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Abstract
Thermostability issue of protein point mutations is a common occurrence in protein engi-

neering. An application which predicts the thermostability of mutants can be helpful for guid-

ing decision making process in protein design via mutagenesis. An in silico point mutation

scanning method is frequently used to find “hot spots” in proteins for focused mutagenesis.

ProTherm (http://gibk26.bio.kyutech.ac.jp/jouhou/Protherm/protherm.html) is a public data-

base that consists of thousands of protein mutants’ experimentally measured thermostabil-

ity. Two data sets based on two differently measured thermostability properties of protein

single point mutations, namely the unfolding free energy change (ddG) and melting temper-

ature change (dTm) were obtained from this database. Folding free energy change calcula-

tion from Rosetta, structural information of the point mutations as well as amino acid

physical properties were obtained for building thermostability prediction models with infor-

matics modeling tools. Five supervised machine learning methods (support vector machine,

random forests, artificial neural network, naïve Bayes classifier, K nearest neighbor) and

partial least squares regression are used for building the prediction models. Binary and ter-

nary classifications as well as regression models were built and evaluated. Data set redun-

dancy and balancing, the reverse mutations technique, feature selection, and comparison

to other published methods were discussed. Rosetta calculated folding free energy change

ranked as the most influential features in all prediction models. Other descriptors also made

significant contributions to increasing the accuracy of the prediction models.

Introduction
Thermostability is a basic biophysical property of a protein. It connects tightly to protein expres-
sion, folding, activities and functions. Therefore, thermostability is one of the most important
criteria to consider during protein engineering process. Commonly, very large libraries need to
be built up for screening stable protein mutants. Such process is considerably expensive and
time consuming. An in silico application which predicts the thermostability of mutants can be
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very helpful for guiding the decision making process in protein design via mutagenesis. An in
silico point mutation scanning method is frequently used in finding the “hot spots” in proteins
for focused mutations. In addition, in silico thermostability prediction can help to prioritize the
large libraries into smaller focused ones in order to save time and cost.

Several protein thermostability prediction models have been developed [1–12]. High predic-
tion accuracy as well as efficiency are still challenging in this field [13]. Note that most in silico
methods can only claim to achieve moderate accuracy in protein stability prediction due to the
complexity of many factors which contribute to protein stability.

ProTherm (http://gibk26.bio.kyutech.ac.jp/jouhou/Protherm/protherm.html) is a database
which consists of thousands of protein mutants’ thermostability data. The data which were
archived in ProTherm came from experimental measurements [14–19]. It's one of the most
comprehensive protein thermostability database in the public domain. ProTherm is also the
most popular resource for training thermostability prediction models which are reported in
literature.

Rosetta is a state of art protein design tool featuring Monte Carlo simulated annealing sam-
pling, which is capable to survey large conformation space of proteins and provides reasonable
energy evaluation in short time. Time efficiency is considered a major advantage of Rosetta
comparing to the classic force field based molecule mechanics. One very useful function in
Rosetta is to calculate the stability influence of protein point mutations. The Rosetta DDG_mo-
nomer application uses a scoring function to calculate the preference between the wild type and
mutant proteins. This score difference can be used as a descriptor to evaluate mutant thermosta-
bility [20]. Kortemme et. al. described the details of Rosetta DDG_monomer calculation [21].

Machine learning tools are widely used to provide artificial intelligence for building predic-
tion models in many applications, including handwriting recognition, face detection, speaker
identification, microarray expression data analysis, quantitative structure-activity relationship
etc. Machine learning can be considered as a smart and efficient way for computer automati-
cally making decisions on unseen data, based on learning from large and comprehensive train-
ing data. In this work, five supervised machine learning tools: support vector machine (SVM),
random forests (RF), naïve Bayes classifier (NBC), K nearest neighbor (KNN), and artificial
neural network (ANN) as well as one regression tool: partial least squares (PLS) were used for
building protein thermostability predictions models with classification and regression analyses.

