) =5.07,p < .001,d = 1.16 and #(18) = 4.11, p < .001, d = 0.94, and less than the mean accu-
racy for medium half faces, #(18) = 8.27, p < .001, d = -1.90 and #(18) = 7.07, p < .001, d =
-1.62, confirming that the weak half faces were taken as evidence for the appropriate category.
As expected, the opposite faces yielded the lowest accuracy, suggesting that participants per-
ceived top and bottom halves as supporting opposite responses. These trials were included only
as a manipulation check and will not be discussed further. Accuracy increased as the strength
of the top- and bottom-faces increased. Accuracy on split faces was significantly lower than
accuracy on together faces (.87 vs. .91). A more direct test of differences in dilution across con-
ditions is provided below.

Table 1. Results of the linear mixed-effects models for accuracy, response time, and deviation score. Note. The 4* and p values were determined by
comparison with the full model. All 7 df = 1. Bold = p < .05.

Estimate S.E. t-, z-value* 7 p
Accuracy
(intercept) 2.49 0.18 14.07 43.48 <.001
together/split -0.45 0.14 -3.21 10.74 .001
top strength 0.72 0.09 8.43 78.98 <.001
bottom strength 0.71 0.08 8.35 77.24 <.001
together/splitxtop strength -0.10 0.17 -0.57 0.33 .57
together/splitxbottom strength -0.14 0.17 -0.81 0.67 41
top strengthxbottom strength 0.14 0.10 1.35 1.84 A7
together/splitxtop strengthxbottom strength -0.10 0.20 -0.50 0.25 .62
Response time
(intercept) 1.01 0.08 12.31 42.63 <.001
together/split 0.03 0.03 1.07 1.15 .28
top strength -0.11 0.02 -6.04 36.32 <.001
bottom strength -0.09 0.02 -5.17 26.64 <.001
together/splitxtop strength 0.01 0.03 0.17 0.03 .86
together/splitxbottom strength 0.00 0.03 -0.08 0.01 .94
top strengthxbottom strength 0.00 0.02 0.04 0.00 .97
together/splitxtop strengthxbottom strength 0.04 0.04 0.90 0.81 .37
Deviation score
(intercept) -0.01 0.01 -0.49 0.25 .61
together/split -0.03 0.01 -2.85 8.11 .004
top strength -0.01 0.01 -1.69 2.86 .09
bottom strength -0.01 0.01 -1.00 1.01 .32
together/splitxtop strength 0.01 0.01 0.95 0.90 .34
together/splitxbottom strength 0.01 0.01 0.52 0.26 .61
top strengthxbottom strength 0.04 0.01 4.54 20.57 <.001
together/splitxtop strengthxbottom strength -0.01 0.02 -0.31 0.09 .76

*z-scores for accuracy, t-scores for response time and deviation score.

doi:10.1371/journal.pone.0138481.t001
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Response Times

Although there were no strong predictions for the effect of format on response times (Fig 2,
middle panel), split faces are both unfamiliar and more likely to invoke controlled processing
potentially slowing processing and increasing response times. Although the trend is slightly in
that direction (for whole faces, mean RT ygesner = 993ms, mean RTy,;;, = 1025ms), the effect of
split on response time was not significant. Response times, however, did decrease as the
strength of the top- and bottom-faces increased. The response times are presented primarily as
an additional constraint on the model, as described below.

Deviation Scores

The primary research question concerns the conditions under dilution would occur. To
address this question, whole face accuracy was compared to the accuracy of the stronger half
face alone. The stronger half faces were determined using each individual's mean half-face per-
formance, which agreed with the experimenter labels for 87% of faces. Deviation scores for
each whole test face for each participant were calculated by subtracting the mean accuracy for
the stronger half face—i.e., the half face present in the whole face that produced the greatest
accuracy when alone—from the accuracy of each whole face response. For example, consider a
correct response to the presentation of a w/s Jones face. Further, assume that the mean accu-
racy for the w/ and /s half faces were 0.6 and 0.8, respectively. Then the deviation score for this
response would be 1-0.8 = 0.2. A deviation score less than 0 indicates a dilution. When the
deviation score is greater than 0, weak evidence is adding to strong evidence.

