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Abstract
Recently, the stable light products and radiance calibrated products from Defense Meteoro-

logical Satellite Program’s (DMSP) Operational Linescan System (OLS) have been useful

for mapping global fossil fuel carbon dioxide (CO2) emissions at fine spatial resolution. How-

ever, few studies on this subject were conducted with the new-generation nighttime light

data from the Visible Infrared Imaging Radiometer Suite (VIIRS) sensor on the Suomi

National Polar-orbiting Partnership (NPP) Satellite, which has a higher spatial resolution

and a wider radiometric detection range than the traditional DMSP-OLS nighttime light data.

Therefore, this study performed the first evaluation of the potential of NPP-VIIRS data in

estimating the spatial distributions of global CO2 emissions (excluding power plant emis-

sions). Through a disaggregating model, three global emission maps were then derived

from population counts and three different types of nighttime lights data (NPP-VIIRS, the

stable light data and radiance calibrated data of DMSP-OLS) for a comparative analysis.

The results compared with the reference data of land cover in Beijing, Shanghai and Guang-

zhou show that the emission areas of map from NPP-VIIRS data have higher spatial consis-

tency of the artificial surfaces and exhibit a more reasonable distribution of CO2 emission

than those of other two maps from DMSP-OLS data. Besides, in contrast to two maps from

DMSP-OLS data, the emission map from NPP-VIIRS data is closer to the Vulcan inventory

and exhibits a better agreement with the actual statistical data of CO2 emissions at the level

of sub-administrative units of the United States. This study demonstrates that the NPP-

VIIRS data can be a powerful tool for studying the spatial distributions of CO2 emissions, as

well as the socioeconomic indicators at multiple scales.

Introduction
The increase of global carbon dioxide (CO2), which is a major greenhouse gas produced by
anthropogenic activities, is the largest positive radiative forcing that contributes to global

PLOSONE | DOI:10.1371/journal.pone.0138310 September 21, 2015 1 / 20

OPEN ACCESS

Citation: Ou J, Liu X, Li X, Li M, Li W (2015)
Evaluation of NPP-VIIRS Nighttime Light Data for
Mapping Global Fossil Fuel Combustion CO2

Emissions: A Comparison with DMSP-OLS Nighttime
Light Data. PLoS ONE 10(9): e0138310. doi:10.1371/
journal.pone.0138310

Editor: Krishna Prasad Vadrevu, University of
Maryland at College Park, UNITED STATES

Received: December 28, 2014

Accepted: August 28, 2015

Published: September 21, 2015

Copyright: © 2015 Ou et al. This is an open access
article distributed under the terms of the Creative
Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any
medium, provided the original author and source are
credited.

Data Availability Statement: All relevant data are
within the paper and its Supporting Information files.

Funding: This work was supported by the National
Natural Science Foundation of China (Grant No.
41171308, http://www.nsfc.gov.cn/), the National
Science Fund for Excellent Young Scholars (Grant
No. 41322009, http://www.nsfc.gov.cn/), and the
Foundation for the Author of National Excellent
Doctoral Dissertation of PR China (Grant No.
3149001, http://www.cdgdc.edu.cn/).

http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0138310&domain=pdf
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://www.nsfc.gov.cn/
http://www.nsfc.gov.cn/
http://www.cdgdc.edu.cn/


warming [1]. In order to minimize adverse impacts of climate change, the scientific and policy-
making communities have put tremendous efforts into constructing emission inventories.
Such inventories can provide quantitative insights into CO2 emissions and facilitate the assess-
ment of practical measures for emission reduction [2, 3]. Besides, spatially distributed invento-
ries of carbon emissions can serve as useful input to the global carbon cycle model [4].
Currently, there are several well-known inventories that have provided available estimates of
carbon emissions with comprehensive global coverage. For example, the Carbon Dioxide Infor-
mation Analysis Center (CDIAC) provides national fossil fuel CO2 emissions through energy
statistics published by the United Nations. The Energy Information Administration (EIA) of
the United States Department of Energy (DOE) construct a global inventory of fossil fuel CO2

emissions with detail on fuel type (coal, petroleum, and natural gas) derived from a large list of
primary energy consumption sources. The International Energy Agency (IEA) generates
national fossil fuel CO2 with detail on economic sector and derives the information primarily
from national energy surveys and emission factors based on Intergovernmental Panel on Cli-
mate Change (IPCC) guidelines. The United Nations Framework Convention on Climate
Change (UNFCCC) collects national CO2 emission estimates with detail on sector, subsector,
and fuel. Finally, the Emission Database for Global Atmospheric Research (EDGAR) produced
by the JointResearch Centre of the European Commission and the Planbureau voor de Leefom-
geving NetherlandsEnvironmental Assessment Agency also provides many emitted species
beyond fossil fuel CO2 with detail on sector, subsector, and fuel type. In addition to those
inventories at the national scale, there has been an increasing emphasis on building global fossil
fuel CO2 emission data products in gridded form since regularized gridding is particularly use-
ful for use in atmospheric transport models. The CDIAC builds a monthly fossil fuel CO2 emis-
sion data product on a 1° × 1° grid spanning the time period 1950 to 2010 by downscaling the
national emissions with population density. The EDGAR data product provides annual estimates
spanning the time period 1990 to 2010 that distributes the national totals into 0.1° × 0.1° grid
cells according to a variety of spatial proxies ranging from population density to specific point
source location maps. The Open Source Data Inventory of Anthropogenic CO2 Emission
(ODIAC) generates fossil fuel CO2 emissions on a 1 km grid from 1980 to 2007 based on the sat-
ellite observations of nighttime lights and a geocoded estimation of power plant CO2 emissions.
Besides, a recent effort by Rayner et al. [5] constructed global gridded fossil fuel CO2 emission
quantification through the Fossil Fuel Data Assimilation System (FFDAS) that combined some
elements of downscaling, bottom-up information, and data assimilation within a model of fossil
fuel CO2 emissions to optimally disaggregate national emissions to a 0.25° global grid. From
these gridded data products, it can be seen that the development of a global carbon emission
inventory requires more accurate and more finely resolved quantification at spatial scale [6].