Quantitative structure—activity relationship (QSAR) models have been maturely applied to
the small molecule drug discovery field [22, 23]. The predictive QSAR model is trained by a set
of data with known activities. The derived model is then used to predict data with unknown
activities. In this work, QSAR modeling has been attempted to protein design and engineering
field for prediction of thermostability of protein single point mutations. Three key components
of a QSAR modeling have been carefully designed and tested. They include a high quality and
diversified data set to train the model, a biophysically meaningful and accurately derived
descriptor set, as well as several powerful machine learning and regression algorithms. Binary
prediction from the derived models achieved high thermostability prediction results. Ternary
prediction resulted an acceptable accuracy. The regression case demonstrated that the intro-
duction of simple physical properties of amino acids and structural properties can improve the
performance of the prediction models.

Methods

Data set construction
Two data sets: unfolding free energy change (ddG) and melting temperature change (dTm)
were constructed from ProTherm database. Each data point in the two data sets consists of a
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single point mutation from a protein which has at least an experimental structure available in
Protein DataBank (PDB). To be relevant with physiological conditions, the data were collected
between pH 6 and 8. Mutations were selected only in small and medium monomeric proteins
with no more than 300 residues. Multiple data points under same conditions were averaged.
For the ddG data set, we removed the mutations whose measured unfolding free energy
changes are lower than -10 kcal/mol or greater than 10 kcal/mol, since these measurements are
outliners and likely to have greater errors. We did not trim the dTm data set in order to keep it
the similar size as the ddG set. For classification purpose, 2 ddG boundaries (-1, -0.5) kcal/mol
and (0.5, 1) kcal/mol and 2 dTm boundaries (-3, -1)°C and (1, 3)°C were setup for defining sta-
ble, neutral, and unstable mutants (Table 1). Data sets are provided in the supporting informa-
tion (S1 Table).

Descriptor set
The novel descriptor set being used for modeling contains three layers: 1. Physical property
layer: changes of six canonical amino acid physical properties, 2. Structural property layer: two
structural properties at the mutation site, and 3. Energetic layer: a high level folding energy
change which was calculated by Rosetta (Table 2).

The six canonical amino acid physical properties were quantified based on literature records
[24–29]. They are molecular weight, formal charge, hydrophobicity, aromaticity, van der Waals
volume, and solvent accessible surface area. The differences of these properties between the
mutant and wild type amino acid were calculated and serve as descriptors for model building.

Two structural descriptors were obtained from ProTherm database: secondary structure
which was observed from the experimental structure at the mutation site and percentage acces-
sible surface area (ASA) of the wild type residue on protein level. The secondary structure fea-
ture was quantified as the following: alpha helix = 1, beta sheet = 2, coil = 3, turn = 4. The ASA
was calculated by the following method: ASA (expressed in units of Å2 Accessibility (%)) is
defined as the ASA of the residue at the mutation site (X) in its parent protein, computed with

Table 1. Data set construction.

Class Measured ddG (kcal/mol) Qualified Data Class Structures / Total Structures a

Neutral � -0.5 � 0.5 323 37 / 51

Stable � 1.0 69 20 / 51

Unstable � -1.0 406 39 / 51

Class Measured dTm (°C) Qualified Data Class Structures / Total Structures a

Neutral � -1.0 � 1.0 223 47 / 82

Stable � 3.0 141 40 / 82

Unstable � -3.0 435 62 / 82

a Class Structures: the number of PDB structures in each class. Total Structures: the total number of PDB structures in the data set. Some structures

contain more than one class of mutations. The sum of structures in each class is greater than total structures in the data set.

doi:10.1371/journal.pone.0138022.t001

Table 2. The descriptor set used for modeling.

The change of basic physical properties of amino
acids

Structure based Energy

(1) Molecular weight; (2) Formal charge; (3)
Hydrophobicity; (4) Aromaticity; (5) van der Waals
volume; (6) Solvent accessible surface area

(1) Secondary structure where the mutation is located in
experimental structure; (2) Percentage solvent accessible
surface area (residue exposure)

(1) Rosetta DDG_monomer
(mutant folding energy change)

doi:10.1371/journal.pone.0138022.t002
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a program Analytical Surface Calculation (ASC) divided by the ASA of the residue in an
extended tripeptide Ala-X-Ala conformation. The extended state ASA was calculated using
ECEPP/2 algorithm with dihedral angles given by Oobatake and Ooi [30] and the van der
Waals radius of atoms from Ooi et al. [31]. The values are Ala-110.2; Asp-144.1; Cys-140.4;
Glu-174.7; Phe-200.7; Gly-78.7; His-181.9; Ile-185.0; Lys-205.7; Leu-183.1; Met-200.1; Asn-
146.4; Pro-141.9; Gln-178.6; Arg-229.0; Ser-117.2; Thr-138.7; Val-153.7; Trp-240.5; Tyr-213.7
(the units are in Å2).

