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Abstract
In this paper, the magnetohydrodynamic (MHD) axisymmetric stagnation-point flow of an

unsteady and electrically conducting incompressible viscous fluid in with temperature

dependent thermal conductivity, thermal radiation and Navier slip is investigated. The flow

is due to a shrinking surface that is shrunk axisymmetrically in its own plane with a linear

velocity. The magnetic field is imposed normally to the sheet. The model equations that

describe this fluid flow are solved by using the spectral relaxation method. Here, heat trans-

fer processes are discussed for two different types of wall heating; (a) a prescribed surface

temperature and (b) a prescribed surface heat flux. We discuss and evaluate how the vari-

ous parameters affect the fluid flow, heat transfer and the temperature field with the aid of

different graphical presentations and tabulated results.

1 Introduction
The study of an unsteady fluid flow toward a stretching/shrinking sheet has great importance
due to its various applications in science and engineering. Some often given examples in this
regard include metal rolling, drawing and pultrusion. Heat transfer in such flows with both
constant and variable wall temperature was investigated by Gupta and Gupta [1] and also
investigated by Carragher and Crane [2]. Work on unsteady MHD flow with ramped wall tem-
perature has been done by Khan et al.[3], Samiulhaq [4] and Khalid [5]. Wang [6] investigated
the steady flow through a flat surface of a viscous fluid which is stretched in its own plane in
two perpendicular directions. MHD free convection of unsteady flow in a porous medium with
Newtonian heating and constant mass diffusion was studied by Hussanan [7]. Pavlov [8] stud-
ied exact similarity solution of the steady two-dimensional boundary layer flow equations in
presence of magnetic field of an electrically conducting fluid due to the stretching of an elastic
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surface in the presence of a uniform transverse magnetic field. Mabood et al. [9] solved the dif-
ferential equations of the model flow and heat transfer in an axisymmetric channel using the
optimal homotopy asymptotic method. Homann [10] studied three dimensional axisymmetric
stagnation-point flow using a similarity transform for reducing the Navier-Stokes equations to
third order ordinary differential equations.

Chiam [11] investigated steady axisymmetric stagnation-point flow of a viscous fluid over
an axisymetrically stretched surface. Mahapatra and Gupta [12] examined axisymmetric stag-
nation-point flow of an incompressible viscous fluid towards a stretching surface. Axisymmet-
ric stagnation-point flow in presence of a uniform magnetic field towards a stretching surface
with heat generation was investigated by Attia [13].

Considerable interest has been shown on the boundary layer flow over a shrinking sheet in
recent years. Some of the applications of the shrinking sheet problem in industry relate to the
shrinking film that is can be unwrapped easily with adequate heat and used in the packaging of
bulk products. The shrinking fluid flow study, which is essentially a backward flow, can also be
applied to the study of hydraulic properties of agricultural clay soils, capillary effects in the
shrinking-swell behaviour and small pores. The related changes in mechanical and hydraulic
studies of such soils have a significant impact on the behaviour and the transport properties of
the fluid. The fluid loses the memory of the perturbation produced by the slot for this backward
flow configuration. Due this reason, the fluid flow due to a shrinking sheet has some quite dis-
tinct physical characteristics compared to the forward stretching case.

Miklavcic andWang [14] studied axisymmetric flow with uniform suction induced by a
shrinking surface. Wang [15] examined heat transfer from a shrinking sheet due to a steady two-
dimensional axisymmetric stagnation-point flow. Qasim et al. [16] examined heat transfer in the
case of a micropolar fluid through a stretching sheet with Newtonian heating. Recently, Mahapa-
tra and Nanday [17] studied heat transfer in an axisymmetric stagnation-point flow in the pres-
ence of a magnetic field. Qayyum et al. [18] presented an analysis of unsteady axisymmetric
squeezing fluid flow with slip boundary conditions through a porous channel. Some recent stud-
ies of boundary layer flow in presence of a magnetic field include those of Mabood and his group
[19–21]. For the case of a nonlinearly stretching sheet, we note the work of Khan et al. [22].

In this paper, we generalize the study of MHD fluid flow with an unsteady conditions
through a shrinking sheet including a temperature dependent thermal conductivity, radiation
and a Navier slip condition. The surface with prescribed surface temperature (PST) and surface
with prescribed wall heat flux (PHF) are considered as two examples of non-isothermal bound-
ary conditions.

Ethical Statement: This study involved only numerical simulations and the analysis of fluid
flow.

2 Formulation
Here, we consider the unsteady axisymmetric stagnation-point flow of an electrically conduct-
ing incompressible fluid from the surface which is shrunk axisymmetrically. We have used Car-
tesian axes instead of cylindrical axes due to possible non-alignment, Wang [15]. The flow
configuration is shown in Fig 1. In this frame of reference, let the velocity components are u, v
and w in the x- direction, y- direction and z-direction, respectively.

At the surface the fluid velocity components are

u ¼ ðl þ xÞc
1� lt

; v ¼ cy
1� lt

and w ¼ 0;

where −l is the location of the origin and c (< 0) denotes the shrinking rate (and if c> 0 the it
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denotes stretching rate). Here the sheet shrinkage is along the negative x-axis. Note that the
stretching axis and the point flow are not always aligned (that is, l 6¼ 0).

The velocity components in the ambient region are given by

U ¼ ax
1� lt

; V ¼ ay
1� lt

and W ¼ � 2az
1� lt

;

where a (> 0) is a constant that is a measure of the strength of the stagnation-point flow and λ
quantifies the unsteadiness of the problem. For a decelerating shrinking sheet λ< 0 whereas
for an accelerating sheet λ> 0. The magnetic field B0 is imposed in the normal direction to the
surface i.e., parallel to z-axis.