For constructing high-resolution CO2 emission maps on a global scale, satellite-observa-
tions of nightlights have been identified as being potentially useful [5, 7]. The nighttime light
images, primarily derived from the Defense Meteorological Satellite Program’s (DMSP) Opera-
tional Linescan System (OLS), can detect the artificial lights from cities, towns, industrial sites
and other human activities at night, thereby providing uniform, spatially explicit, continuous
and timely measurements of demographic and economic related activities [8]. Due to this nota-
ble advantage, the DMSP-OLS nighttime images have been widely used for assessing economic
activity, urban extent and urbanization processes, human population distribution, power con-
sumption, as well as mapping CO2 emission distribution [5, 7, 9–12]. For example, Doll et al.
[7] revealed that the DMSP-OLS data became an effective tool for global mapping of socioeco-
nomic parameters and greenhouse gas emissions. In another study, Rayner et al. [5] produced
a global, annual emission field at 0.25° resolution with various observations, the statistics of
national emissions and data on the distribution of nightlights and population.
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Although useful, DMSP-OLS nighttime images have a set of well-known limitations related
to their coarse spatial resolution (30 arc second, about 1 km), blooming (the “spilling” of light
from built-up areas into non-lit areas), saturation in urban areas and intra-sensor calibration
problems [13, 14]. These limitations could reduce the correlation between the socioeconomic
activity and the nighttime light data [15, 16], resulting in more uncertainties to CO2 emission
modeling in some areas, especially in the centers of large cities with strong artificial lighting
[17, 18]. To deal with the problems, the Earth Observation Group in National Oceanic and
Atmospheric Administration’s National Geophysical Data Center (NOAA/NGDC) has pro-
vided a global radiance calibrated nightlight product by combining the sparse data acquired at
low gain settings with the operational data acquired at high gain settings [19]. Compared with
the ordinary DMSP-OLS nighttime light dataset (i.e., the annual cloud-free composited stable
lights with a numeric range of 0–63), this radiance calibrated product has fewer saturated pixels
and provides a better view of internal characteristics of cities, which is much more suitable for
CO2 emission modeling. For example, Oda and Maksyutov [20] constructed a global 1 km ×
1 km annual fossil fuel CO2 emission inventory by combining a worldwide point source data-
base and satellite observations of the global radiance calibrated nightlight distribution. Ghosh
et al. [21] also developed a model to allocate the distributed CO2 emissions using a combina-
tion of DMSP-OLS radiance calibrated nighttime images and population count data. These
nightlight-based global CO2 emission maps have been improved based on the radiance cali-
brated data. Unfortunately, only a few of radiance calibrated images are available so far, which
is still a challenge for time-series analyses [22].

Recently, a new generation of nighttime light data from the Visible Infrared Imaging Radi-
ometer Suite (VIIRS) carried by the Suomi National Polar-Orbiting Partnership (NPP) satellite
was released by the Earth Observation Group in NOAA/NGDC in early 2013 [23, 24]. The
NPP-VIIRS nighttime lights were generated using VIIRS day/night band (DNB) data collected
on nights with zero moonlight. Compared with DMSP-OLS data, the NPP-VIIRS data feature
a higher spatial resolution (15 arc-second, about 500 m). Besides, The NPP-VIIRS data employ
onboard calibration, which is not available for the DMSP-OLS data [25–27]. More strikingly,
the NPP-VIIRS data do not have the issue of over-saturation existing in the DMSP-OLS data,
since VIIRS has a day/night band (DNB) with a spectral range of 500–900 nm that is highly
sensitive to very low levels of visible light and can significantly improve the detection ability of
anthropogenic lighting [28–29]. In previous studies, some scholars have employed NPP-VIIRS
data to estimate the social economy, urban extent and electric power consumption at regional
scale, and also demonstrated that NPP-VIIRS nightlight data probably provide higher capacity
than that of DMSP-OLS imagery [22]. For example, Li et al. [30] employed NPP-VIIRS data to
estimate gross regional products (GRP) in China and demonstrated that the data have a strong
capacity in modeling regional economic indicators at the national scale. Similarly, Shi et al.
[31] investigated the potential of NPP-VIIRS data in modeling the gross domestic product
(GDP) and the electric power consumption (EPC) at multiple scales through a case study of
China and revealed that the NPP-VIIRS data can be a powerful tool for modeling socioeco-
nomic indicators. In another study, they also demonstrated that NPP-VIIRS night-time light
composite data have better performance in urban built-up area extraction than the DMSP-
OLS data [32]. However, to the best of our knowledge, no related work has investigated the
potential of NPP-VIIRS nightlight data for estimating CO2 emission distribution at a global
scale. In addition, there is still a lack of comparison between the CO2 emission estimation from
NPP-VIIRS data and that from DMSP-OLS data, particularly the radiance calibrated nighttime
imagery. To provide a better understanding of the NPP-VIIRS data quality, as well as support
further analysis in future research of global warming, a comprehensive evaluation of this new
dataset for constructing a global carbon emission inventory is urgently required.