The mutants’ folding free energy changes were calculated by Rosetta DDG_monomer applica-
tion with the high-level precision protocol (all atoms and backbone flexibility were considered).
Fifty models for each of wild-type and mutant structures were generated by Rosetta. Please refer
to reference [21] for details of DDG_monomer calculation. Protocol details are available in sup-
porting information (S1 Text). Condor high throughput computing application was imple-
mented to distribute thousands of Rosetta DDG_monomer calculations on computer cluster.

Statistics algorithms
Different statistics algorithms have different advantages which are suitable for specific training
and prediction purpose. To obtain high performance models for protein thermostability predic-
tion purpose, we tested several statistics algorithms. Five supervised machine learning algo-
rithms: support vector machine (SVM), random forests (RF), naïve Bayes classifier (NBC), K
nearest neighbor (KNN), and artificial neural network (ANN) and a regression algorithm partial
least squares (PLS) were applied to model building. All statistics algorithms were implemented
with the caret package (v 6.0–35) [32] in the R project for statistical computing (v 3.1.1).

The method of support vector machines (SVM) was developed by Vladimir N. Vapnik at
AT&T Bell Labs originally for discriminative classification to solve handwriting recognition
problems [33]. The SVMmodel is trained by the data with known values. SVM trained model
minimizes the generalization error by maximizing the margins from the hyper-plane to sepa-
rate the positive and negative data. It’s capable to explore subtle patterns in a noisy data set by
applying kernel functions and soft margins. SVM is capable for binary classification as well as
multi-class classification and regression. This kernel based SVM is very powerful to make pre-
dictions by projecting the data to a higher dimensional feature space by a kernel function.
However, using the kernel function may introduce overfitting problem.

The random forests (RF) method was developed by Leo Breiman of UC Berkeley [34]. It’s
an ensemble classifier based on many decision tree models. RF can be applied for both classifi-
cation and regression. Advantages of RF include the ability to establish interpretable models,
accurate predictive results, resistant to overfitting problems, and fast training process.

Naïve Bayes classifier (NBC) is based on Bayes’ theorem [35]. It can only be applied for clas-
sification. NBC requires only a small amount of training data to estimate the parameters neces-
sary for classification and can be scaled very well to very large data sets. NBC has a little
difficulty with noisy or missing data.

K nearest neighbor (KNN) is a method for classifying objects based on closest training
examples in the feature space (feature similarity clustering) [36]. It was originated from pattern
recognition. KNN is one of the simplest machine learning algorithms. It can be applied for
both classification and regression. The interpretable algorithm has simple implementation in
which only one parameter—K needs to be tuned. One disadvantage of the method is that it’s
computationally intensive.

Artificial neural network (ANN) is a mathematical model that is inspired by the structure
and functional aspects of biological neural networks [37]. It can be used for both classification
and regression. ANN is one commonly used artificial intelligent (AI) tool and able to learn
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from training data. When an element of the neural network fails, it can continue without any
problem by its parallel nature. ANN requires a large diversity of training set in real-world
operation.

Partial least squares (PLS) is one of the most commonly used regression tools in bioinfor-
matics and cheminformatics [38]. It’s an extension of the multiple linear regression method.
PLS can reduce many factors to a few latent factors thus avoids overfitting problem. Besides to
its native regression application, PLS can also be used for classification.

Model building
Three types of prediction models: binary classification for predicting stable and unstable
mutants, ternary classification for predicting stable, neutral, and unstable mutants, as well as
regression, were developed with the ddG and dTm data sets. Caret package automatically
tuned the parameters in these models by grid search. We randomly selected 80% of data for
training models in all statistics algorithms. Ten-fold cross validation was carried out by using
the same training set. The accuracy of the 10-fold cross validation was used for evaluating dif-
ferent statistics algorithms.

