
RESEARCH ARTICLE

Effects of Reducing Suppressors of Cytokine
Signaling-3 (SOCS3) Expression on Dendritic
Outgrowth and Demyelination after Spinal
Cord Injury
KeunWoo Park, Ching-Yi Lin, Kevin Li, Yu-Shang Lee*

Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, United States of
America

* leey2@ccf.org

Abstract
Suppressors of cytokine signaling-3 (SOCS3) is associated with limitations of nerve growth

capacity after injury to the central nervous system. Although genetic manipulations of

SOCS3 can enhance axonal regeneration after optic injury, the role of SOCS3 in dendritic

outgrowth after spinal cord injury (SCI) is still unclear. The present study investigated the

endogenous expression of SOCS3 and its role in regulating neurite outgrowth in vitro. Inter-
leukin-6 (IL-6) induces SOCS3 expression at the mRNA and protein levels in neuroscreen-

1 (NS-1) cells. In parallel to SOCS3 expression, IL-6 induced tyrosine phosphorylation of

signal transducer and activator of transcription 3 (STAT3) in NS-1 cells. Lentiviral delivery of

short hairpin RNA (shSOCS3) (Lenti-shSOCS3) to decrease SOCS3 expression into NS-1

cells enhanced IL-6-induced tyrosine phosphorylation of STAT3 (P-STAT3 Tyr705) and

promoted neurite outgrowth. In addition, we determined if reduction of SOCS3 expression

by microinjection of Lenti-shSOCS3 into spinal cord enhances dendrite outgrowth in spinal

cord neurons after SCI. Knocking down of SOCS3 in spinal cord neurons with Lenti-

shSOCS3 increased complete SCI-induced P-STAT3 Tyr705. Immunohistochemical analy-

sis showed that complete SCI induced a significant reduction of microtubule association

protein 2-positive (MAP-2+) dendrites in the gray and white matter at 1 and 4 weeks after

injury. The SCI-induced reduction of MAP-2+ dendrites was inhibited by infection with Lenti-

shSOCS3 in areas both rostral and caudal to the lesion at 1 and 4 weeks after complete

SCI. Furthermore, shSOCS3 treatment enhanced up-regulation of growth associated pro-

tein-43 (GAP-43) expression, which co-localized with MAP-2+ dendrites in white matter and

with MAP-2+ cell bodies in gray matter, indicating Lenti-shSOCS3 may induce dendritic

regeneration after SCI. Moreover, we demonstrated that Lenti-shSOCS3 decreased SCI-

induced demyelination in white matter of spinal cord both rostral and caudal to the injury site

1 week post-injury, but not rostral to the injury at 4 weeks post-injury. Importantly, similar

effects as Lenti-shSOCS3 on increasing MAP-2+ intensity and dendrite length, and pre-

venting demyelination were observed when a second shSOCS3 (Lenti-shSOCS3 #2) was

applied to rule out the possibilities of off target effects of shRNA. Collectively, these results
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suggest that knocking down of SOCS3 enhances dendritic regeneration and prevents

demyelination after SCI.

Introduction
Spinal cord injury (SCI) encompasses primary mechanical damage and subsequent secondary
degenerative responses [1–3]. Primary mechanical damage induces a cascade of excitotoxicity,
oxidative stress, and membrane breakdown that, in turn, triggers neuronal cell death, axonal/
dendritic loss, and secondary degeneration [4–7]. Secondary degenerative responses include
axonal loss and oligodendrocyte death, which may contribute to demyelination of spared
axons after SCI [8]. In order to repair injured spinal cord, nerve regeneration strategies have
been developed to overcome the inhibitory environment or to enhance nerve growth capacity
after SCI. Most of these studies have focused on how to promote the regeneration of axons in
both descending and ascending projections after SCI [9, 10]. However, the distribution of den-
drites from local spinal cord neurons and how to promote the growth of these dendrites after
SCI are still unclear. The extension of dendrites in the white matter from spinal cord neurons
receives inputs from descending pathways [11]. The distribution of dendritic trees and the
location of soma in certain spinal cord neurons may correlate with their function [12, 13].
Therefore, in addition to long tract regeneration, the growth of dendrites from local spinal cord
neurons and the maintenance of dendritic distribution in the white matter may play important
roles in repairing the injured spinal cord.

Suppressors of cytokine signaling (SOCS) proteins function in a negative feedback loop to
terminate signaling through the Janus kinase (JAK)/ signal transducer and activator of tran-
scription (STAT) pathway [14, 15], which regulates neuronal growth and differentiation [16,
17]. Suppressors of cytokine signaling-3 (SOCS3), one member of the SOCS family of proteins,
binds to gp130, a common receptor for signal transduction with interleukin-6 (IL-6), or to
JAK1 and JAK2, subsequently inhibiting signal transduction [18, 19]. Expression of SOCS3 in
neurons plays a negative role in regulating cell survival and neurite outgrowth [20–23]. These
studies, including our recent study [20], have demonstrated that cytokine- or nerve injury-
induced SOCS3 expression negatively regulates the activity of STAT3, consequently leading to
reductions in neuroprotection and neurite outgrowth. However, the mechanisms underlying
the regulatory effects of SOCS3 on dendritic growth after complete SCI are still not clear.

In the current study, we hypothesized that SOCS3 expression in neurons negatively regu-
lates neurite outgrowth in vitro and dendrite outgrowth after SCI. We determined the expres-
sion pattern of SOCS3 and its regulatory effects on neuritic outgrowth through STAT3
signaling in vitro by using neuroscreen-1 (NS-1) cells. We also investigated whether SOCS3
expression regulates dendritic arborization and demyelination after complete SCI in adult rats.
Our results show that SOCS3 expression, in response to IL-6 treatment, negatively regulates
neurite outgrowth in vitro via STAT3 signaling and that a reduction of SOCS3 expression by
Lenti-shSOCS3 in spinal cord neurons enhances dendritic regeneration in the white matter
and prevents demyelination after complete SCI.