Together deviation scores were significantly higher than split deviation scores (0.014 vs.
-0.019). Although deviation scores did not significantly change with top- and bottom-half
strength, these factors did interact. In the bottom panel of Fig 2, it is clear that deviation scores
decreased as top and bottom strengths diverged. For example, the effect of a strong half face
depends on the strength of the other half—the deviation score for a ws face is much lower than
the deviation score for an ss face. To explore this interaction further, the mean deviation score
for each subject and each difference in top and bottom strength (i.e., ww =mm = ss = -1,
wm =ms = 0, ws = 1) was calculated. A linear mixed-effects model was run with together/split,
strength difference, and the interaction as fixed effects and subjects as a random factor with a
random intercept. As previously, there was a main effect of together/split (est. = -0.03, s.e. =
0.01, t-value = -2.39, *(1) = 5.71, p = .02), with split faces producing greater dilution. Critically,
deviation scores decreased as the strength difference increased (est. = -0.03, s.e. = 0.01, t-value =
-3.96, ;(2 (1) = 14.93, p < .001), suggesting that dilution increases with the difference in evidence
strength across sources. No other effects were significant.

The previous analysis suggests that evidence is combined less efficiently for split faces. The
data, however, also suggest that a stronger form of dilution may occur under certain conditions.
That is, weak evidence may actually reduce the effect of strong evidence. Note that the split ws
faces most closely match the standard dilution effect stimuli, i.e., strong evidence paired with
weak evidence. A post-hoc contrast found that the deviation score of the split ws faces was signifi-
cantly below zero, #(18) = 2.61, p = .02, d = -0.60, suggesting that the weak evidence reduced the
effect of the strong evidence. Conversely, optimal integration of information would create positive
deviation scores. We expected together faces to be more likely to show additive information inte-
gration, however, the closer performance is to ceiling, the more difficult it is to improve. For these
reasons, we predicted that the together ww condition should produce reliable additive effects.
Indeed, these faces yielded significant positive deviation scores, #(18) = 3.19, p = .005, d = 0.73.

Another method for investigating the presence of automatic vs. controlled processing is to
look at the relationship between response times and deviation scores. We used each
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individual’s median response time to classify each whole face trial as either fast or slow. Across
all whole face trials, deviations scores were significantly lower for slow trials, £(18) = 5.47, p <
.001, d = 0.07. This effect held for together trials, #(18) = 6.35, p < .001, d = 0.07, as well as split
trials, #(18) = 3.71, p < .01, d = 0.06.

The Multi-Component Information Accumulation Model

The Multi-Component Information Accumulation model (McIA) was developed based on the
assumption that information integration is governed by a process of accumulating evidence
from multiple sources until a decision threshold is reached. The McIA is implemented as a
random walk. Evidence accumulates towards two response thresholds—one for the correct
response and one for the incorrect response. On every time step, a source of evidence is sam-
pled and the random walk probabilistically takes a step towards the threshold supported by
the evidence. There are three sources of evidence: the top half face alone, the bottom half face
alone, and the whole face. The model typically extracts information separately from the top
and bottom halves. The perceptual system, however, occasionally short-circuits this process by
automatically, and optimally, integrating the evidence from the two halves. The whole face evi-
dence source is intended to represent this automatic information integration. The accumula-
tion process continues until a response threshold is reached, at which point the associated
choice is made. The predicted response time is the number of steps taken to reach the
threshold.

Model Implementation

On half-face trials, there is only one possible source of evidence, the half face. On whole face
trials, attention switches back and forth between the three sources of information. At each
moment in time, evidence is sampled based on an attention parameter, @, which is the proba-
bility of automatically integrating information from the two halves. Under the assumption that
whole-face information integration is disrupted by the splitting the faces, o is set to 0 for split
faces (allowing a non-zero ¢ for the split faces did not significantly improve the quantitative
fits, wSSE = 17.77, and o was small, = .069). The a parameter is the only difference between
together and split model predictions. The probabilities of sampling from the top half or the
bottom half, (1 - )/2, are assumed to be equal.