To rigorously evaluate the modeling performance for generally predicting real data, a “blind”
test was carried out for each model. The test set consisted of the rests of 20% data which were
left from training data set selection as the “unseen” data. The accuracy from this test process
was used for checking whether the models are overfitted. In a more rigorous test, we selected
20% data by protein for the “blind” test set. So, the test set contained proteins which do not pres-
ent in the training set to avoid protein and amino acid residue position redundancy.

In the binary classification test case, in addition to prediction accuracy, receiver operating
characteristics (ROC) curve was plotted and area under curve (AUC) value was calculated for
each model to evaluate the prediction performance. In case of regression, coefficient of deter-
mination (R2) was calculated for evaluating the prediction performance.

Hypothetical reverse mutations
The hypothetical reverse mutations technique is to build hypothetical reverse mutations based
on the forward mutations that already exist in the data set. The unfolding free energy and melt-
ing temperature changes are state functions which are only governed by the properties at the
beginning and end states. The values of state functions in a reverse mutation B-> A have a
reversed sign comparing to those in the corresponding forward mutation A-> B [3, 4, 9]. This
technique provides an additional validation step to check overfitting of the prediction models.
We used the binary classification case which has the best prediction performance to test the
models with reverse mutations. In the test, we built data sets based on reverse mutations from
the original data sets. The signs of the following descriptors were reversed: delta_MW (molecu-
lar weight), delta_Chg (formal charge), delta_ARM (aromaticity), delta_Hydro (hydrophobic-
ity), delta_VdwV (van der Waals volume), delta_SASA (solvent accessible surface area), and
Rosetta calculated ddG since they are governed by state functions. The signs of SecSt (second-
ary structure at the mutation site) and ASA_pct (percentage of accessible surface area at the
mutation site) were not reversed since they indicate the mutational location on a protein and
thus are the same for both forward and reverse mutations. The reverse mutations data sets are
provided in the supporting information (S1 Table).

We did 2 different tests based on the reverse mutations data. In the first test, we used models
which were previously trained by forward mutations (80% data) to predict the reverse muta-
tions “blind” test set (20% data). In the second test, we built new models by using a combina-
tion of forward and reverse mutations (80% data) for training. The combined forward and
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reverse mutations data set is more balanced than either of the 2 data sets. Then we tested the
models with the combination of forward and reverse mutations “blind” test set (20% data).

Feature selection
In order to connect statistics modeling results to the biophysical and structural information,
feature selection was performed with recursive feature elimination (RFE) method from the
caret package. RFE evaluates critical descriptors which contribute most to the prediction mod-
els. The high impact descriptors can help protein scientists to better design protein mutants
and construct screening libraries based on understanding the protein thermostability on struc-
tural and biophysical levels. Fig 1 shows the overall workflow of model construction process.

Results and Discussion

Data set construction
The unfolding free energy change (ddG) data set contains 798 mutants from 51 different pro-
tein structures. The more challenging melting temperature change (dTm) data set contains 799
mutants from 82 different protein structures (Table 1). Both data sets contain a diversified
structural and mutational data (Figs 2 and 3). Protein structures (Figs 4 and 5) in these thermo-
stability prediction models contain a wide variety of protein classes as defined in Structural

Fig 1. Workflow of model construction.

doi:10.1371/journal.pone.0138022.g001
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Fig 2. The diversity of protein structures (top 4 charts) and point mutation residues (bottom 3 charts) in the ddG data set. The sum of all proteins in
the “Stability” pie chart is greater than the total number of proteins in Table 1, because some proteins have multiple mutations in different stability categories
i.e. stable, neutral, or unstable. The “Resolution” chart only has data from proteins which have crystal structures. An NMR structure doesn’t have a resolution.

doi:10.1371/journal.pone.0138022.g002

Fig 3. The diversity of protein structures (top 4 charts) and point mutation residues (bottom 3 charts) in the dTm data set. The sum of all proteins in
the “Stability” pie chart is greater than the total number of proteins in Table 1, because some proteins have multiple mutations in different stability categories
i.e. stable, neutral, or unstable. The “Resolution” chart only has data from proteins which have crystal structures. An NMR structure doesn’t have a resolution.

doi:10.1371/journal.pone.0138022.g003
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Classification of Proteins database (SCOP) [39]. A diversified data set is very important to
establish generalized prediction models.