NPP-VIIRS Nighttime Light Data for Mapping CO2 Emissions
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Therefore, this study aims to investigate the potential of NPP-VIIRS data for mapping
global fossil fuel combustion CO2 emissions with the population distribution dataset. We also
conduct a comparative analysis with the stable light data and radiance calibrated data of
DMSP-OLS to examine the capability of VIIRS nighttime light. The structure of the paper is
organized as follows. A detailed description of data will be presented in Section 2. The model
for disaggregating the CO2 emissions will be described in Section 3. We will then present the
estimation results and discuss the advantages and limits of NPP-VIIRS data in mapping global
fossil fuel combustion CO2 emissions. Finally, we summarize results and draw conclusions in
the last section.

Data Preparation

NPP-VIIRS and DMSP-OLS nighttime light imagery
In this study, the only available composite NPP-VIIRS nighttime light data of the year 2012
were obtained from website of NOAA/NGDC (http://ngdc.noaa.gov/eog/viirs/download_
viirs_ntl.html). The NPP-VIIRS imagery is a preliminary product, which contains lights from
cities, towns, transportation corridors, gas flares, biomass burning and background noise, and
in some places has features associated with the reflectance of light from bright surfaces, such as
snow covering mountains or bright playa lake beds. Thus, the confounding factors that are
irrelevant to socio-economic activities must be removed to improve the accuracy and reliability
of CO2 emission estimation. So far, a simple and efficient process for removing the confound-
ing factors was adopted based on the hypothesis of Li et al. [30] and Shi et al. [31], which
assumes that the lit areas in the NPP-VIIRS data and the DMSP-OLS stable light data of the
year 2012 were one in the same. Thus, we generated a mask with all positive value pixels from
the DMSP-OLS data in 2012, then overlaid the generated mask with NPP-VIIRS data in 2012
to find the corresponding pixels in the same locations. Those pixels in NPP-VIIRS data were
extracted to derive a denoised nighttime light imagery, and the pixels with negative DN values
in NPP-VIIRS data were assigned the value of 0. Compared to the preliminary product, the
data removing the confounding factors should be more reliable for the estimation [30]. Never-
theless, it is noted that the noise removal method has some deficiencies. For instance, since
NPP-VIIRS is at 0.5 km while DMSP-OLS is at about 1km, the valid nightlight pixels of
NPP-VIIRS could be dismissed if DMSP-OLS is used as a mask. Also, a small number of
the NPP-VIIRS noise that might fall inside the masked area. These deficiencies should be
addressed in future research.

To conduct a comparative analysis, the stable light products and radiance calibrated prod-
ucts from DMSP-OLS (hereinafter referred to as ‘SLP-DMSP-OLS’ and ‘RCP-DMSP-OLS’,
respectively) were also used in this study. Although the SLP-DMSP-OLS data is not good for
estimating CO2 emissions due to its major saturation issue at the core of the cities and bright
areas, we still bring the SLP-DMSP-OLS in this comparisons for presenting a more compre-
hensive insight into the differences between three nighttime light imageries in the CO2 emis-
sion estimations. The SLP-DMSP-OLS data are cloud-free composites which contain lights
from cities, towns and other sites with persistent lighting, and have removed ephemeral events
(e.g., fires, gas flares, volcanoes and background noise). These products were made using all the
available archived DMSP-OLS smooth resolution data for calendar years. Since the NPP-VIIRS
data were only available for the year 2012, we used the stable light data in 2012 (F18 satellite,
available at http://ngdc.noaa.gov/eog/dmsp/downloadV4composites.html). The RCP-DMSP-
OLS data, which were produced by combining images collected at different gain settings (high,
medium, and low), were also obtained from the website of NOAA/NGDC (http://ngdc.noaa.
gov/eog/dmsp/download_radcal.html). Because the RCP-DMSP-OLS in 2012 are not available
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so far, we chose the RCP-DMSP-OLS data with an acquisition year close to 2012. This closest
available data just characterizes global nighttime lights with less saturated pixels in the year
2010. These nighttime light imageries are all shown in S1 Fig.

National fossil fuel carbon emissions
In this study, we focused on the disaggregation of national land-based CO2 emissions that are
attributable to fossil fuel combustion. For this purpose, the national CO2 emissions were
obtained from the worldwide energy statistics compiled by CDIAC. CDIAC is the primary cli-
mate change data and information analysis center of the American Department of Energy that
focuses on obtaining, evaluating, and distributing data related to climate change and green-
house gas emissions, including a continuous archive of national fossil fuel CO2 emissions from
1751 to 2012. These CO2 emissions data in thousand metric tons were derived from the statis-
tics of fuel (oil, gas, and coal) consumption and cement production, using the methods of Mar-
land and Rotty [33]. Since the radiance calibrated imagery and NPP-VIIRS data were only
available for the year 2010 and 2012 respectively, we had to use the national emission data of
two years 2010 and 2012 for our analysis.