Fig 1. A sketch of the physical problem.

doi:10.1371/journal.pone.0138355.g001
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The continuity and momentum equations are (Bansal [23])

@u
@x

þ @v
@y

þ @w
@z

¼ 0; ð1Þ

@u
@t

þ u
@u
@x

þ w
@u
@z

¼ � 1

r
@p
@x

þ n
@2u
@z2

� sB2
0u
r

: ð2Þ

The pressure gradient in the free stream can be obtained from Eq (2) as

1

r
@p
@x

¼ � @U
@t

� U
@U
@x

� sB2
0U
r

; ð3Þ

so that Eq (2) becomes

@u
@t

þ u
@u
@x

þ w
@u
@z

¼ @U
@t

þ U
@U
@x

þ n
@2u
@z2

þ sB2
0

r
ðU � uÞ: ð4Þ

The appropriate boundary conditions with velocity partial slip are given by (see Jat and
Rajotia [24]);

u ¼ uwðx; tÞ þ L1n
@u
@z

; v ¼ cy=ð1� ltÞ; w ¼ 0 at z ¼ 0; ð5Þ

u ! Uðx; tÞ ¼ ax=ð1� ltÞ; as z ! 1: ð6Þ

where a(> 0) is a constant. For the u-component boundary condition, we have assumed a
velocity slip. This is proportional to local shear stress with slip factor L1 = L(1 − λt)1/2 where L
is the initial velocity. Note that the essential slip factor L1 changes with time and has dimen-
sions (velocity)−1. The velocity

uwðx; tÞ ð¼ cðx þ lÞ=ð1� ltÞÞ; ð7Þ

is valid for time t< λ−1.
We introduce the following similarity transformations to transform the govering equations

u ¼ ½a x f 0ðZÞ þ c l hðZÞ�
1� lt

; v ¼ ayf 0ðZÞ
1� lt

; w ¼ �2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
an

1� lt

r
f ðZÞ; ð8Þ

where

Z ¼ z
a

nð1� ltÞ
� �1=2

; ð9Þ

and differentiation is with respect to η. Eqs (8) and (1) is identically satisfied. Substituting Eqs
(8) and (9) in Eq (4) and equating the coefficients of x0 and x1, we obtain the coupled non-lin-
ear differential equations

f 000 þ 2ff 00 � f 0
2 þ 1þM2ð1� f 0Þ � b

Z
2
f 00 þ f 0 � 1

h i
¼ 0; ð10Þ

h00 þ 2fh0 � hf 0 �M2h� b
Z
2
h0 þ h

h i
¼ 0; ð11Þ

where B ¼ B0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið1� ltÞp
. In Eqs (10) and (11), β = (λ/a) andM = (σB2/aρ)1/2 are respectively
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the unsteadiness parameter and the magnetic parameter characterizing the strength of the
imposed magnetic field.

The appropriate boundary conditions are obtained from Eqs (5) and (6) as

f ð0Þ ¼ 0; f 0ð0Þ ¼ aþ df 00ð0Þ; f 0ð1Þ ¼ 1; ð12Þ

hð0Þ ¼ 1; hð1Þ ¼ 0; ð13Þ
here δ = L(aν)1/2 is the dimensionless velocity slip parameter and α = (c/a) is the velocity ratio
parameter. It is worth mentioning that the non-dimensional velocity slip parameter (δ) is
always positive.

The non-dimensional velocity components is be introduced from the Eq (8) as

u� ¼ u

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� ltÞ

an

r
¼ xf 0ðZÞ þ a L hðZÞ; ð14Þ

w� ¼ w

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� ltÞ

an

r
¼ �2f ðZÞ; ð15Þ

where

x ¼ x
a

nð1� ltÞ
� �1=2

and L ¼ l
a

nð1� ltÞ
� �1=2

: ð16Þ

The dimensionless wall shear stress τ is then given by

t ¼ xf 00ð0Þ þ a L h0ð0Þ: ð17Þ

3 Heat transfer
The unsteady heat equation for a fluid with viscous and ohmic heating and variable thermal
conductivity is given by (see Chiam [25])

@T
@t

þ rcp u
@T
@x

þ w
@T
@z

� �
¼ @

@z
kðTÞ @T

@z

� �
þ m

@u
@z

� �2

þ sB2
0ðu� UÞ2 � @qr

@z
; ð18Þ

whereκ(T), cp and qr are the temperature dependent thermal conductivity, the specific heat at
constant pressure and the radiative heat flux of the fluid, respectively. The second term on the
right hand side of Eq (18) represents the viscous dissipation in the flow; the third term stands
for the dissipation of the magnetic energy in the form of Joule heating (Shercliff [26]) while the
last term is due to the thermal radiation. Here, the temperature dependent thermal conductiv-
ity is written in the form (see Chiam [25])

kðTÞ ¼ k1 1þ �

DT

h i
; ð19Þ

where κ1 denotes the conductivity of the fluid away from the surface, ΔT = Tw − T1, T1 and
Tw are free stream temperature and the sheet temperature. � is a small parameter. Substituting
Eq (19) into Eq (18), gives

@T
@t

þ rcpu
@T
@x

þ rcpw� k1�

DT
@T
@z

� �
@T
@z

¼ kðTÞ @
2T
@z2

þ m
@u
@z

� �2

þ sB2
0ðu� UÞ2 � @qr

@z
; ð20Þ
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where the radiation heat flux qr is defined as

qr ¼ � 4s�

3k�
@T4

@z
; ð21Þ

where k� is the Rosseland mean absorption coefficient and σ� is denoted as the Stefan-Boltzmann
constant. Here, Taylor series expansion is used to expand the temperature variation T4 about T1,
and on neglecting higher order terms we obtain, T4 ffi 4T3

1T � 3T4
1. Eq (20) becomes

@T
@t

þ rcpu
@T
@x

þ rcpw� k1�

DT
@T
@z

� �
@T
@z

¼ kðTÞ þ 16s�

3k�

� �
@2T
@z2

þ m
@u
@z

� �2

þ sB2
0ðu� UÞ2:ð22Þ

The thermal boundary conditions may vary depending on the different types of heating pro-
cesses under consideration. In this study, prescribed surface temperature and prescribed wall
heat flux conditions are considered as two different examples of heating processes.