Materials and Methods

Cell Cultures and Lentiviral Infection
NS-1 cells (Thermo Fisher Scientific, Pittsburgh, PA, USA), a PC12 subclone, were grown
in RPMI medium containing 10% horse serum, 5% heat-inactivated fetal bovine serum, 1%
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L-glutamine, and 1% penicillin/streptomycin (EMDMilipore Co., Hayward, CA, USA). Cells
were plated on 12-mm round glass coverslips or 6-well plates pre-coated with collagen I
(10 μg/ml, Sigma-Aldrich, St. Louis, MO, USA) at a density of 1.0 × 103 cells/coverslip or
5.0 × 104 cells/well, respectively. NS-1 cells were incubated with NGF (2 ng/ml, R&D Systems,
Minneapolis, MN, USA) in the culture media for 48–72 h after plating and then infected with
lentivirus containing pGipz (Lenti-pGipz) or shSOCS3/pGipz (Lenti-shSOCS3) at a multiplic-
ity of infection (M.O.I) of 40. After infection, puromycin was added for 2 days to select the len-
tivirus-infected NS-1 cells. Cultured cells were treated with IL-6 (100 ng/ml) for the designated
time periods and then harvested for analyses of RNA and protein expression.

RNA Isolation and Quantitative Real Time-PCR
Cultures treated with IL-6 were washed with RNase-free PBS and total RNA was extracted
using Trizol (Invitrogen, San Diego, CA, USA). Purified RNA (500 ng) was reverse transcribed
into cDNA using Multiscribe reverse transcriptase and random primers (Applied Biosystems
by Life Technologies, Grand Island, NY, USA). Quantitative real-time PCR (qPCR) was per-
formed as previously described to determine levels of SOCS3 mRNA [20, 21]. Data were ana-
lyzed using the comparative cycle threshold method to obtain quantitative values.

Immunoblotting of NS-1 Cells
IL-6-treated cultures were lysed in buffer containing the following: 150 mMNaCl, 10 mM
Na2HPO4 (pH 7.2), 0.5% sodium deoxycholate, 1% NP-40, and protease inhibitor mixture.
Forty μg of total cell lysate were separated by electrophoresis on 8% SDS-polyacrylamide gels
and blotted with the following antibodies: SOCS3 (1:2,000; abcam, Cambridge, MA, USA),
tyrosine phosphorylation of STAT3 (P-STAT3 Tyr705) (Cell Signaling Technology, Danvers,
MA, USA), β-actin (1:4,000; Cell Signaling Technology), or STAT3 (1:1,000; Cell Signaling
Technology) as described previously [20]. Immunoreactivity was assessed using Pierce ECL or
SuperSignal West Dura substrate (Thermo Scientific, Rockford, IL, USA). For quantitative
analyses, band densities on immunoblots were measured with ImageJ software [20].

Measurement of Neurite Length in NS-1 Cells
NS-1 cells were fixed with 4% paraformaldehyde after treatment, permeabilized with 0.2% Tri-
ton X-100 for 15 min, washed with PBS, and then stained with HCS CellMask Red (0.5ug/ml,
Invitrogen) for 30 min at room temperature. Images were taken using a fluorescent microscope
(DM6000; Leica Microsystems, Buffalo Grove, IL, USA). For measurement of neurite length,
images were randomly selected and taken using a fluorescent microscope (DM6000; Leica
Microsystems). The length of neurites of 150–200 single cells per condition was analyzed with
LAS AF software (Leica Microsystems).

Animal Groups
Adult female Sprague-Dawley rats (220–250g; Harlan Laboratories, Madison, WI, USA) were
assigned randomly into three groups: (1) sham control (laminectomy only; con group; total
n = 12); (2) T8 spinal cord transection (Tx) with Lenti-pGipz injection (Tx + pGipz group;
total n = 14); or (3) T8 spinal cord transection and Lenti-shSOCS3 injection (Tx + shSOCS3
group; total n = 19). Rats were housed in standard laboratory cages under 12:12-hour light-
dark cycle conditions with standard rodent chow and water available ad libitum. All experi-
ments were performed during the light cycle. All animal procedures were approved by the
Cleveland Clinic Institutional Animal Care and Use Committee (IACUC; protocol number:
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2013–0973). The surgery was performed under isoflurane anesthesia with all efforts made dur-
ing post-operative care to minimize suffering. All procedures were performed in strict accor-
dance with the recommendations in the Guide for the Care and Use of Laboratory Animals of
the National Institutes of Health.

Lentiviral Production and Delivery to the Spinal Cord
Two lentiviral plasmids provided by Dr. Etty Benveniste (University of Alabama at Birming-
ham), shSOCS3/pGipz, and shSOCS3 #2/pGipz, encoding two shRNAs specific for SOCS3 to
knockdown SOCS3 expression, were used to clarify the effects obtained were specifically medi-
ated by reduced SOCS3 expression, rather than off target effects of shRNA [24]. Lentiviral par-
ticles were generated by calcium phosphate-mediated co-transfection of HEK-293T cells with
shSOCS3/pGipz, shSOCS3 #2/pGipz, or empty pGipz together with psPAX2 (Packaging plas-
mid) and pMD2G (Envelope plasmid). Lenti-shSOCS3, Lenti-shSOCS3 #2, or Lenti-pGipz was
collected after 72 h with titers up to 3–4×109 infectious units/ml as previously described [20,
21]. Lentiviral delivery into the spinal cord was performed 2 weeks before T8 spinal cord tran-
section or sham procedures. Animals were anesthetized by 2% isoflurane gas mixed with oxy-
gen and then a laminectomy was performed at the T8 level, followed by insertion of a pored
glass pipette attached to a microinjector into the gray matter of the spinal cord. The target
areas for injection included four total sites with 2 mm depth at the following coordinates: two
sites 2.5 mm rostral and two sites 2.5 mm caudal from injury site. Infusions were made at a rate
of 133nl/min for Lenti-pGipz, Lenti-shSOCS3, or Lenti-shSOCS3 #2 (2×107 total infectious
units in 4 μl). After injection, the glass pipette was left in place for an additional 2 min before
being slowly retracted.