Power plant emissions
The national CO2 emissions mostly contain the emissions from power plants. Based on the
statistical reports from a global power plant database (Carbon Monitoring and Action
(CARMA)), power generation accounts for 40% of all CO2 emissions in the United States and
about one-quarter of global emissions. In particular, there are a number of power plants that
generated emissions exceeding 20 Mt CO2/year. Thus, the emissions cannot be disaggregated
from point sources to global distributed grids [20]. To avoid producing further uncertainty in
global emission map, we independently estimated the emissions attributable to power plants
by using CARMA (http://carma.org/). CARMA is a database containing information about
CO2 emissions and locations of over 60,000 power plants worldwide in the years 2004, 2009,
and the future (based on planned construction and retirements). The CARMA database does
not include the emission data of 2010 and 2012; therefore, in this study, we roughly approxi-
mated these data with those of the year 2009, as in the research by Oda and Maksyutov [20].
As shown in S2 Fig, we selected 17,695 power plants (emission> 0) with valid location infor-
mation and calculated the total power plant emissions for each country. The locations of the
top ~1000 emitting power plants and the power plants located in water grid cells were cor-
rected through a combination of visual inspection in Google Earth and additional information
provided on individual facility webpages. If the power plant locations could not be confirmed,
the emissions were included in the emissions from other sources. In addition, we used the
power plant emissions based on the year 2009 to account for the emissions for the year 2010
and 2012. The power plants were assumed to be operational during this period of 2009–2012,
and their annual emission levels were simply scaled by the national emission trends obtained
from CDIAC. The power plant emissions for the year 2010 and 2012 can be approximated
based on the annual emission levels.

By subtracting the power plant emissions from the national total emissions, emissions from
other sources in each country were approximated (S1 Table). These sources, which include sev-
eral sectors such as industry, residence, commerce, and transportation, cause a significant
amount of carbon emissions (about three-quarters of the global total). Currently, nightlight
and population are the only globally available datasets that can be used to estimate the emis-
sions from these sources. Therefore, in this study the emissions from non-point sources were
fittingly adopted for disaggregating into a global distribution.

NPP-VIIRS Nighttime Light Data for Mapping CO2 Emissions
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LandScan population grid
The LandScan population grid is a progressive series of global population distribution datasets pro-
duced by the U.S. Department of Energy (DOE) at Oak Ridge National Laboratory (ORNL) since
the late 1990s. Researchers at ORNL used spatial data and imagery analysis technologies, such as
multi-variable dasymetric modeling approach, to disaggregate census counts within an administra-
tive boundary [34]. These datasets have a fine resolution of 30 arc-seconds, covering 84° North to
90° South and 180°West to 180° East. The values of the grid cells are integer population counts
representing an average or ambient population distribution. The LandScan population grid not
only significantly enhances the utility and impact of various applications in estimating ambient
population at risk but also widely contributes to urban sprawl detection and greenhouse gas emis-
sion evaluation [35]. Therefore, we used the LandScan population grid of 2010 and 2012 for this
study. To match the spatial resolution of NPP-VIIRS data, the LandScan population grid of the
year 2012 was resampled into a new resolution of 15 arc-second. The value of each grid of new
population data was also changed as a quarter of the original one in the corresponding location.

Method for Mapping CO2 Emissions
In this study, we employed a model developed by Ghosh et al. [21] to map CO2 emissions (exclud-
ing power plant emissions). This model is a top–down process that allocates spatial emission
sources from a large geographic area to finer grid cells based on the combination of nighttime
lights and population counts. The use of population grid in estimating CO2 emissions proved to
be advantageous since population data can serve as a proxy for estimating CO2 emissions in areas
which have no satellite detected lighting [36]. Hence, in this model emissions were distributed in
proportion to the brightness of nighttime lights in areas where lighting was detected; In areas
without detected lighting, emissions were distributed based on population counts, assuming that
each people living in non-illuminated areas emits a half as much CO2 as that living in areas with
detected lighting [21]. The detailed process of the model is presented as follow:

(1) A mask of the lit areas of the world was created from the nighttime light image. This mask
was overlaid on the LandScan population grid and the sum of population from the lit areas
of each administrative unit i was extracted (SPLi). Similarly, a mask of the dark areas of the
world was created from the nighttime image and was overlaid on the population grid to
extract sum of population of the dark areas of each administrative unit (SPDi).

(2) Assuming that CO2 emission per capita for the lit areas of each administrative unit i is xi,
the CO2 emission per capita for the dark areas of that administrative unit is xi /2. The total
CO2 emissions from the lit areas (CO2Li) and total CO2 emissions from the dark areas
(CO2Di) were derived through Eqs 1 and 2, respectively. Since the total CO2 emissions of
the administrative unit (TCO2i) were the sum of emissions from both the dark and lit areas
(Eq 3), the value of the variable xi for each administrative unit was obtained from Eq 4.

CO2Li ¼ SPLi � xi ð1Þ

CO2Di ¼ SPDi � ðxi = 2Þ ð2Þ

TCO2i ¼ CO2Li þ CO2Di ð3Þ

xi ¼ TCO2i = ðSPLi þ SPDi = 2Þ ð4Þ

NPP-VIIRS Nighttime Light Data for Mapping CO2 Emissions
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(3) In order to obtain the CO2 emissions grid for the lit areas of the administrative unit i
(CO2Lgi), each of the lit pixels of the nighttime lights grid (Lpi) was multiplied by the CO2

emissions per radiance unit which was equal to the ratio of the total CO2 emissions from
the lit areas (CO2Li) and the sum of light value for that administrative unit (SLLi) (Eq 5).
Conversely, the population count in each pixel of the dark areas of the population grid
(PDpi) was multiplied by the CO2 emissions per capita, which was derived by the ratio of the
total CO2 emissions from the dark areas (CO2Di) and the sum of population in the dark
areas (SPDi), to distribute the CO2 emissions for the dark areas of that administrative unit
(CO2Dgi) (Eq 6).