3.1 Case 1: Prescribed Surface Temperature (PST)
We assume that the prescribed wall temperature is a quadratic function in x (see Mahapatra
and Nanday [17]) given by,

Tw ¼ T1 þ Aðx=l1Þ2ð1� ltÞ�3=2 at z ¼ 0; ð23Þ

T ! T1 as z ! 1; ð24Þ
where A is a constant, Tw is the variable wall temperature and l1 is a reference length. The
dimensionless temperature θ is defined as

y ¼ T � T1
Tw � T1

: ð25Þ

Substituting Eqs (23) and (25) into Eq (22), we get

ð1þ �yþ NrÞy00 þ �y02 þ Pr½2f y0 � 2ðf 0 þ aRLhÞyþ Ecðf 00 þ aRLh0Þ2

þEcM
2ðf 0 � 1þ aRLhÞ2 � b

2
ðZy0 þ 3yÞ� ¼ 0;

ð26Þ

where Nr,Ec and Pr denote the radiation parameter, Eckert and Prandtl numbers, respectively.
We defined these physical parameters as follows:

Nr ¼
16s�T3

1
3k1k�

; Pr ¼
rcp
k1

; Ec ¼
a2l21
A0cp

; R ¼ 1

x
A ¼ A0=

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� lt

p
; ð27Þ

with boundary conditions

yð0Þ ¼ 1; yð1Þ ¼ 0: ð28Þ

3.2 Case 2: PrescribedWall Heat Flux (PHF)
The heat flux qw at the surface is assumed to vary as the square of the distance as follows (see
Mahapatra and Nanday [17]):

�k1
@T
@z

¼ qw ¼ Dðx=l1Þ2ð1� ltÞ�3=2 at z ¼ 0; ð29Þ
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T ! T1 as z ! 1; ð30Þ
where D is a constant. Here we set

T � T1 ¼ D
k1

ffiffiffi
n
a

r
ðx=l1Þ2ð1� ltÞ�3=2gðZÞ; ð31Þ

so that Eq (22), is transformed into the equation

ð1þ �g þ NrÞg 00 þ �g 02 þ Pr½2fg 0 � 2ðf 0 þ aRLhÞg þ Ecðf 00 þ aRLh0Þ2

þEcM
2ðf 0 � 1þ aRLhÞ2 � b

2
ðZg 0 þ 3gÞ� ¼ 0;

ð32Þ

with boundary conditions

g 0ð0Þ ¼ �1; gð1Þ ¼ 0; ð33Þ

where the Eckert number Ec ¼ k1a2 l2
1

ffiffiffiffiffi
a=n

p
D0cp

and D = D0/(1 − λt)1/2. Eq (32) has exactly the same

form as Eq (26) but with a different first boundary condition.

4 Method of Solution
Eqs (10), (11) and (26) were solved using the successive relaxation method (SRM), Motsa [27].
The SRM is an iterative procedure that works in a similar fashion to the Gauss-Seidel method
for algebraic equations. In this case the technique is used to linearize and decouple a system of
differential equations. Further details of the rules of the SRM can be found in [28, 29].

The linear terms in each equation are evaluated at the current iteration level r + 1 and the
non-linear terms are known from the previous iteration level r. The linearized form of Eqs
(10), (11) and (26) are

f 000rþ1 þ a1;rf
00
rþ1 þ a2;rf

0
rþ1 ¼ R1;r; ð34Þ

h00
rþ1 þ b1;rh

0
rþ1 þ b2;rhrþ1 ¼ R2;r; ð35Þ

ð1þ �yr þ NrÞy00
rþ1 þ cr;1y

0
rþ1 þ c2;ryrþ1 ¼ R3;r; ð36Þ

where

a1;r ¼ 2fr �
b Z
2

; a2;r ¼ bþM2 � f 0r ;

R1;r ¼ �½f 02r þM2 þ 1þ b�;

b1;r ¼ 2fr �
b Z
2

; b2;r ¼ �½f 0r þM2 þ b�; R2;r ¼ 0;

c1;r ¼ 2� y0r þ 2Pr fr �
Prb Z
2

; c2;r ¼ � y00r � 2Prðf 0rþ1 þ a R L hÞ2 � 3Pr b
2

;

R3;r ¼ Pr Ec½ðf 00r þ a R L h0
rÞ2 þM2ðf 0r þ a R L hrÞ2� � � y00r yr � � y02r :

It must be noted that Eqs (34)–(36) are linear and decoupled and can thus be solved sequen-
tially to obtain the quantities f(η), h(η) and θ(η). We opted in this study to use the Chebyshev
spectral collocation method to discretize in η and finite differences with central differencing to
discretize in ξ. Starting from initial guesses f0(η), θ0(η) and ϕ0(η), Eqs (34)–(36) were solved
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iteratively until the approximate solutions converged to within a certain prescribed tolerance
level.