T8 Complete Spinal Cord Transection in Lentivirus-Infected Animals
All surgical procedures were conducted under aseptic conditions two weeks after lentiviral
infection [20]. All lentivirus-infected animals were anesthetized with 2% isoflurane gas mixed
with oxygen and were placed on a heating pad to maintain body temperature within ± 1.5°C of
36.5°C during surgery. In the Tx group, a laminectomy was performed, followed by complete
transverse cuts of the spinal cord at the T8 level, resulting in a gap of 1~2 mm. A surgical
microscope was used to ensure no neural tissue remaining in the gap. The bladders of all spinal
cord-transected rats were expressed manually twice per day throughout the experimental
period. The observation period was 1 or 4 weeks after complete SCI.

Immunoblotting of Spinal Cord Tissue
At the designated time point after SCI, spinal cord tissues were obtained from areas 4 mm ros-
tral or caudal to the injury epicenter and were homogenized in ice-cold lysis buffer as described
previously [20]. Equal amounts of protein (40 μg) were separated by SDS-PAGE and blotted
with antibody against GAP-43 (1:1000; abcam), β-actin (1:4,000; Cell Signaling Technology),
or microtubule association protein-2 (MAP-2) (1:2000; Sigma-Aldrich). Immunoreactivity was
assessed using Pierce ECL or SuperSignal West Dura substrate (Thermo Scientific). For quanti-
tative analyses, band densities on immunoblots were measured with ImageJ software [20].

Immunostaining of Spinal Cord Tissue
In parallel experiments, animals were anesthetized at 1 or 4 weeks after SCI or sham proce-
dures and then transcardially perfused with 0.9% saline followed by 4% paraformaldehyde. Spi-
nal cord were removed, post-fixed overnight at 4°C with 4% paraformaldehyde, and then
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incubated at 4°C with 30% sucrose solution until sinking. The spinal cord segments 4 mm ros-
tral or caudal to the injured site were then transversely sectioned on a cryostat (30 μm) and col-
lected for immunohistochemistry [25]. Briefly, free-floating serial sections were washed three
times for 10 min with PBS and blocked with PBS containing 3% normal horse serum and
0.25% Triton X-100 for 1 h at room temperature. After washing with PBS, sections were then
incubated overnight with gentle agitation at room temperature with antibodies against GAP-43
(abcam) and/or MAP-2 (Sigma-Aldrich). Sections were then washed with PBS and incubated
for 1 h at room temperature with a secondary antibody conjugated by Alexa Flour 488 or 594
as appropriate (1:2,000; Life Technologies). Tissues were then washed and mounted with Vec-
tashield mounting medium (Vector Laboratory, Burlingame, CA, USA). Sections were exam-
ined and all images were taken using a fluorescent microscope (DM6000; Leica Microsystems).

Measurements of MAP-2 Positive (MAP-2+) Dendritic Intensity in Spinal
Cord
The intensity of MAP-2+ immunoreactivity in spinal cord was assessed by examining sections
obtained from areas 4 mm rostral or caudal to the injury site. One of every six serial sections
(180 μm apart) were selected and immunostained with MAP-2 antibody (Sigma-Aldrich). Dig-
ital photomicrographs of MAP-2+ images were then taken with a Leica microscope (DM6000;
Leica Microsystems) and analyzed with LAS AF software (Leica Microsystems) to measure
MAP-2+ immunoreactivities in both gray and white matter of spinal cord. A total of 15–18 sec-
tions in each area rostral and caudal to the injury site were measured and analyzed.

Measurements of MAP-2+ Dendritic Length in the White Matter of Spinal
Cord
As described above, the lengths of MAP-2+ dendrites in both ventral horn and dorsal horn
were measured after immunostaining of spinal cord tissues with MAP-2 antibody. The MAP-
2+ dendrites were manually traced with a Wacom tablet only from the edge of gray matter and
continuously to the end of dendrites. The traced lengths of MAP-2+ dendrites were measured
and analyzed [26, 27]. A total of ~200–300 dendrites in each area rostral or caudal to the injury
site were measured and analyzed.

Measurements of Demyelination after SCI
Measurements of SCI-induced demyelination were performed by comparing the intensity of
eriochrome cyanine (EC)-stained myelin [28]. Briefly, 16 μm sections were mounted on gela-
tin-coated slides and dried at room temperature. Slides were placed in fresh acetone for 10
min, removed, and allowed to dry for 30 min. Sections were stained with freshly filtered EC
solution (Sigma-Aldrich) for 30 min and washed in running tap water for 5 min. The stain was
differentiated in 5% ferric ammonium sulphate (Sigma-Aldrich) for 15 min and washed with
running tap water for 5 min. The differentiation was completed with borax-ferricyanide solu-
tion (Sigma-Aldrich) for 10 min, washed with running tap water, and allowed to dry. Slides
were dehydrated in 70%, 95%, and then 100% ethanol for 2 min each, followed by xylenes for
2 min. Slides were coverslipped with a VectaMount Permanent Mounting Medium (Vector
Laboratories). All images were taken using a bright field microscope (DM6000; Leica Microsys-
tems) and analyzed using ImageJ software.
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Statistical Analysis
All values are presented as mean ± SEM. Statistical significance (p<0.05 for all analyses)
between groups was assessed by one-way ANOVA using GraphPad Prism 5.01 (GraphPad,
San Diego, CA, USA), followed by Student–Newman–Keuls analyses. All experimental proce-
dures and data analyses were performed in a blinded fashion for the entire study.