CO2Lgi ¼ Lpi � ðCO2Li = SLLiÞ ð5Þ

CO2Dgi ¼ PDpi � ðCO2Di = SPDiÞ ð6Þ

(4) These two separate CO2 emissions grid from the lit areas and the dark areas of correspond-
ing administrative units N were added to create the final estimated CO2 emissions grid of
the world (CO2g) (Eq 7).

CO2g ¼
XN

i¼1

ðCO2Lgi þ CO2DgiÞ ð7Þ

It should be noted that the factor with which the nighttime lights pixel should be multiplied
to get the CO2 emissions per capita from the non-illuminated rural areas is actually a variable
since the CO2 emissions per capita from the rural areas (corresponding to the darker areas of
the nighttime lights image) change from one country to another. Again, for the quarter of the
world’s population in darkness, the percentage varies between countries. However, as acknowl-
edged in Ghosh et al. [21], the 0.5 factor was used as a placeholder for demonstrating the CO2

production of non-illuminated areas in this model because of the absence of a better known
number. Future research will undoubtedly address the uncertainty and produce a map of this
parameter that varies from country to country.

Results and Discussion

Spatial distribution of CO2 emissions
According to the model described above, the spatial distributions of three gridded global CO2

emissions (excluding power plant emissions) were derived from nightlights and population
data. The global emission maps from NPP-VIIRS data in 2012 had a spatial resolution of about
0.5 km. While other two maps from RCP-DMSP-OLS data in 2010 and SLP-DMSP-OLS data
in 2012, respectively, were both drawn using an about 1 km resolution. As shown in Fig 1, all
three global emission maps present massive emissions in Eastern North America, Northern
andWestern European countries (e.g. UK, Belgium, and the Netherlands), and East Asian
countries (e.g. India, China, South Korea, and Japan). In the Southern Hemisphere, in contrast,
massive source regions are mainly focused along the coast, which are not as prevalent as in
the Northern Hemisphere. In addition, the differences of emission characteristics can be dis-
tinguished among the three global emission maps. From Fig 1, it is easy to find that the most
widely distributed CO2 emissions are visible in the global emission map from SLP-DMSP-OLS
data, whereas the spatial distributions of global emission map from NPP-VIIRS data depict less
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apparent compared to other two maps from DMSP-OLS data. This could be resulted from the
blooming and oversaturation limitations of DMSP-OLS nighttime light imagery.

At the regional scale, a fine depiction of spatial emission features of three emission maps is
also presented in the enlarged views of the Pearl River Delta (PRD) in China, Northeastern
USA and Western Europe (Fig 2). In the map from NPP-VIIRS data, the spatial variability of
CO2 emission levels could be clearly seen in city cores, particularly at the region of PRD China.
In contrast to other two emission maps, the map from SLP-DMSP-OLS data presents wider
emission distributions at three regions but much lower emission intensities in city cores, which
could be the contribution of blooming and saturation limitations. For the map from
RCP-DMSP-OLS data, the depiction of emission sources does not present as clearly as that in
the map from NPP-VIIRS data. For example, emission sources along the interstate highway
networks are visible spatial characteristics in the map from NPP-VIIRS data, but difficult to be
identified in the map from RCP-DMSP-OLS data. The visual observations in Fig 2 indicate
that the global emission map from NPP-VIIRS data exhibits a more reasonable emission distri-
bution than other two maps from DMSP-OLS data.

Comparison with the land cover dataset at city-level scale
In general, the fossil fuel CO2 emissions primarily come from urban areas due to human activi-
ties. While other areas, such as cultivated land, forest, grassland, and water body, are not the
important sources of fossil fuel CO2 emissions. By analyzing the spatial consistency between
the land covers and emission distributions, we can assess the performance of these global emis-
sion maps. For example, if most emissions are found to be distributed in the water bodies
through an overlay analysis, we can expect that this emission map produces a poor perfor-
mance in the spatial distributions of emission estimations, because it is not reasonable to
assume that a large amount of energy consumptions can occur in the water bodies. Therefore,
we used the land covers as the reference data to examine the differences of spatial distri1bu-
tions among these three global emission maps. The land cover data was acquired from a prod-
uct of GlobeLand30, which was released by National Geomatics Center of China in 2014
(http://www.globallandcover.com). This product, as the world’s first global land cover dataset
with a 30m resolution in the years 2000 and 2010, is organized by ten major land cover classes
and can provide essential high resolution land cover and change information for climate
change studies, environment monitoring, and many other societal benefit areas. Considering
that the temporal difference between land cover dataset of 2010 and nighttime light data of
2012 is slight, we believe that a comparison between them can be used to analyze the spatial
distributions of three global emission maps. In addition, due to limited space of the letter, we
only selected three typical cities (Beijing, Shanghai, and Guangzhou) for this comparison. The
land covers of these three cities were categorized into six types, namely cultivated land, forest,
grassland, water body, artificial surfaces and others.