Similarly, for the PHF case, Eqs (10), (11) and (32) take the form

f 000rþ1 þ a1;rf
00
rþ1 þ a2;rf

0
rþ1 ¼ R1;r; ð37Þ

h00
rþ1 þ b1;rh

0
rþ1 þ b2;rhrþ1 ¼ R2;r; ð38Þ

ð1þ �gr þ NrÞg 00rþ1 þ cr;1g
0
rþ1 þ c2;rgrþ1 ¼ R3;r; ð39Þ

where

a1;r ¼ 2fr �
b Z
2

; a2;r ¼ bþM2 � f 0r ;

R1;r ¼ �½f 02r þM2 þ 1þ b�;

b1;r ¼ 2fr �
b Z
2

; b2;r ¼ �½f 0r þM2 þ b�; R2;r ¼ 0;

c1;r ¼ 2� g 0r þ 2Pr fr �
Prb Z
2

; c2;r ¼ � g 00r � 2Prðf 0rþ1 þ aR L hÞ2 � 3Pr b
2

;

R3;r ¼ Pr Ec½ðf 00r þ a R L h0
rÞ2 þM2ðf 0r þ a R L hrÞ2� � � g 00r gr � � g 02r :

5 Results and Discussion
The analysis of the results presented here relate to a decelerating shrinking sheet only (i.e., β�
0) following Fang et al.[30], Rohini et al.[31] and Nandy et al.[32]. We have compared the local
skin friction coefficients f00(0) and h0(0) for various values of the parameter α with previously
published data (Wang [15], Rahimpour et al. [33] and Mahapatra and Nandy [17]). The com-
parisons are shown in Table 1 where we observe an very good agreement to the results in the
literature thus validating the current numerical results.

The phenomena of heat transfer is studied with respect to the numerical values of the physi-
cal parameters namely, (a) the wall temperature gradient j−θ0(0)j in the PST case and (b) the

Table 1. Comparison table of the values of f0 0(0) and h0(0) whenM = 0 with recent literature.

f0 0(0) h0(0)

α Wang
[15]

Rahimpour et al.
[33]

Mahapatra and
Nanday [17]

Present
Results

Wang
[15]

Rahimpour et al.
[33]

Mahapatra and
Nanday [17]

Present
Results

−0.95 0.9469 0.946815 0.946893 0.946897 0.26845 0.268450 0.268457 0.268458

−0.75 1.35284 1.352850 1.352841 1.352854 −0.22079 −0.220789 −0.220795 -0.220785

−0.50 1.49001 1.490004 1.352841 1.352852 −0.53237 −0.532371 −0.532374 -0.532379

−0.25 1.45664 1.456599 1.456641 1.456648 −0.75639 −0.756390 −0.756380 -0.756376

0.0 1.31193 1.311938 1.311942 1.311950 −0.93873 −0.938732 −0.938731 -0.938745

0.1 1.22911 1.229113 1.229111 1.229117 −1.00400 −1.004026 −1.004031 -1.004032

0.2 1.13374 1.133743 1.133750 1.133757 −1.06590 −1.065933 −1.065951 -1.065946

0.5 0.78032 0.780323 0.780327 0.780332 −1.23550 −1.235451 −1.235460 -1.235454

1.0 0 0 0 0 −1.47930 −1.479337 −1.479341 -1.479332

2.0 −2.13107 −2.131069 −2.131068 -2.131075 −1.88000 −1.879949 −1.879956 -1.879945

5.0 −11.8022 −11.802214 −11.802202 -11.802213 −2.76170 −2.761724 −2.761702 -2.76167

doi:10.1371/journal.pone.0138355.t001
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wall temperature jg(0)j in the PHF case. Tables 2 and 3 show that the wall temperature gradient
j−θ0(0)j in the PST case and the wall temperature jg(0)j in the PHF case increases with increas-
ingM when α and � are fixed. The temperature gradient in the PST case and the wall tempera-
ture in the PHF case decrease with increases in the thermal conductivity parameter �. We also
observe that j−θ0(0)j and j g(0) j decrease as α increases in both the PST and the PHF cases.

Fig 2 depicts the variation of the skin friction coefficients f00(0) and h0(0) with α< 0 (shrink-
ing sheet) and α> 0 (stretching sheet) for different values of the magnetic parameterM. Here
solid and dashed lines represent the trajectories of f00(0) and h0(0), respectively. Our numerical
results reveal that without a magnet (i.e.,M = 0), Eqs (14) and (15) have unique solutions when
α� −1 and no similarity solution exists for α< −1. It is observed that the similarity solution
exists up to a critical value α = αc(< 0), (say) beyond which a solution based on the boundary
layer approximations does not exist as the boundary layer separates from the surface. From a
physical point of view, a steady solution is not possible unless additional fluid from the stagna-
tion-point is added to the free stream. A steady solution is possible only when ratio of the free
stream velocity and shrinking velocity is less than a certain numerical value which again
depends on the magnetic field parameter (M). The results show that whenM increases, the
range of α where similarity solutions exist gradually increases. When α = 1, we find that f00(0) =
0 because f(η) = η is the solution of Eq (14) subject to the boundary conditions Eq (16). The
results show that when f00(0)� 0, for a given value of α, f00(0) increases withM. For a shrinking
surface, the h0(0) orbits intersect the α-axis but this is not the case for flow over a stretching

Table 2. Wall temperature gradient j−θ0(0)j for the PST case taking Pr = 0.72,R = 1 β = −0.25, L = 1, Ec =
1 andNr = 2.0.