Results

IL-6 Treatment Induced SOCS3 Expression in NS-1 Cells
Gp130 is the common signal transducing receptor for all IL-6 family members [29, 30]. Bind-
ing of IL-6 to gp130 receptor induces SOCS3 expression as a transcription target gene of the
STAT3 signaling pathway [29]. Thus, we tested whether SOCS3 expression was regulated upon
IL-6 treatment in NS-1 cells. Without IL-6 treatment, basal expression levels of SOCS3 mRNA
were very low. However, after IL-6 treatment, SOCS3 mRNA expression was significantly
increased at 30 min, peaked at 1–2 h, and remained at a high level until 4 h (Fig 1A). SOCS3
protein expression was also significantly increased between 0.25–2 h in NS-1 cells upon IL-6
treatment (Fig 1B).

A number of studies have demonstrated that SOCS3 expression can be induced by STAT3
activation [14, 21, 31], indicating that SOCS3 is a STAT3-inducible gene. Thus, we investigated
whether IL-6 induces phosphorylation of STAT3, the indicator of STAT3 activation, in NS-1
cells as evidence of an essential signaling pathway for SOCS3 expression. Immunoblotting
analyses demonstrated that IL-6 induced significant increases in P-STAT3 Tyr705 within
30 min, which was maintained up to 4h (Fig 1C), while total STAT3 expression was not signifi-
cantly altered following treatment.

Reduction of SOCS3 Expression Enhanced Neurite Outgrowth in NS-1
Cells
Recent studies demonstrate that genetic knockout of SOCS3 expression can promote axon
regeneration after optic nerve injury [32], indicating that SOCS3 is as an intrinsic barrier and
has a negative regulatory effect on axonal regeneration. In addition, it has been shown in both
in vitro and in vivo studies that IL-6 treatment can enhance nerve growth through the JAK/
STAT3 pathway [33, 34]. Thus, we investigated the regulation of SOCS3 on IL-6-induced neur-
ite outgrowth by NS-1 cells. First, we investigated whether IL-6-induced SOCS3 expression is
inhibited by lentivirus-delivered shRNA targeting endogenous SOCS3 (shSOCS3). To test this,
NS-1 cells were infected with Lenti-shSOCS3 or Lenti-pGipz and then treated for 1 h with IL-
6. qPCR analysis showed that shSOCS3 expression by Lenti-shSOCS3 infection led to a signifi-
cant reduction in IL-6-induced SOCS3 mRNA expression (Fig 2A). Comparable to these
results, SOCS3 protein expression was also decreased by Lenti-shSOCS3 upon IL-6 treatment
(Fig 2B) as compared to those cells infected with Lenti-pGipz. However, Lenti-shSOCS3
enhanced IL-6-induced P-STAT3 Tyr705 by NS-1 cells (Fig 2B) when compared to cells
exposed to Lenti-pGipz. Next, NS-1 cells were infected with Lenti-shSOCS3 or Lenti-pGipz
and then treated with IL-6 to determine if SOCS3 regulates neurite outgrowth. We observed
that reduced SOCS3 expression by Lenti-shSOCS3 enhanced IL-6-induced outgrowth of neur-
ites, as compared to Lenti-pGipz-infected cells (~1.8 fold increase). However, the untreated
cultures infected with Lenti-shSOCS3 also showed enhancement of neurite outgrowth com-
pared to untreated cultures with Lenti-pGipz infection (~2 fold increase; Fig 2C and 2D).
These results were also observed in uninfected cells treated with IL-6 (S1 Fig).
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Decreased SOCS3 Expression Enhanced P-STAT3 Tyr705 after
Complete SCI
Our previous studies reported that Lenti-shSOCS3 infection in spinal cord reduced complete
SCI-induced mRNA and protein expression of SOCS3, as compared to Lenti-pGipz infection
[20]. We therefore tested whether SOCS3 negatively regulates SCI-induced STAT3 activation
in spinal cord. As previously reported [20], we applied Lenti-shSOCS3 two weeks prior to com-
plete SCI to decrease SOCS3 expression. The animals that received Lenti-shSOCS3 showed a
significant enhancement of P-STAT3 Tyr705 at 4 days post-complete SCI, as compared to
Lenti-pGipz infection; this was found similarly in both rostral and caudal spinal cord segments
(Fig 3A). The enhancement of P-STAT3 Tyr705 by Lenti-shSOCS3 was not significant at 7
days after complete SCI when compared to Lenti-pGipz-infected groups (Fig 3B).

Reduction of SOCS3 Expression Increased MAP-2+ Dendrites after
Complete SCI
We next investigated if the negative regulatory effects of SOCS3 on neurite outgrowth in NS-1
cells can be also observed in spinal cord neurons after complete SCI. MAP-2 immunoreactivi-
ties after complete SCI were examined as markers of dendrite density in spinal cord [35, 36].
The spinal cord was completely transected 2 weeks after Lenti-shSOCS3 or Lenti-pGipz infec-
tion, and then 1 or 4 weeks after SCI the animal was sacrificed and immunostained with MAP-
2 antibody. In sham-operated rat spinal cord (control), MAP-2 immunoreactivity was localized
predominantly in dendrites within the gray matter and extended to the white matter of the spi-
nal cord (Fig 4A). Lenti-pGipz infection followed by complete SCI significantly reduced MAP-
2+ dendrites in gray matter and white matter at both 1 and 4 weeks after injury compared to
control animals. However, significantly more MAP-2+ dendrites were seen in spinal cords of
Lenti-shSOCS3-infected animals as compared to those with Lenti-pGipz infection (Fig 4A).
Similar enhancement effects on MAP-2+ dendrites were also observed when Lentivirus
delivering the second shRNA (Lenti-shSOCS3 #2), specifically knocking down SOCS3 (S2 Fig),
was applied (Fig 4A). Quantitative analyses demonstrated that both Lenti-shSOCS3 and