Evidence strength determines the probability that the process will take a step toward the
correct decision threshold. The probabilities that the random walk will take a step towards the
correct threshold given weak, medium, and strong half-face evidence are 6,4k Spmedium»> and
Ostrong Tespectively. The probability of moving towards the correct threshold given whole face
evidence is calculated as the optimal combination of the top and bottom probabilities. In par-
ticular, the optimal combination is given by:

6“’1’ Sbottom
_ (1*‘)mp) (1=0pottom) (1)
whole 1 + éfﬂP X Sbottom
(1=0410p) (1= pottom)

This equation, based on the optimal integration of information from Massaro [17], reflects
the idea that whole face evidence is the result of the automatic perceptual integration of visual
information and is extremely effective and accurate. For example, consider a w/s whole face
with 8yyeax = .55 and Os¢rong = .75. Then

55 75
_ sy T - — 81,

whole .55 .75
1 + (1—0.55) (1-.75)
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which is more likely to move the random walk toward the correct boundary than either half
face alone. In contrast, switching between top and bottom half faces effectively averages the
two probabilities (.55 +.75)/2 = .65, yielding a value lower than the probability associated with
the stronger half face (i.e., .75). Thus, use of the whole face information can produce the addi-
tive information integration seen in perceptual studies and relying on half face information
alone can produce dilution.

The threshold parameter, 6, is assumed to be equal for each family, thus the initial distance
to the correct and incorrect boundary is the same. Random walk models measure time in steps.
A linear transformation is used to translate steps to milliseconds. That is, RT = 7 + kN, where 7
is a constant, non-decision time parameter, k is the time taken to make each step, and N is the
number of steps to threshold. It turns out that the response times for half faces were consider-
ably longer than response times for whole faces with comparable accuracy. One possible reason
for this difference is that comparing a half face to a whole face target is an additional processing
disruption. To accommodate this possibility, a half-face multiplier, A, further scaled the time it
took to make each step in the random walk. Although we are largely agnostic regarding this
issue, h, can be interpreted as representing the time required to manipulate the target faces,
which are whole, into a format that can be easily compared to a half test face. That is, the
response time for a half face is given by RT = 7 + hkN. Other possible models were tried includ-
ing increasing the thresholds, wSSE = 25.57, and decreasing the rates, wSSE = 48.09, for half
faces. None of these models fit as well as including a multiplier on k. As this half-face effect was
unexpected and not the main focus of this article, we leave exploration of this effect to future
research.

Conveniently, the McIA model has closed-form analytical solutions for choice probabilities
and response times (see [53, 54]), allowing us quickly calculate model predictions without the
need for simulations. The McIA has the eight free parameters listed in Table 2. These eight
parameter were used to account for the 34 data points from the top and middle panels of Fig 2
(12 whole face, 2 opposite face, and 3 half face accuracies and response times). The model was
fit to the data using a weighted sum of squares error (wSSE) fit measure. The error was based
on accuracy, response time, and, because they are of particular interest, deviation scores.
Although the deviation scores are redundant with accuracy they were included to ensure that
the model accounted for these relatively small, but theoretically important effects. To put accu-
racy, response time, and deviation scores on comparable scales, the error scores were standard-
ized. In particular, the difference between each data point and the associated model prediction
was divided by the standard error of the mean for that data point. To create the overall fit mea-
sure, these differences were squared and then summed. The best fitting parameters were found
using the Nelder-Mead simplex [55] algorithm in Octave [56].

Table 2. Best Fitting Parameters for the MclA Model.

Parameter Value Definition
6 6.76  Response threshold.
a .30  Probability of using optimal information integration for together faces.
Oweak .54 Probability of moving toward the correct response threshold given weak, medium, or
Omedium 5@  Sstrong evidence.
- 64
359  Non-decision time (ms).
k 20 Step time (ms).
h 1.24  Half-face multiplier.

doi:10.1371/journal.pone.0138481.t002
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Modeling Results

The best fitting (WSSE = 18.61) accuracy, response time, and deviation score model predictions
are shown as open circles in Fig 2. The best fitting parameters are given in Table 2.