� α M = 0.0 M = 0.5 M = 1.0

0.0 -0.9 0.470476 0.515791 0.639041

-0.3 0.469680 0.497224 0.575271

-0.1 0.389930 0.402194 0.436688

0.1 -0.9 0.435015 0.477871 0.594412

-0.3 0.434487 0.460699 0.535030

-0.1 0.358828 0.370508 0.403393

0.2 -0.9 0.403350 0.443995 0.554504

-0.3 0.403116 0.428120 0.499084

-0.1 0.331167 0.342317 0.373743

doi:10.1371/journal.pone.0138355.t002

Table 3. Wall temperature gradient jg(0)j for the PHF case taking Pr = 0.72, R = 1 β = −0.25, L = 1, Ec = 1
andNr = 2.0.

� α M = 0.0 M = 0.5 M = 1.0

0.0 -0.9 0.649572 0.681891 0.764965

-0.3 0.593890 0.618274 0.686943

-0.1 0.505823 0.517244 0.549463

0.1 -0.9 0.616233 0.648325 0.731028

-0.3 0.555240 0.579129 0.646413

-0.1 0.467061 0.478199 0.509608

0.2 -0.9 0.585066 0.616894 0.699120

-0.3 0.519071 0.542448 0.608305

-0.1 0.430932 0.441781 0.472366

doi:10.1371/journal.pone.0138355.t003
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sheet. For a given value ofM, the size of h0(0) decreases with increases in jαj. Also, for any
given α, jh0(0)j increases withM.

We note that for a stretching sheet α is positive and for a shrinking sheet α is negative while
α = 0 represents Hiemenz flow. Figs 3 and 4 show the effect of α on the vertical velocity compo-
nents f0(η) and h(η). We observe that f0(η) increases with increases in α while the value of h(η)
decreases with increases in the values of α.

Fig 5 displays the effect of α on the temperature profiles θ(η) (for PST case). Here the tem-
perature profiles decrease with an increase in α. Figs 6 and 7 show the effect ofM on f0(η) and
non-alignment variable h(η) with respect to η, respectively. It is clear that f0(η) increases with
increasing values of the magnetic parameterM and h(η) decreases withM. We can conclude
from the above results is that for shrinking sheet, the effect of non-alignment becomes less pro-
nounced with increasingM.

Fig 2. Initial values F0 0(0) and h0(0) versus α andM.

doi:10.1371/journal.pone.0138355.g002
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Fig 3. Effect of α on velocity profiles f 0(η) forM = 0.1, δ = 0.2, β = −0.25, Pr = 0.72,Nr = 0.2, Ec = 1.0, R = 1.0 and � = 0.5.

doi:10.1371/journal.pone.0138355.g003

Fig 4. Effect of α on velocity profiles h(η) forM = 0.1, δ = 0.2, β = −0.25, Pr = 0.72,Nr = 0.2, Ec = 1.0,R = 1.0 and � = 0.5.

doi:10.1371/journal.pone.0138355.g004
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Fig 5. Effect of α on temperature profile forM = 0.1, δ = 0.2, β = −0.25, Pr = 0.72,Nr = 0.2, Ec = 1.0, R = 1.0, L = 1.0 and � = 0.5.

doi:10.1371/journal.pone.0138355.g005

Fig 6. Effect of magnetic parameterM on velocity profiles f0(η) for δ = 0.2, β = −0.25, α = −0.95, Pr = 0.72,Nr = 0.2, Ec = 1.0, R = 1.0, L = 1.0 and � = 0.5.

doi:10.1371/journal.pone.0138355.g006
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Figs 8 and 9 show that the temperature profiles decrease monotonically with an increase in
the magnetic parameter in both the PST and the PHF cases, respectively. The extent of the
reverse circular flow above the sheet decreases with increases inM. This is a consequence of
the fact that the temperature field given by Eq (18) is influenced by the advection of the fluid
velocity above the sheet. Figs 10 and 11 exhibit the temperature profiles for different values of
thermal conductivity parameter � where the other parameters are fixed for both the PST and
PHF cases, respectively. The temperature profiles increase with an increase in the thermal con-
ductivity parameter due to increases in the thermal boundary layer thickness in both the PST
and PHF cases.

Figs 12 and 13 depict the horizontal velocity profiles f0(η) and h(η) for different values of the
unsteadiness parameter β in the presence of slip at the boundary, respectively. The velocity f0

(η) decreases with an increase in the unsteadiness parameter β and this implies an accompa-
nying reduction in the thickness of the momentum boundary layer while the opposite trend is
observed with h(η). We observe that as β increases, the axial boundary layer velocity decreases.
In the vicinity of the sheet, the axial fluid velocity decreases while the trend is reversed in the
free stream. The parameter β has the effect of reducing the momentum boundary layer thick-
ness for f0(η) while enhancing the boundary layer thickness of h(η)

Figs 14, 15 and 16 show the effect of δ on the velocity components f0(η), h(η) and tempera-
ture profile θ(η) (for PST case), respectively. It is interesting to note that the velocity profile f0

(η) increases with increase in values of δ while h(η) decreases with the increase in the values of
δ. The figure also reveals that the temperature profile θ(η) decreases with the increase in the
values of δ. This may be explained in the following way; with slip, there is a difference between
the flow velocity near the sheet and the shrinking velocity at the surface. As δ increases the slip
velocity increases leading to a decrease in the fluid velocity for h(η). But the opposite trend is
observed for f0(η) because momentum boundary layer become thinner due to increasing value
of δ. Fig 16 illustrates the fact that the temperature at any given point increases when the slip
velocity δ increases.

Figs 17 and 18 depict the effect of Nr on the temperature profile in PST and PHF cases with
keeping other parameters fixed, respectively. The temperature profile in two cases increase
with increasing in values of Nr, which in turn increases the thermal boundary layer thickness
for both PST and PHF cases. This may due to the fact that increases in the value of Nr causes
an increase in the interaction with the thermal boundary layer.