Fig 1. Induction of SOCS3 expression by IL-6 in NS-1 cells.NS-1 cells were treated with IL-6 for the time indicated and mRNA and protein were then
analyzed by qRT-PCR and immunoblotting, respectively. A, SOCS3mRNA expression was significantly increased after IL-6 treatment. B, Protein expression
of SOCS3 was significantly increased after IL-6 treatment. C, IL-6 induced STAT3 activation by NS-1 cells. The densitometric ratios of P-STAT3 Tyr705
versus total STAT3 were calculated and are shown as fold increases. Graphs represent the mean ± SEM of triplicate culture dishes per group at each time
point from four separate experiments. *p<0.05, **p < 0.01, and ***p < 0.001 compared to control, untreated cultures (one-way ANOVA and Student–
Newman–Keuls analyses).

doi:10.1371/journal.pone.0138301.g001
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Lenti-shSOCS3 #2 infection decreased SCI-induced loss of MAP-2+ dendrites in both gray
(Fig 4B) and white (Fig 4C) matter at 1 week after complete SCI when compared to Lenti-
pGipz infection. These enhanced effects of Lenti-shSOCS3 on MAP-2+ dendritic immunoreac-
tivity were significant in the areas 1.5 mm away from the injury site both in gray (Fig 4D) and
white (Fig 4E) matter of spinal cord. These results strongly suggest that the effects of Lenti-
shSOCS3 in protecting MAP-2+ dendrites from SCI-induced decreases are specifically medi-
ated by reduced SOCS3 expression, rather than off target effects of shRNA [24]. However, such
enhancement effects of Lenti-shSOCS3 were less prominent 4 weeks after SCI, but were still
significantly observed in the caudal areas of spinal cord in both gray (Fig 4F) and white (Fig
4G) matter. Consistent with these immunostaining results, immunoblot analysis demonstrated

Fig 2. Reduced SOCS3 expression contributed to neuritic outgrowth in NS-1 cells.NS-1 cells were infected with Lenti-shSOCS3 (shSOCS3) or Lenti-
pGipz (pGipz), then treated with IL-6 for 1 h, and harvested for analyses by qRT-PCR of SOCS3mRNA expression (A) or by immunoblotting of SOCS3,
P-STAT3 Tyr705, or total STAT3 (B). The densitometric ratios of P-STAT3 Tyr705 versus total STAT3 were calculated and are shown as fold increases.
Graphs represent the mean ± SEM of triplicate cultures per group at each time point from three separate experiments. **p<0.01, ***p<0.001 compared to
control and Lenti-pGipz-infected cultures; ^^p<0.01, ^^^p<0.001 compared to IL-6-treated and Lenti-pGipz-infected cultures. C, NS-1 cells were infected with
Lenti-shSOCS3 or Lenti-pGipz and then treated with IL-6 for 3 days. The length of neurites per cell was quantified using LAS AF software. Graphs represent
the mean ± SEM of triplicate culture dishes per group at each time point from three separate experiments. ***p<0.001 compared to control and Lenti-pGipz-
infected; ^^^p<0.001 compared to IL-6-treated and Lenti-pGipz-infected cultures. D, Representative images of NS-1 cells from Lenti-shSOCS3- or Lenti-
pGipz-infected cultures, with or without IL-6 treatment. Scale bar, 25 μm.

doi:10.1371/journal.pone.0138301.g002
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that complete SCI with Lenti-pGipz treatment lead to significant loss of MAP-2 expression
both rostral and caudal to the lesion epicenter at 1 week post-injury (Fig 4H and 4I) when com-
pared to sham animals (con). However, complete SCI-induced loss of MAP-2 expression was
inhibited by Lenti-shSOCS3 treatment in the spinal cord both rostral and caudal to the lesion
epicenter (Fig 4H and 4I).

To further investigate whether SOCS3 expression negatively regulates dendrite outgrowth
of spinal cord neurons into the white matter after complete SCI, MAP-2+ dendritic length was
analyzed. In sham control rat spinal cord (Fig 5A) MAP-2+ dendrites were long with an intact
shape. However, Lenti-pGipz treatment followed by complete SCI had scattered and frag-
mented dendrites at both 1 (Fig 5A) and 4 (Fig 5C) weeks after injury when compared to sham
control animals. In contrast, when compared to Lenti-pGipz infection, reduction of SOCS3
expression by Lenti-shSOCS3 resulted in longer MAP-2+ dendrites at both 1 (Fig 5A) and
4 (Fig 5C) weeks after SCI. As expected, similar effects were seen in the Lenti-shSOCS3
#2-infected group (Fig 5A). Quantitative analyses demonstrated that both Lenti-shSOCS3 and
Lenti-shSOCS3 #2 infection increased the number of long MAP-2+ dendrites in both ventral
and dorsal horn of spinal cord 1 week after complete SCI as compared to Lenti-pGipz infection
(Fig 5B). Such increases/protection effects on MAP-2+ dendrites were still observed in both the
ventral and dorsal horns of spinal cord 4 weeks after complete SCI as compared to Lenti-pGipz
infection (Fig 5D). These data suggested that reduction of SOCS3 in spinal cord promotes local
dendritic growth after complete SCI and/or prevents dendrites from SCI-induced dying back/
degeneration in the white matter.