The land cover dataset, the original Landsat Thematic Mapper images and three global
emission maps of three cities were illustrated in Fig 3. In the emission map from NPP-VIIRS
data, the emission areas of the three cities have higher spatial consistency of the artificial sur-
faces than those of other two maps from DMSP-OLS data, which implies that the map from
NPP-VIIRS data delineates spatial patterns of CO2 emissions more exactly. Similar to emission
map from NPP-VIIRS data, the emission distributions of map from RCP-DMSP-OLS data
mostly focus on the artificial surfaces of the three cities. However, the spatial variability in CO2

emission levels could be seen even in city cores, which is hard to reflect human activities and to
support a more accurate CO2 emission estimation. For the map from SLP-DMSP-OLS data,
the emission areas of the three cities spread out the artificial surfaces considerably. Even the
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regions of water bodies and urban forests in the three cities are also distributed with the emis-
sions in the map from SLP-DMSP-OLS data. This overestimation in the emission distributions
could be owing to both the blooming effect and the coarse spatial resolution in
SLP-DMSP-OLS data.

In addition, the proportions of CO2 emissions distributed in each land cover are also calcu-
lated to evaluate the difference in the spatial patterns of three emission maps quantitatively. As
seen in Fig 4, a majority of CO2 emissions from NPP-VRIIS data are distributed in the artificial
surfaces of the three cities. Compared to the emissions from RCP-DMSP-OLS and

Fig 1. Three global emissionmaps derived from population counts and three different types of nighttime lights: NPP-VIIRS (a), RCP-DMSP-OLS
(b), and SLP-DMSP-OLS (c). The population data is from the U.S. Department of Energy at Oak Ridge National Laboratory (DOE/ORNL), and the three
nighttime lights are from the Earth Observation Group in National Oceanic and Atmospheric Administration’s National Geophysical Data Center (NOAA/
NGDC).

doi:10.1371/journal.pone.0138310.g001

Fig 2. Regional spatial distributions of CO2 emissions in the PRD China (a), Northeastern USA (b), andWestern Europe (c).

doi:10.1371/journal.pone.0138310.g002
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SLP-DMSP-OLS data, the proportions of emissions from NPP-VRIIS data are much higher in
the artificial surfaces, but lower in other land covers. This indicates that the spatial patterns of
emissions from NPP-VRIIS data are more consistent with the land cover data. Conversely, in
the artificial surfaces, the proportions of emissions from SLP-DMSP-OLS data are the lowest
one among the three emission maps. Moreover, in Beijing and Guangzhou, most of the emis-
sions from SLP-DMSP-OLS data are distributed in the cultivated land. These proportions of
CO2 emissions also demonstrate that there exists a serious blooming effect in the emission
map from SLP-DMSP-OLS data.

To investigate the utility of NPP-VIIRS data for mapping CO2 emissions, we also subtracted
the population-based emissions of these three cities and evaluated the proportions of CO2
emissions only distributed by nighttime lights in this comparison. As shown in Fig 5, the pro-
portions of the nightlight-based emissions distributed over each land cover are similar with the
previous results (Fig 4). A majority of CO2 emissions only distributed by NPP-VRIIS data are
still focus on the artificial surfaces of the three cities compared to the emissions from
RCP-DMSP-OLS and SLP-DMSP-OLS data. Also, most of the emissions from
SLP-DMSP-OLS data are distributed in the cultivated land of these three cities. It can be seen
that the global emission map only distributed by NPP-VIIRS data also shows a higher accuracy
in the spatial distribution of CO2 emission than the other map from only RCP-DMSP-OLS or
SLP-DMSP-OLS data.

Therefore, from the comparisons with the land cover dataset, the NPP-VIIRS nighttime
light data have a better performance in mapping the global emissions than RCP-DMSP-OLS
and SLP-DMSP-OLS data. The better estimated results mainly benefit from the higher spatial
resolution and wider radiometric detection range of NPP-VIIRS nighttime light data.

Comparison to Vulcan inventory
To assess the ability of NPP-VIIRS data in constructing global CO2 emission inventories, an
accuracy assessment of these three emission maps is urgently needed. However, it is noted that
such assessment is challenging to perform primarily because no global actual measurement
data verifying the true distribution of global CO2 emission are available [20]. Although there
have been several satellites such as the Greenhouse gases Observing Satellite (GOSAT) and
Orbiting Carbon Observatory -2 (OCO-2) that can measure the CO2 concentration in the
atmosphere at coarse spatial resolution, the CO2 signals from satellites are diffused and spa-
tially offset from the sources due to the coarse spatial resolution, atmospheric transport, mix-
ing, and retention of CO2 in the atmosphere [21]. It is difficult to discern increases or decreases
in CO2 emissions from specific cities or towns and to validate the spatial characteristics of
high-resolution emission maps with these data from satellites. Fortunately, Gurney et al. [37]
have produced the Vulcan fossil fuel emissions data product from a bottom-up perspective and
offered a useful point of comparison at the regional scale. The Vulcan product provides fossil
fuel CO2 emissions for the U.S. on a 0.1° grid with a temporal resolution of 1 h and includes
process-level detail such as combustion technology, fuel type, and vehicle class. So far Vulcan is
most accepted bottom up dataset which is not using proxies to distribute emissions. All the rest
of the inventories such as ODIAC, FFDAS and PKU have compared their gridded dataset with
Vulcan. Thus, in this study we used the Vulcan emissions data product as a standard to evalu-
ate the three global emission maps (S3 Fig). Although the Vulcan product is only available in

Fig 3. The original Landsat Thematic Mapper images, land cover dataset, and three global emissionmaps of three cities (Beijing, Shanghai, and
Guangzhou). The Landsat Thematic Mapper images of these cities are from the United States Geological Survey (USGS), and the land cover dataset is
from the National Geomatics Center of China (NGCC).

doi:10.1371/journal.pone.0138310.g003
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the year of 2002, it can still validate these three global emission maps to a certain agreeable
degree since there is a small change in the U.S. CO2 emissions from 2002 to 2012 (EIA, http://
www.eia.gov/environment/emissions/carbon/).