Training and testing classification and regression models
In binary classification of the ddG data set, the best prediction performance was obtained from
SVM and ANN with 90% accuracy in 10-fold cross validation (CV) (Table 3). For the more
challenging melting temperature prediction, RF performed the best with 85% accuracy in
10-fold CV. (Table 4). In all top performance models, the accuracy in the “blind” test is better
or comparable to that in cross validation. Thus, these models were not overfitted based on this
testing. The ROC curves of the “blind” test are shown in Figs 6 and 7. The AUC values of the
“blind” test are shown in Tables 3 and 4.

Ternary classification is much harder than the binary classification due to the one additional
class. In order to be counted as a corrected prediction for accuracy calculation, all 3 classes
need to be predicted correctly. In the case of ddG prediction, SVM, RF, and ANN performed
equally well with 69% accuracy in 10-fold CV (Table 5). For predicting the melting

Fig 4. Protein structures in ddG predictionmodels. Alpha helixes are in red, beta sheets are in yellow,
turns are in green. A diverse set of proteins with a mixture of different secondary structures were obtained.

doi:10.1371/journal.pone.0138022.g004

Fig 5. Protein structures in dTm predictionmodels. Alpha helixes are in red, beta sheets are in yellow,
turns are in green. A diverse set of proteins with a mixture of different secondary structures were obtained.

doi:10.1371/journal.pone.0138022.g005
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temperature change, SVM resulted 63% accuracy in 10-fold CV (Table 6). The accuracy in the
“blind” test is comparable to that in cross validation in these top performed models except for
ANN in ddG ternary classification. This indicates those models are not overfitted. ANN in
ddG ternary classification may be considered to be slightly overfitted since the “blind” test
accuracy is 4% lower than that of the cross validation.

In ddG regression models, RF gave the best 0.43 coefficient of determination (R2) in 10-fold
CV (Table 7). In dTm regression models, SVM and RF gave the best 0.31 R2 in 10 fold CV
(Table 8). The regression modeling process demonstrated an improvement of models by
including amino acids’ simple physical properties and structural descriptors comparing to just
using the Rosetta folding energy change calculation alone. Please see the Feature Selection sec-
tion for details.

Table 3. ddG binary classification.

Methods SVM RF NBC KNN ANN PLS

CV accuracy 90% 88% 85% 87% 90% 86%

Test accuracy 95% 93% 89% 94% 92% 95%

Test AUC 0.90 0.92 0.94 0.84 0.93 0.87

doi:10.1371/journal.pone.0138022.t003

Table 4. dTm binary classification.

Methods SVM RF NBC KNN ANN PLS

CV accuracy 83% 85% 78% 82% 82% 81%

Test accuracy 82% 83% 73% 81% 76% 77%

Test AUC 0.79 0.79 0.77 0.81 0.81 0.77

doi:10.1371/journal.pone.0138022.t004

Fig 6. The ROC curves of ddG binary classification models for predicting the “unseen” data.

doi:10.1371/journal.pone.0138022.g006
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Comparison of statistics algorithms
In our 6 different predictions, SVM performed the best in 4 predictions (ddG binary and ter-
nary classification, dTm ternary classification and regression). RF also performed the best in 4
predictions (ddG ternary classification and regression, dTm binary classification and regres-
sion). These 2 machine learning algorithms feature finding subtle patterns in complex data.
RF, if it is applied properly, tends to be less prone to overfitting than other methods. SVM can
also minimize overfitting. We used a radial kernel function with SVM in this study. Radial ker-
nel function is less overfitting comparing to some high degree polynomial kernel functions.
SVM and RF methods are also very popular for protein thermostability predictions which are
reported in literature.

Fig 7. The ROC curves of dTm binary classification models for predicting the “unseen” data.

doi:10.1371/journal.pone.0138022.g007

Table 5. ddG ternary classification.