Fig 3. Enhancement of STAT3 activation by Lenti-shSOCS3 after complete SCI. Animals were infected with Lenti-shSOCS3 (shSOCS3) or Lenti-pGipz
(pGipz) for 2 weeks and spinal cords were completely transected at the T8 level. Immunoblot analyses showed that expression of P-STAT3 Tyr705
(P-STAT3 Tyr) was enhanced by Lenti-shSOCS3 at 4 days (n = 3) (A) or 7 days (n = 3) (B) after complete SCI in areas both rostral (R) and caudal (C) to the
injured site, as compared to Lenti-pGipz-infected animals (n = 3 at 4 days and n = 3 at 7 days). *p<0.05 compared to sham group; ^^p<0.01 compared to
Lenti-pGipz-infected group; (one-way ANOVA and Student-Newman-Keuls analyses). N = 3 per group at each time point.

doi:10.1371/journal.pone.0138301.g003
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Reduction of SOCS3 Expression Enhanced SCI-Induced GAP-43
Expression
To clarify whether Lenti-shSOCS3 infection decreasing SCI-induced loss in MAP-2+ dendrites
is attributable to increased growth/regeneration or decreased dying back/degeneration on local
dendrites, MAP-2+ dendrites were further double-stained with GAP-43, a marker for neural
regeneration. As expected, basal levels of GAP-43 in spinal cord were very low in sham control
animals (Fig 6A). GAP-43 expression was slightly induced after complete SCI in Lenti-pGipz-
infected spinal cord, which was co-localized with MAP-2+ dendrites (Fig 6A). Significant
increases in the expression of GAP-43 were induced in the spinal cord of Lenti-shSOCS3-in-
fected animals (Fig 6A), as compared to those with Lenti-pGipz infection. Moreover, the
increased GAP-43 was co-localized with MAP-2+ dendrites in white matter (third row, Fig
6A) and/or co-localized with MAP-2+ cell bodies in gray matter (fourth row, Fig 6A) in Lenti-
shSOCS3-infected spinal cord. Consistent with these results, immunoblot analysis demon-
strated that complete SCI with Lenti-pGipz treatment induce a slight increase in GAP-43
expression both rostral (2.8-fold increase) and caudal (5-fold increase) to the lesion epicenter
at 1 week post-injury (Fig 6B and 6C) when compared to sham control animals. Notably, SCI-
induced GAP-43 expression was even more significant and dramatic with Lenti-shSOCS3
infection, as compared to the increases induced by Lenti-pGipz infection in the spinal cord
both rostral (4-fold increase) and caudal (2.2-fold increase) to the lesion epicenter (Fig 6B
and 6C).

Prevention of Demyelination by Reducing SOCS3 Expression after
Complete SCI
The STAT3/SOCS3 pathway has been shown to be involved in neuroprotection [20, 21, 23]
and protection against demyelination [37]. In the present study, we investigated whether
reduction of SOCS3 expression by Lenti-shSOCS3 can decrease SCI-induced demyelination.
To test this, EC binding to myelin was used to stain spinal cord sections harvested 1 or 4 weeks
after complete SCI with either Lenti-shSOCS3 or Lenti-pGipz infection. Spinal cords from
Lenti-pGipz infection displayed significant demyelination at both 1 (Fig 7A and 7B) and 4 (Fig
7A and 7C) weeks after complete SCI. In contrast, demyelination was significantly reduced in
both Lenti-shSOCS3-and Lenti-shSOCS3 #2-infected spinal cord 1 week after complete SCI in
areas both rostral and caudal to the injured site (Fig 7A and 7B). Even 4 weeks after SCI, Lenti-
shSOCS3 infection still caused a significant reduction in demyelination in areas caudal to the

Fig 4. Distribution of MAP-2+ dendrites in the spinal cord after T8 complete SCI. A, Representative
images of a spinal cord transverse section (rostral to the injured site) from sham (con; n = 3), Lenti-shSOCS3-
(Tx + shSOCS3, n = 6), Lenti-shSOCS3 #2- (Tx + shSOCS3 #2, n = 3) or Lenti-pGipz-infected (Tx + pGipz,
n = 4) animals showing that both Lenti-shSOCS3 and Lenti-shSOCS3 #2 significantly decreased SCI (Tx)-
induced loss of MAP-2+ dendrites 1 week after SCI, but such effects were attenuated by Lenti-shSOCS3 at 4
weeks (n = 3 for con, n = 4 for Tx + pGipz, n = 4 for Tx + shSOCS3) post-injury. Scale bar, 250 μm.
Quantification of MAP-2 immunoreactive intensity in spinal cords harvested at 1 (B-E) or 4 weeks (F-G) after
SCI with Lenti-shSOCS3, Lenti-shSOCS3 #2, or Lenti-pGipz infection were analyzed in either gray (B, D, and
F) or white matter (C, E, and G). The immunoreactivities of MAP-2 in both gray (B, D, and F) and white matter
(C, E, and G) following Lenti-shSOCS3 infection were significantly higher than those following Lenti-pGipz
infection in areas both rostral and caudal to the injured site both 1 week (B-E) and 4 weeks (F-G) after SCI.
***p < 0.001 compared to sham control; ^p<0.05, ^^p<0.01, and ^^^p < 0.001 compared to Lenti-pGipz
infection (one-way ANOVA and Student-Newman-Keuls analyses). H-I, Immunoblot analyses showed that
expression of MAP-2 was enhanced by Lenti-shSOCS3 (n = 3) 1 week after complete SCI in areas both
rostral (R) and caudal (C) to the injured site. ***p<0.001 compared to sham control group (n = 3); ^p<0.05
and ^^p<0.01 compared to Lenti-pGipz-infected group (n = 3); (one-way ANOVA and Student-Newman-
Keuls analyses).

doi:10.1371/journal.pone.0138301.g004
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Fig 5. MAP-2+ dendritic length in thewhitematter of spinal cord after T8 complete SCI. (A) Representative images showingMAP-2+ dendrites in the ventral horn of
a spinal cord transverse section (rostral to the injured site) from sham (con; n = 3), Lenti-pGipz- (Tx + pGipz, n = 4), Lenti-shSOCS3 (Tx + shSOCS3, n = 6), or Lenti-
shSOCS3 #2 (Tx + shSOCS3 #2, n = 3)-infected animals at 1week after SCI (Tx). (C) Representative images showingMAP-2+ dendrites in the ventral horn of a spinal
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injured site compared to Lenti-pGipz infection (Fig 7A and 7C). These results support the con-
cept that Lenti-shSOCS3 decreased demyelination after complete SCI specifically by reducing
SOCS3 expression.