Following Rayner et al. [5], we firstly aggregated all global emission maps into a 0.1° × 0.1°
grid scale to match the spatial resolution of Vulcan product. Furthermore, we choose two metrics
which reflect likely uses for this comparison: (1) summed absolute difference (SAD, in units of
Mt CO2/year), which is the sum of the absolute difference of the field over the domain and (2)
spatial correlation (SC), which quantifies the magnitude-independent correspondence of the spa-
tial patterns. Finally, considering the influence likely caused by population distribution, we also
show the comparison for CO2 emission maps distributed by nighttime lights alone.

The results of these comparisons are shown in Tables 1 and 2. From Table 1, we can find
that the value of SAD for the estimated emissions from NPP-VIIRS and population data is the
lowest in these emission maps. Also, the value of SC for this emission map is substantially higher
than other estimates. This suggests that the emission map based on NPP-VIIRS and population
is closer to the Vulcan inventory than other emission maps. In contrast, the emission map based
on SLP-DMSP-OLS and population data produces the worst performance in this comparison,
with the SAD value of 3554.12 Mt CO2/year and the SC value of 0.76. This worst result is proba-
bly caused by the serious blooming effect and saturation issue of SLP-DMSP-OLS nighttime light
data. For the emission map based on RCP-DMSP-OLS and population, it gets a secondary value
of SAD and SC, displaying the performance intermediate between the two former maps. Simi-
larly, the comparisons in which only nightlights are used as the spatial proxy reached the same
conclusions as the CO2 emission maps distributed by nighttime lights and population data. From
Table 2, we also see that the estimated emissions only distributed by NPP-VIIRS exhibits the low-
est summed absolute differences (3114.24 Mt CO2/year) and the highest correlation value (0.85),
revealing that it has the best calibration to the Vulcan data product among these nightlight-based
estimates. Thus, by the evaluation of the global emission maps versus the Vulcan data product in
the USA, the NPP-VIIRS nighttime light data is superior to RCP-DMSP-OLS and SLP-DMSP-
OLS data in mapping the global emissions.

Accuracy assessment with the statistical data of CO2 emissions
In addition, we performed a quantitative comparison of three global emission maps with the
actual statistical data of CO2 emissions at the level of sub-administrative units. The statistical
data of CO2 emissions of sub-administrative regions, which can be gathered and measured by
research institutions, are generally regarded acceptable and accurate. Thus the statistical data
was used as a standard to evaluate the performances of NPP-VIIRS, RCP-DMSP-OLS and
SLP-DMSP-OLS data. Considering the limitation and reliability of data sources, we only
adopted the statistical data of sub-administrative regions from the United States for this com-
parison (S2 Table). The data of CO2 emissions of each state in the United States was based on
energy consumption data from EIA (http://www.eia.gov/environment/emissions/state/). By
subtracting the emissions of power plants, the actual total emissions of each state in 2010 and
2012 were approximated. After that, we aggregated the emissions in each pixel of three emis-
sion maps to the level of sub-administrative units and compared them to the statistics of CO2

emissions using the regression analysis. The R2 of regression analysis and mean relative error
(MRE) were used to evaluate the agreement between the actual statistics and aggregated esti-
mated emissions from nighttime lights.

Fig 4. The proportions of CO2 emissions in each land cover of the three cities: Beijing (a), Shanghai
(b), and Guangzhou (c).

doi:10.1371/journal.pone.0138310.g004
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Fig 5. The proportions of nightlight-based emissions distributed over each land cover of the three
cities: Beijing (a), Shanghai (b), and Guangzhou (c).

doi:10.1371/journal.pone.0138310.g005
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The regression results from Fig 6 suggest that the total estimated emissions from nighttime
lights and population data have a positive linear relationship with actual statistics in each
state of the United States. The R2 values of estimated emissions from RCP-DMSP-OLS and
SLP-DMSP-OLS data were 0.8386 and 0.759, respectively, both of which are less than that of
the estimated emissions from NPP-VIIRS data (R2 = 0.8695). In addition to the difference in
R2 values, the MRE values are also different among all the estimated results. The MRE of esti-
mated emissions from NPP-VIIRS data is 36.31%, whereas those of estimated emissions from
RCP-DMSP-OLS and SLP-DMSP-OLS data are 40.29% and 52.14%, respectively. This result
indicates that the estimated emissions from NPP-VIIRS data are better fit with the actual statis-
tical data and are more accurate than the other two estimated emissions from DMSP-OLS data
at the state unit of the United States.