The model does an excellent job of accounting for the data. First, consider the accuracy data
(top panel of Fig 2). The McIA accounts for all of the qualitative differences across evidence
strength. By using the more accurate whole-face information in the together conditions, the
model can also predict the relative together condition advantage.

Second, the model captures all of the major response time trends (middle panel of Fig 2).
The model, however, does predict a slight response time advantage for the together faces. This
prediction follows directly from the accuracy advantage. Because the whole-face information
strongly favors the correct response, the random walk is more likely to move towards the cor-
rect threshold both increasing accuracy and reducing the number of steps taken to reach the
threshold. Further studies will be needed to determine the validity of this prediction.

Finally, and most important, the model captures the basic qualitative patterns in the devia-
tion scores (bottom panel of Fig 2). Given the relatively subtle nature of these differences, this
result is especially impressive. Due to a lack of whole-face evidence in the split condition, the
model correctly predicts that split deviations scores will be lower (more negative) than together
deviation scores. Related to this prediction, reliance on whole-face information allows for addi-
tive information-integration in the together conditions. In particular, the model can account
for the relatively high deviation score for the ww faces. The model also correctly predicts that
deviation scores will decrease with an increase in strength difference between the two sources
of evidence. For example, within the together and split conditions, the lowest deviation scores
are for the ws stimuli and the highest deviation scores are for the ww stimuli. This prediction
stems from the half-face sampling process. Because both halves are sampled with equal proba-
bility, weaker evidence will greatly slow progress towards the correct threshold, relative to
stronger evidence alone, resulting in much lower accuracy. A particularly interesting prediction
from the model, mirrored in the data, is that trials with two similar sources of information (i.e.,
ww, mm, and ss) cannot have deviation scores substantially below zero. In these conditions,
the probability of moving towards the correct threshold using both sources of evidence is
approximately as high as the probability for the half faces in isolation. The deviations scores for
these conditions are not significantly below 0 (p > .1).

The McIA framework can also be used to compare models that optimally combine evidence
with models that only average evidence. An assumption of optimal integration was imple-
mented by assuming a = 1 for all conditions. That is, evidence from both halves of a whole face
was always combined according to Eq 1. A lack of whole-face integration was implemented by
assuming a = 0 for all conditions. The results are provided in the S1 File. Here we highlight the
major findings. Both models miss certain qualitative aspects of the data. First, when & cannot
vary across conditions, the model is unable to differentiate split and together performance. Sec-
ond, the a = 1 model tends to over-predict both accuracy and deviation scores, resulting in a
relatively poor quantitative fit. Finally, and most important, neither model can account for the
deviation scores. When o = 1, all deviation scores are restricted to be non-negative, so this model
cannot produce the dilution seen in stimulus such as split ws. When a = 0, all deviation scores
must be non-positive, so this model cannot predict the additive performance for conditions such
as together ww. Inclusion of the o parameter is the key to accounting for the full range of qualita-
tive data patterns. For completeness, a model with o = 0 and 0t;ogesner = 0 Was also fit and is
provided in the S1 File. This model does a poor job quantitatively predicting the data.

Another possibility is that the same integration processes are at work in both the together
and split conditions, but that the unusual split format causes a general reduction in the
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information accumulation rate. To implement this idea, for the split faces, each § was multi-
plied by a parameter between 0 and 1. Within this framework, information can be averaged or
can be combined optimally. If the two sources of evidence are averaged (i.e., o = 0 for all condi-
tions), the model cannot account for the additive integration seen in condition ww. Therefore,
we started from an assumption of optimal integration (i.e., & = 1 for all conditions). The results
are shown in Fig B and Table A of the S1 File. Although this model can account for the differ-
ence between together and split faces, it fails to capture the quantitative pattern of accuracies
and deviation scores. In particular, it greatly overestimates accuracy in the together condition.

Conclusions

The overarching goal of this research was to determine the processes involved in combining
multiple sources of information. This research represents a synthesis of two divergent trends in
the literature: perception, in which information integration is often assumed to be (near) opti-
mal, and judgment and decision making, in which integration is often assumed to rely on heu-
ristics that produce systematic violations of optimality. The present experiment is a first step at
reconciling these contrasting results within a common experimental paradigm. The basic idea
is that information integration may be modulated by stimulus presentation. In particular, the
current research tests the hypothesis that perceptual information will be more resistant to the
dilution effect than information that is combined in a more cognitive fashion.