Discussion
In the present study, we first investigated the expression of SOCS3 by NS-1 cells in response to
IL-6, the regulatory effect of SOCS3 on STAT3 activation, and the role of the SOCS3/STAT3
pathway in neuritic outgrowth. IL-6 treatment induced SOCS3 expression in NS-1 cells and led
to STAT3 activation. SOCS3 negatively regulates STAT3 activation, which in turn inhibits IL-
6-induced neuritic outgrowth in vitro. Lenti-shSOCS3 could block such negative regulation by
reducing SOCS3 expression. We further investigated the role of knocked down SOCS3 in pro-
moting dendritic growth/regeneration and myelination after complete SCI. Reduction of
SOCS3 by Lenti-shSOCS3 increased MAP-2+ dendrites (both density and length) at both 1
and 4 weeks after SCI. Lenti-shSOCS3 decreased SCI-induced demyelination in white matter at
1 and 4 weeks post-injury. The current results are the first to demonstrate that (1) endogenous
SOCS3 expression by NS-1 cells contributes to inhibition of IL-6-induced neuritic growth, (2)
reduction of SCI-increased SOCS3 expression by Lenti-shSOCS3 in spinal cord neurons
increases GAP-43 expression and enhances MAP-2+ dendritic growth in white matter after
complete SCI, and (3) reduction of SOCS3 expression prevents further demyelination after T8
complete SCI in adult rats.

Activated STAT3 functions as a key effector of neuritic outgrowth via transcriptional activa-
tion [22, 38, 39]. In dorsal root ganglion (DRG) neurons, over-expression of STAT3 increases
neuritic growth beyond baseline levels [22]. In addition, inhibition of P-STAT3 Tyr705 after
sciatic nerve transection resulted in reduced neuritic outgrowth in vitro [39]. In contrast,
SOCS3 is known to limit IL-6-mediated signaling by inhibiting JAK tyrosine kinase activity,
thereby preventing STAT3 activation. SOCS3 expression in neurons plays a negative role in
regulating neuritic outgrowth [22, 40]. In DRG neurons, over-expression of SOCS3 inhibits
neuritic outgrowth [22]. Smith et al. [32] reported that in optic nerve, conditional deletion of
SOCS3 promoted regeneration of injured optic nerve axons. In SOCS3-gp130 double knockout
mice, the regeneration effect was ablated, suggesting that the effects of SOCS3 deletion in regu-
lating optic nerve regeneration are mediated by gp130 [32], the common signal transducing
receptor for all IL-6 family members [29, 30]. In our study, reduced SOCS3 expression
enhanced IL-6-induced neuritic outgrowth via STAT3 activation in NS-1 cells. Interestingly,
the control cultures without IL-6 treatment had enhanced neurite growth when infected by
Lenti-shSOCS3. These results might be caused by serine phosphorylation of STAT3 in mito-
chondria, which is non-transcriptional regulation, leading to neurite outgrowth. A recent
report demonstrated that NGF treatment induced serine phosphorylation of STAT3, but not
tyrosine phosphorylation, which regulates neurite growth in PC12 cells [41]. Consistent with
these results, our unpublished data show that Lenti-shSOCS3 can regulate not only tyrosine
phosphorylation of STAT3, but also serine phosphorylation.

Moreover, we observed that reduction of SOCS3 by Lenti-shSOCS3 in rat spinal cord neu-
rons enhances MAP-2+ dendritic growth after complete SCI. These findings suggest that

cord transverse section (rostral to the injured site) from sham (n = 3), Lenti-pGipz- (n = 4), or Lenti-shSOCS3 (n = 4)-infected animals at 4weeks after SCI. GMandWM
indicate graymatter andwhitematter, respectively. Scale bar, 75 μm. Statistical analyses indicated thatMAP-2+ dendritic length in both ventral horn (Ventral, the upper
graphs of B andD) and dorsal horn (Dorsal, the lower graphs of B andD) following Lenti-shSOCS3 infectionwas significantly longer than that following Lenti-pGipz
infection in areas both rostral and caudal to the injured site both 1 (B) and 4weeks (D) after SCI. ***p< 0.001 compared to sham control; ^^^p < 0.001 compared to Lenti-
pGipz infection (one-wayANOVAandStudent-Newman-Keuls analyses).

doi:10.1371/journal.pone.0138301.g005
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Fig 6. Reduced SOCS3 expression enhanced GAP-43 expression in the spinal cord after complete SCI. A, Representative images of double labeling
with GAP-43 (green) and MAP-2 (red) showed that Lenti-shSOCS3 significantly enhanced GAP-43 immunoreactivities at 1 week after SCI (Tx + shSOCS3,
n = 6). Note the increased co-localization of MAP-2+ dendrites or cell bodies with GAP-43 in the Lenti-shSOCS3-infected group (arrow) as compared to the

The Role of SOCS3 Expression on Dendritic Outgrowth after SCI

PLOS ONE | DOI:10.1371/journal.pone.0138301 September 18, 2015 14 / 19



SOCS3 negatively regulates neuritic growth by inhibiting IL-6-induced P-STAT3 Tyr705. In
addition, Lenti-shSOCS3 infection results in more and longer MAP-2+ dendrites after com-
plete SCI. Reduction of SOCS3 by Lenti-shSOCS3 increased both (1) growth/regeneration-pro-
moting STAT3 activities, and (2) GAP-43 expression after complete SCI. Collectively, these
findings suggest that knocked down SOCS3 promotes local dendritic growth/regeneration.
However, the possibility cannot be ruled out that Lenti-shSOCS3 may also prevent further
dying back/degeneration to maintain dendrite density and/or length, as dendrite lengths
decreased over time due to SCI-induced degeneration. These results coincide with several
other reports showing that SOCS3 is an intrinsic factor for the negative regulation of axonal
regeneration after injury in the central nervous system (CNS) [22, 32, 42]. Furthermore, our
previous studies demonstrated that reduction of SOCS3 protects neurons from cell death after
SCI [20]. Specifically, treatment with Lenti-shSOCS3 results in not only a greater number of
neurons, but also more healthy neurons after complete SCI. Thus, the enhancement effects of
reduced SOCS3 on MAP-2+ dendritic outgrowth in spinal cord after SCI might be partially
attributable to a greater number of healthy neurons surviving after SCI.