Given that the population-based emissions may affect the results, we also attempted to cre-
ate the emission maps only distributed by nighttime lights and compared them with the actual
statistical data of CO2 emissions at the state unit of the United States. As shown in Fig 7, there
is a small change in the R2 and MRE values compared to the previous results. However, the cor-
relation between the actual statistics and aggregated estimated emissions only distributed by
NPP-VIIRS data is still stronger than that from RCP-DMSP-OLS or SLP-DMSP-OLS data.
Moreover, the estimated emissions from NPP-VIIRS data show the strongest response to
the actual statistics with the minimum value of MRE (36.98%). The estimated emissions only
distributed by NPP-VIIRS data also have better agreement with the actual statistics at the
state level of United States compared to RCP-DMSP-OLS and SLP-DMSP-OLS data. There-
fore, based on the comparative analysis of R2 values and MRE, we can confirmed that the
NPP-VIIRS data is more reliable in estimating spatial distribution of global CO2 emission than
the DMSP-OLS data.

Uncertainties behind the results
Because of higher spatial resolution and increased low-light sensing capability compared with
DMSP sensor, the NPP-VIIRS data was proven to derive a better spatial distribution of global
CO2 emission inventory. However, we also acknowledge that possible uncertainties exist in
our gridded emission inventory. These uncertainties are largely due to problems with data
quality or availability. First, the NPP-VIIRS nighttime light data released by NOAA/NGDC
are raw data in which fires, gas flares, volcanoes, and other background noise have not been
removed. Although the correction method has been applied to the data in this study, the nega-
tive effects of some confounding factors still obstruct a better estimation of CO2 emission from
NPP-VIIRS data. For instance, since NPP-VIIRS is at 0.5 km while DMSP-OLS is at about

Table 1. Comparison of the global emissionmaps based on nightlight and population data to the Vulcan inventory for U.S. domain at the 0.1°
resolution.

Metric NPP-VIIRS and population RCP-DMSP-OLS and population SLP-DMSP-OLS and population

SAD 3114.24 3347.1 3554.12

SC 0.85 0.81 0.76

doi:10.1371/journal.pone.0138310.t001

Table 2. Comparison of the global emissionmaps only distributed by nightlights to the Vulcan inventory for U.S. domain at the 0.1° resolution

Metric NPP-VIIRS RCP-DMSP-OLS SLP-DMSP-OLS

SAD 3368.35 3673.54 3751.74

SC 0.83 0.8 0.753

doi:10.1371/journal.pone.0138310.t002
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1km, the valid nightlight pixels of NPP-VIIRS could be dismissed if DMSP-OLS is used as a
mask. Also, a small number of the NPP-VIIRS noise that might fall inside the masked area.
Thus, the background noises need to be removed to improve the quality of NPP-VIIRS data
using some advanced techniques. Second, the use of a point-source database (CARMA) is an
appealing feature of the present study. However, CARMA database obviously has a number of
limitations—the database does not cover all existing power plants worldwide and the geo-
graphical coordinates of power plants sometimes indicate false locations because of errors in
deriving coordinate information [38, 39]. In addition, we roughly approximated the CARMA
emissions for the year 2010 and 2012 with those of the year 2009, as in the research by Oda
et al. [20]. Therefore, uncertainties would arise because of the approximation of emissions.
Besides, the Landscan is a product based on statistical data and satellite data analysis. The
errors also go to the analysis in this study. Finally, these comparisons which focused on only
America are deficient in the global emission estimation since the country cannot be representa-
tive of the whole world. This would result in the lack of reliability in validating the global emis-
sion inventory due to the limitation and absence of the sub-administrative statistics of CO2

Fig 6. Comparison between the actual statistical data of CO2 emissions and the estimated emissions of different emission maps at the state unit of
the United States.

doi:10.1371/journal.pone.0138310.g006

Fig 7. Comparison of emission results only distributed by three different types of nighttime lights at the state unit of the United States: NPP-VIIRS
(a), RCP-DMSP-OLS (b), and SLP-DMSP-OLS (c).

doi:10.1371/journal.pone.0138310.g007
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emissions in other countries. Thus, further comparisons that could show the differences in
other countries should be carried out in emission estimation as much as possible.

Conclusions
In this study, we investigated the ability of NPP-VIIRS data to estimate the spatial distribution
of gridded global CO2 emissions (excluding power plant emissions) for the first time. Through
a top–down model that allocates spatial emission sources from a large geographic area to finer
grid cells, three global emission maps were derived from population counts and three different
types of nighttime lights (NPP-VIIRS, RCP-DMSP-OLS and SLP-DMSP-OLS), respectively.
The comparison with reference data of land cover shows that the global emission map from
NPP-VIIRS data have a larger quantity and cleaner spatial variation of CO2 emission in the
artificial surfaces than the maps from RCP-DMSP-OLS and SLP-DMSP-OLS data, although
there is a two-year gap between the NPP-VIIRS data and land cover dataset. In addition, from
the evaluation of the global emission maps versus the Vulcan data product and the accuracy
assessment with the statistical data of CO2 emissions at the sub-administrative units of the
United States, the comparison results also demonstrate that NPP-VIIRS nighttime light data is
more powerful and reliable than RCP-DMSP-OLS and SLP-DMSP-OLS data in estimating the
spatial distributions of CO2 emissions.

In conclusion, our analysis revealed that the NPP-VIIRS data can be used as important data
source for studying the spatial distributions of CO2 emissions. Since there are some challenging
problems such as the background noise in NPP-VIIRS nightlight data, further investigations
are required in order to improve the quality of the imagery. Besides, future study can be taken
on multi-temporal analysis of the imagery in wider fields as more and more NPP-VIIRS night-
time light data are produced.
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