Figs 19 and 20 show the variation in the skin friction coefficient −f00(0) with respect to β. We
observe that the skin friction coefficients decrease monotonically with increasing values of β
andM in Fig 19 while the opposite is true in the Fig 20 for β and δ. The highest value of the
skin friction is reached for smaller values of β.

Figs 21 and 22 display the dimensionless wall heat transfer rates −θ0(0) as a function of β.
We observe that the wall heat transfer rate increases with increasing β,M and δ. The maximum
value of the dimensionless wall heat transfer rates is achieved for large values of β.

6 Conclusion
An unsteady MHD axisymmetric stagnation-point flow over a shrinking sheet with tempera-
ture dependent thermal conductivity and thermal radiation and a Navier slip was investigated
in this paper. The surface was assumed to shrink axisymmetrically in its own plane and the
flow was permeated by a uniform magnetic field normal to the surface. The temperature pro-
files in the two cases of prescribed wall temperature and prescribed surface heat flux was
shown to increase with the thermal radiation parameter, which in turn increases the thermal
boundary layer thickness for both PST and PHF cases. This may be due to the fact that an
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Fig 7. Effect of magnetic parameterM on velocity profiles h(η) for δ = 0.2, β = −0.25, α = −0.95, Pr = 0.72,Nr = 0.2, Ec = 1.0, R = 1.0, L = 1.0 and � = 0.5.

doi:10.1371/journal.pone.0138355.g007

Fig 8. Effects of magnetic parameterM on temperature profiles (PST case) for δ = 0.2, β = −0.25, α = −0.95, Pr = 0.72,Nr = 0.2, Ec = 1.0,R = 1.0 and
L = 1.0.

doi:10.1371/journal.pone.0138355.g008

Unsteady MHD Axisymmetric Stagnation-Point Flow

PLOSONE | DOI:10.1371/journal.pone.0138355 September 28, 2015 14 / 23



Fig 9. Effects of magnetic parameterM on temperature profiles (PHF case) for δ = 0.2, β = −0.25, α = −0.95, Pr = 0.72,Nr = 0.2, Ec = 1.0,R = 1.0 and
L = 1.0.

doi:10.1371/journal.pone.0138355.g009

Fig 10. Effects of � on temperature profiles (PST case) for δ = 0.2, β = −0.25, α = −0.95, Pr = 0.72,Nr = 0.2, Ec = 1.0, R = 1.0 and L = 1.0.

doi:10.1371/journal.pone.0138355.g010
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Fig 11. Effects of � on temperature profiles (PHF case) for δ = 0.2, β = −0.25, α = −0.95, Pr = 0.72,Nr = 0.2, Ec = 1.0,R = 1.0 and L = 1.0.

doi:10.1371/journal.pone.0138355.g011

Fig 12. Effect of β on velocity profiles f 0(η) forM = 0.1, δ = 0.2, α = −0.95, Pr = 0.72,Nr = 0.2, Ec = 1.0,R = 1.0, L = 1.0 and � = 0.5.

doi:10.1371/journal.pone.0138355.g012
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Fig 13. Effect of β on velocity profiles h(η) forM = 0.1, δ = 0.2, α = −0.95, Pr = 0.72,Nr = 0.2, Ec = 1.0, R = 1.0, L = 1.0 and � = 0.5.

doi:10.1371/journal.pone.0138355.g013

Fig 14. Effect of δ on velocity profiles f 0(η) forM = 0.1, β = −0.25, α = −0.95, Pr = 0.72,Nr = 0.2, Ec = 1.0, R = 1.0, L = 1.0 and � = 0.5.

doi:10.1371/journal.pone.0138355.g014
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Fig 15. Effect of δ on velocity profiles h(η) forM = 0.1, β = −0.25, α = −0.95, Pr = 0.72,Nr = 0.2, Ec = 1.0, R = 1.0, L = 1.0 and � = 0.5.

doi:10.1371/journal.pone.0138355.g015

Fig 16. Effect of δ on temperature profile (PST case) forM = 0.1, β = −0.25, α = −0.95, Pr = 0.72,Nr = 0.2, Ec = 1.0,R = 1.0, L = 1.0 and � = 0.5.

doi:10.1371/journal.pone.0138355.g016
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Fig 17. Effects of thermal radiation parameter Nr on temperature profiles θ(η) for δ = 0.2, Pr = 0.72, β = −0.25, Ec = 1.0, α = −0.95,M = 0.1, R = 1.0 and
L = 1.0.

doi:10.1371/journal.pone.0138355.g017

Fig 18. Effects of thermal radiation parameter Nr on temperature profiles g(η) for δ = 0.2, Pr = 0.72, β = −0.25, Ec = 1.0, α = −0.95,M = 0.1,R = 1.0 and
L = 1.0.

doi:10.1371/journal.pone.0138355.g018
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Fig 19. Effect ofM on Skin friction coefficients for α = −0.95, Pr = 0.72,Nr = 0.2, Ec = 1.0, R = 1.0, L = 1.0 and � = 0.5.

doi:10.1371/journal.pone.0138355.g019

Fig 20. Effect of δ on Skin friction coefficients for α = −0.95, Pr = 0.72,Nr = 0.2, Ec = 1.0,R = 1.0, L = 1.0 and � = 0.5.

doi:10.1371/journal.pone.0138355.g020
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Fig 22. Effect of δ on heat transfer coefficients for α = −0.95, Pr = 0.72,Nr = 0.2, Ec = 1.0, R = 1.0, L = 1.0 and � = 0.5.

doi:10.1371/journal.pone.0138355.g022

Fig 21. Effect ofM on heat transfer coefficients for α = −0.95, Pr = 0.72,Nr = 0.2, Ec = 1.0, R = 1.0, L = 1.0 and � = 0.5.

doi:10.1371/journal.pone.0138355.g021
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increase in Nr induces a significant interaction between the fluid and the thermal boundary
layer. It is clear that f0(η) increases with increasing magnetic parameter valuesM while h(η)
decreases with the magnetic parameter. It can be concluded that for a shrinking sheet, the effect
of non-alignment becomes less pronounced with enhanced magnetic parameter values. When
slip occurs, the flow velocity near the sheet is no longer equal to the shrinking velocity at the
sheet. Then with an increase in δ such slip velocity increases and consequently fluid velocity
decreases for h(η) under the slip condition at the boundary.