The distributions of dendritic arborizations in the white matter of the CNS are critical for
behavioral functions. For instance, reticular neurons may project dendrites into the adjacent
corticospinal tract [43]. The subthalamic nucleus has dendritic projections to the cerebral
peduncle, where they receive inputs from the ascending pathways [44]. In the current study,
we demonstrated that there is a significant reduction of MAP-2+ dendritic projections in white
matter after complete SCI and that reduction of SOCS3 expression in spinal cord neurons can
decrease SCI-induced loss of MAP-2+ dendritic projections in terms of both dendritic density
and length. Further studies will be needed to determine whether these dendrites make any syn-
aptic contacts with descending or ascending pathways in the white matter of spinal cord.

The function of SOCS3 in the brain is cell type-specific [14, 31]. Several lines of evidence
suggest that in microglia, SOCS3 inhibits cytokine-induced immune and inflammatory
responses in vitro [45, 46] and that in astrocytes, SOCS3 enhances inhibition of chemokine
expression and T-cell migration [31], suggesting that SOCS3 expression in macrophages,
microglia, and astrocytes suppresses brain inflammation. However, the role of SOCS3 in oligo-
dendrocytes appears to be detrimental by inhibiting STAT3 activation and subsequent down-
stream neuroprotective effects [47]. LIF and CNTF play a protective role in oligodendrocyte
survival in vitro [48] and in vivo [49]; furthermore, in an experimental autoimmune encephalo-
myelitis (EAE) animal model of multiple sclerosis (MS), double deletion of LIF-R and gp130 to
inhibit STAT3 activation worsened MS-induced demyelination when compared to wild-type
animals [50]. Our previous study showed that infection of Lenti-shSOCS3 into rat spinal cord
is mainly distributed in neurons [20]. The present study demonstrates that Lenti-shSOCS3
infection decreases complete SCI-induced demyelination in white matter of spinal cord. The
neuroprotective effect of Lenti-shSOCS3 infection may lead to reduced demyelination. Collec-
tively, targeting the SOSC3/STAT3 pathway may provide a potential therapeutic strategy fol-
lowing SCI.

Lenti-pGipz group (Tx + pGipz, n = 4). N = 6 for control (con) group. Scale bar, 25 μm. B-C, Immunoblot analyses showed that expression of GAP-43 was
enhanced by Lenti-shSOCS3 (shSOCS3, n = 3) at 1 week after complete SCI in areas both rostral (R) and caudal (C) to the injured site. *p<0.05, and
***p<0.001 compared to sham group; ^^p<0.01 compared to Lenti-pGipz-infected group (pGipz, n = 3) (one-way ANOVA and Student-Newman-Keuls
analyses).

doi:10.1371/journal.pone.0138301.g006
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Fig 7. Reduced SOCS3 expression decreased SCI-induced demyelination in white matter of spinal cord. A, Representative images showed EC-
stained myelin in transverse spinal cord sections (rostral to the injured site) from sham (con), Lenti-pGipz- (Tx + pGipz), Lenti-shSOCS3-infected (Tx
+ shSOCS3), or Lenti-shSOCS3 #2 (Tx + shSOCS3 #2) animals at 1 week (n = 3 for con, n = 4 for Tx + pGipz, n = 6 for Tx + shSOCS3, n = 3 for Tx
+ shSOCS3 #2) or 4 weeks (n = 3 for con, n = 4 for Tx + pGipz, n = 4 for Tx + shSOCS3) after SCI (Tx). Scale bar, 250 μm. Statistical analyses indicated that
the intensity of EC-stained myelin following Lenti-shSOCS3 or Lenti-shSOCS3 #2 infection was significantly increased compared to Lenti-pGipz infection 1
week after SCI in areas both rostral and caudal to the injured site (B) and was only significantly increased in caudal spinal cord when harvested 4 weeks after
SCI (C). ***p < 0.001 compared to sham control; ^p<0.05, and ^^^p < 0.001 compared to the Lenti-pGipz-infected group (one-way ANOVA and Student-
Newman-Keuls analyses).

doi:10.1371/journal.pone.0138301.g007
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Supporting Information
S1 Fig. IL-6 induced neurite outgrowth in NS-1 cells. A, NS-1 cells were treated with IL-6 for
3 days and then the length of neurites of NS-1 cells was quantified using LAS AF software.
Graphs represent the mean ± SEM of triplicate cultures in three separate experiments.
���p<0.001 compared to untreated controls. B, Representative images of NS-1 cells from
untreated (con) or IL-6-treated cultures (IL-6). Scale bar, 25 μm.
(TIF)

S2 Fig. Reduction of SOCS3 mRNA expression using lentiviral plasmids encoding either
shSOCS3 or shSOCS3 #2, which are two different shRNAs specific to SOCS3. SHSY-5Y
cells were infected with Lenti-pGipz (pGipz), Lenti-shSOCS3 #2 (shSOCS3 #2), or Lenti-
shSOCS3 (shSOCS3), and then treated with Oncostatin M (OSM) for 1 h. mRNA was then
analyzed by qPCR for SOCS3 mRNA expression. Graphs represent the mean ± SEM of tripli-
cate cultures in three separate experiments. ���p<0.001 compared to untreated controls;
^^^p<0.001 compared to OSM-treated Lenti-pGipz-infected cultures.
(TIF)
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