Observers categorized perceptual stimuli, faces, in which each half-face provided different
levels of evidence for the correct response. Automatic processing was encouraged by presenting
faces in a normal configuration. Splitting the faces horizontally was meant to inhibit this auto-
matic process and encourage participants to form separate judgments of the two half faces,
which would then be combined in a more controlled manner. In line with these predictions,
participants were more accurate when faces were presented together. More importantly, there
was strong qualitative evidence of additivity in some together conditions, in which weak infor-
mation adds evidence, and dilution in some split conditions, in which weak information
reduces evidence relative to a stronger source.

The results of this experiment suggest that cases of dramatically sub-optimal information
integration are not limited to those involving the numerical or linguistic stimuli found in tradi-
tional judgment and decision making research. Although sub-optimality in perception is well
documented, the bulk of the extant literature on perceptual information integration suggests
that two sources of evidence in favor of the same response should produce more accurate
responses than either source alone. Instead, there were conditions under which observers were
less accurate when given additional diagnostic evidence. This result does not rule out models
that include a near-optimal component, but rather suggests that any such model would also
require some process that naturally produces negative deviation scores.

Indeed, the overall quantitative and qualitative data patterns were well predicted by the
Multi-component Information Accumulation model, which assumes that evidence accumu-
lates from either each half face alone or, for together faces, the optimal combination of the two
half faces. Reliance on only the half faces produces averaging behavior and dilution, while opti-
mal integration can produce additive results. Because both positive and negative deviation
scores were observed, neither process in isolation can account for the data; both processes are
necessary to account for the full pattern of results. The success of the McIA suggests that the
distinction between automatic and controlled processing might go some way towards reconcil-
ing the different patterns of data observed in the decision making and perception literatures.

We recognize that these results only provide indirect support for the role of automatic and
controlled processing in information integration. Although the experiment was designed—
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drawing from extensive integration research in perception, cognition, and judgment—to selec-
tively encourage automatic or controlled processing, it may be possible to otherwise explain
the findings. Additionally, it is likely that both processes were active throughout the task,
though in different degrees, depending on the condition. In this sense, processing mode can be
thought of as a continuum, with different stimuli, task demands, cognitive factors, etc. deter-
mining the degree to which an individual will use more automatic or more controlled integra-
tion strategies. Despite these limitations, the results of our experiment and modeling clearly
indicate progress toward reconciling the divergent findings in the information integration liter-
ature. Regardless of the underlying explanation, our manipulations were able to produce both
additive effects—reminiscent of the near-optimal integration commonly assumed in models of
perception—and dilution effects—as frequently seen in traditional judgment tasks—within a
common paradigm and so provide valuable insight into the factors that can lead to dramatic
and systematic sub-optimal performance in information integration. On this foundation,
future research into the factors controlling the quality of information integration can be built.

Supporting Information

S1 File. Fig A in S1 File. Confidence data for weak (w), medium (m), and strong (s) half
faces and averaged within the weak-weak (ww), weak-medium (wm), weak-strong (ws),
medium-medium (mm), medium-strong (ms), strong-strong (ss), and weak-opposite
medium (wom) together and split whole-face conditions. Error bars are between-subject
standard errors. The far right error bars in the top two panels are the standard errors for
the half faces. Fig B in S1 File. Data and alternate model predictions (see text for details)
for accuracy (top), response time (middle), and deviation scores (bottom) for weak (w),
medium (m), and strong (s) half faces and averaged within the weak-weak (ww), weak-
medium (wm), weak-strong (ws), medium-medium (mm), medium-strong (ms), strong-
strong (ss), and weak-opposite medium (wom) together and split whole-face conditions.
Error bars are between-subject standard errors. The far right error bars and circles in the
top two panels are the standard errors and model predictions for the half faces. Table A in
S1 File. Fit Values and Best Fitting Parameters for the alternative models in Fig B in S1
File.
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