Acknowledgments
Authors wish to thank the referees for their valuable suggestions. Also, authors are thankful to
Dr. Samir Kumar Nandy for his valuable suggestions which improve the quality of the paper.
The authors are grateful for funding from the University of KwaZulu-Natal.

Author Contributions
Conceived and designed the experiments: SM NH PS. Analyzed the data: SM NH PS. Wrote
the paper: SM.

References
1. Gupta AS, Gupta PS (1977) Heat and mass transfer on a stretching sheet with suction and blowing.

Canadian Journal of Chemical Engineering 55: 744–746. doi: 10.1002/cjce.5450550619

2. Carragher P, Crane LJ (1982) Heat transfer on a continuous stretching sheet. Zeit. Angew. Math.
Mech. 62: 564–565. doi: 10.1002/zamm.19820621009

3. Khan A, Khan I, Ali F, ulhaq S, Shafie S (2014) Effects of wall shear stress on unsteady MHD conjugate
flow in a porous medium with ramped wall temperature. PLoS ONE 9(3): e90280. doi: 10.1371/journal.
pone.0090280 PMID: 24621775

4. Samiulhaq, Ahmad S, Vieru D, Khan I, Shafie S (2014) Unsteady magnetohydrodynamic free convec-
tion flow of a second grade fluid in a porous medium with ramped wall Temperature. PLoS ONE 9(5):
e88766. doi: 10.1371/journal.pone.0088766 PMID: 24785147

5. Khalid A, Khan I, Shafie S (2015) Exact solutions for free convection flow of nanofluids with ramped
wall temperature. Eur. Phys. J. Plus 130: 57 doi: 10.1140/epjp/i2015-15057-9

6. Wang CY (1984) The three dimensional flow due to a stretching flat surface. Phys. Fluids 27: 1915–
1917. doi: 10.1063/1.864868

7. Hussanan A, Ismail Z, Khan I, Hussein AG, Shafie S (2014) Unsteady boundary layer MHD free con-
vection flow in a porous medium with constant mass diffusion and Newtonian heating. Eur. Phys. J.
Plus 129: 46. doi: 10.1140/epjp/i2014-14046-x

8. Pavlov KB (1974) Magnetohydrodynamic flow of an incompressible viscous fluid caused by the defor-
mation of a plane surface. Magnitnaya Gidrodinamika 4: 146–147.

9. Mabood F, KhanWA, Ismail AIM (2013) Optimal homotopy asymptotic method for flow and heat trans-
fer of a viscoelastic fluid in an axisymmetric channel with a porous wall. PLoS ONE 8(12): e83581. doi:
10.1371/journal.pone.0083581 PMID: 24376722

10. Homann F (1936) Der Einfluss grosser Zahigkeit bei der stromung um den Zylinder und um die Kugel.
Zeit. Angew. Math.Phys. 16: 153–164. doi: 10.1002/zamm.19360160304

11. Chiam TC (1994) Stagnation-point flow towards a stretching plate. J. Phys. Soc. Japan 63: 2443–
2444. doi: 10.1143/JPSJ.63.2443

12. Mahapatra TR, Gupta AS (2003) Stagnation-point flow towards a stretching surface, Can. J. Chem.
Eng. 81: 258–263.

13. Attia HA (2007) Axisymmetric stagnation point flow towards a stretching surface in the presence of a
uniformmagnetic field with heat generation. Tam. J. Sci. Eng. 10(1): 11–16.

14. Miklavcic M, Wang CY (2006) Viscous flow due to a shrinking sheet. Quart. Appl. Math. 64(2): 283–
290. doi: 10.1090/S0033-569X-06-01002-5

15. Wang CY (2008) Stagnation flow towards a shrinking sheet. Int. J.Nonlinear Mech. 43: 377–382. doi:
10.1016/j.ijnonlinmec.2007.12.021

Unsteady MHD Axisymmetric Stagnation-Point Flow

PLOSONE | DOI:10.1371/journal.pone.0138355 September 28, 2015 22 / 23

http://dx.doi.org/10.1002/cjce.5450550619
http://dx.doi.org/10.1002/zamm.19820621009
http://dx.doi.org/10.1371/journal.pone.0090280
http://dx.doi.org/10.1371/journal.pone.0090280
http://www.ncbi.nlm.nih.gov/pubmed/24621775
http://dx.doi.org/10.1371/journal.pone.0088766
http://www.ncbi.nlm.nih.gov/pubmed/24785147
http://dx.doi.org/10.1140/epjp/i2015-15057-9
http://dx.doi.org/10.1063/1.864868
http://dx.doi.org/10.1140/epjp/i2014-14046-x
http://dx.doi.org/10.1371/journal.pone.0083581
http://www.ncbi.nlm.nih.gov/pubmed/24376722
http://dx.doi.org/10.1002/zamm.19360160304
http://dx.doi.org/10.1143/JPSJ.63.2443
http://dx.doi.org/10.1090/S0033-569X-06-01002-5
http://dx.doi.org/10.1016/j.ijnonlinmec.2007.12.021


16. QasimM, Khan I, Shafie S (2013) Heat transfer in a micropolar fluid over a stretching sheet with Newto-
nian heating. PLoS ONE 8(4): e59393. doi: 10.1371/journal.pone.0059393 PMID: 23565151

17. Mahapatra TR, Nandy SK (2013) Momentum and heat transfer in MHD axisymmetric stagnation-point
flow over a shrinking sheet. Journal of Applied Fluid Mechanics 6 (1): 121–129.

18. QayyumM, Khan H, RahimMT, Ullah I (2015) Modeling and analysis of unsteady axisymmetric
squeezing fluid flow through porous medium channel with slip boundary. PLoS ONE 10(3): e0117368.
doi: 10.1371/journal.pone.0117368 PMID: 25738864

19. Mabood F, KhanWA, Ismail AIM (2015) MHD boundary layer flow and heat transfer of nano fluids over
a nonlinear stretching sheet: A numerical study. Journal of Magnetism and Magnetic Materials 374:
569–576. doi: 10.1016/j.jmmm.2014.09.013

20. Mabood F, KhanWA, Uddin MJ, Ismail AIM (2015) Optimal homotopy asymptotic method for MHD
slips flow over a radiating stretching sheet. Far East Journal of Applied Mathematics 90(1): 21–40. doi:
10.17654/FJAMJan2015_021_040

21. Mabood F, KhanWA, Ismail AIM (2015) MHD stagnation point flow and heat transfer impinging on
stretching sheet with chemical reaction and transpiration. Chemical Engineering Journal 273: 430–
437. doi: 10.1016/j.cej.2015.03.037

22. Khan JA, Mustafa M, Hayat T, Alsaedi A (2014) On three-dimensional flow and heat transfer over a
non-linearly stretching sheet: analytical and numerical solutions. PLoS ONE 9(9): e107287. doi: 10.
1371/journal.pone.0107287 PMID: 25198696

23. Bansal JL (1994) Magnetofluiddynamics of viscous fluid. Jaipur Publishing House, Jaipur, India.

24. Jat RN, Rajotia D (2014) Effects of partial slip on three dimensional MHD viscous flow and heat transfer
due to a permeable Axisymmetric shrinking sheet with viscous dissipation and heat source/sink. Ther-
mal Energy and Power Engg. 3(2) 234–244.

25. Chiam TC (1998) Heat transfer in a fluid with variable thermal conductivity over stretching sheet. Acta
Mechanica 129: 63–72. doi: 10.1007/BF01379650

26. Shercliff JA (1965) A Textbook of Magnetohydrodynamics. Oxford, Pergamon Press.

27. Motsa SS (2013) A New spectral relaxation method for similarity variable nonlinear boundary layer flow
systems. Chemical Engineering Communications 16: 23–57.

28. Motsa SS, Dlamini PG, Khumalo M (2014) Spectral relaxation method and spectral quasilinearization
method for Solving Unsteady Boundary Layer Flow Problems. Advances in Mathematical Physics, Arti-
cle ID 341964, 12: doi: 10.1155/2014/341964

29. Motsa SS, Makukula ZG (2013) On spectral relaxation method approach for steady von Karman flow of
a Reiner-Rivlin fluid with Joule heating and viscous dissipation. Central European Journal of Physics
11: 363–374.

30. Fang T, Zhang J, Yao S (2009) Viscous flow over an unsteady shrinking sheet with mass transfer. Chi-
nese Physics Letters 26 (1): 014703. doi: 10.1088/0256-307X/26/1/014703

31. Rohni AM, Ahmad S, Ismail AI, Pop I (2013) Flow and heat transfer over an unsteady shrinking sheet
with suction in a nanofluid using Buongiorno’s model. International Communications in Heat and Mass
Transfer 43: 75–80. doi: 10.1016/j.icheatmasstransfer.2013.02.001

32. Nandy SK, Sumanta S, Mahapatra TR (2014) Unsteady MHD boundary-layer flow and heat transfer of
nanofluid over a permeable shrinking sheet in the presence of thermal radiation. Alexandria Engineer-
ing Journal 53: 929–937. doi: 10.1016/j.aej.2014.09.001

33. Rahimpour M, Mohebpour SR, Kimiaeifar A, Bagheri GH (2008) On the analytic solution of axisymmet-
ric stagnation flow towards a shrinking sheet. International Journal of Mechanics 1(2): 1–10.

Unsteady MHD Axisymmetric Stagnation-Point Flow

PLOSONE | DOI:10.1371/journal.pone.0138355 September 28, 2015 23 / 23

http://dx.doi.org/10.1371/journal.pone.0059393
http://www.ncbi.nlm.nih.gov/pubmed/23565151
http://dx.doi.org/10.1371/journal.pone.0117368
http://www.ncbi.nlm.nih.gov/pubmed/25738864
http://dx.doi.org/10.1016/j.jmmm.2014.09.013
http://dx.doi.org/10.17654/FJAMJan2015_021_040
http://dx.doi.org/10.1016/j.cej.2015.03.037
http://dx.doi.org/10.1371/journal.pone.0107287
http://dx.doi.org/10.1371/journal.pone.0107287
http://www.ncbi.nlm.nih.gov/pubmed/25198696
http://dx.doi.org/10.1007/BF01379650
http://dx.doi.org/10.1155/2014/341964
http://dx.doi.org/10.1088/0256-307X/26/1/014703
http://dx.doi.org/10.1016/j.icheatmasstransfer.2013.02.001
http://dx.doi.org/10.1016/j.aej.2014.09.001