Methods SVM RF NBC KNN ANN PLS

CV accuracy 69% 69% 64% 65% 69% 65%

Test accuracy 68% 71% 63% 61% 65% 64%

doi:10.1371/journal.pone.0138022.t005

Table 6. dTm ternary classification.

Methods SVM RF NBC KNN ANN PLS

CV accuracy 63% 62% 59% 62% 62% 61%

Test accuracy 63% 67% 66% 66% 63% 67%

doi:10.1371/journal.pone.0138022.t006
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Feature selection and improvements from the novel descriptor set
To connect the statistics prediction with biophysical and structural information of the models,
feature selection was carried out with recursive feature elimination (RFE) in the caret package.
RFE ranks the importance of the descriptors by comparing their weight contribution to a
model. For all types of predictions, Rosetta calculated ddG always ranked the highest among all
nine descriptors. It demonstrated the importance of the Rosetta calculated energy term in these
prediction models. Rosetta energy term provided a comprehensive representation and detailed
molecular interactions (if using each individual Rosetta energy term) of the stability change.
The percentage accessible surface area and hydrophobicity also played important roles in the
thermostability prediction models (Table 9). Mutating surface residues and buried residues
influenced the protein thermostability significantly. Changing residue polarity was also found
to be important. This conclusion is consistent with commonly accepted rules that increasing
protein surface polarity and increasing protein core hydrophobic packing can generally
improve the protein thermostability.

We used the regression modeling to demonstrate an improvement of models by including
amino acids’ simple physical properties and structural descriptors comparing to just using the
Rosetta folding energy change calculation alone. We compared the R2 values between the best
machine learning models (RF models in ddG and dTm) by using all descriptors and a simple
linear regression model by using only Rosetta derived ddG (a single feature). In this compari-
son, the “blind” test results were used. For ddG prediction, the best RF model gave 0.43 test R2

(Table 7). Using only Rosetta derived ddG to perform a simple linear regression resulted a R2

of only 0.22. By including the amino acids’ simple physical properties and structural informa-
tion as descriptors, the coefficient of determination increased 0.21 unit. For dTm prediction,
RF gave 0.27 test R2 (Table 8), which was 0.06 unit higher than the R2 (0.21) from a simple lin-
ear regression by using the Rosetta calculated ddG as the only feature.

Table 7. ddG regression.

Methods SVM RF KNN ANN PLS

CV R2 value 0.35 0.43 0.31 0.24 0.33

Test R2 value 0.41 0.43 0.36 0.15 0.35

doi:10.1371/journal.pone.0138022.t007

Table 8. dTm regression.

Methods SVM RF KNN ANN PLS

CV R2 value 0.31 0.31 0.30 0.15 0.25

Test R2 value 0.25 0.27 0.24 0.10 0.22

doi:10.1371/journal.pone.0138022.t008

Table 9. Top ranked features (descriptors) which are selected by RFE. Numbers depict the importance ranking of the descriptors in each model.

Features ddG Bin ddG Ter ddG Reg dTm Bin dTm Ter dTm Reg

Rosetta ddG 1 1 1 1 1 1

Percentage accessible surface area 2 2 2 3 2 2

Hydrophobicity 3 3 2 3 4

Formal charge 4

Molecular weight 3

van der Waals volume 4

doi:10.1371/journal.pone.0138022.t009
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Despite of intrinsic overlapping between descriptors that include amino acids’ physical
properties / local structure of the mutation and the Rosetta ddG which is a scoring function
consists of multiple structural evaluations, the additional descriptors on top of Rosetta scoring
function provide detail and straight forward description of “what” and “where” the single point
mutation occurs in the target protein. Furthermore, using simple amino acids' physical proper-
ties has the following advantages: these properties are "solid" features which can be derived in
high accuracy; they can be very helpful to interpret the model straight forwardly. These
descriptors represent "what" is the mutation. The structural properties describe "where" the
mutation locates, on the surface of the protein or buried inside the protein as well as the local
secondary structure.

Non-redundant testing for ddG classifications
In a more rigorous test, we constructed non-redundant training and test data sets for ddG
binary and ternary classifications. We randomly selected 80% data by protein as the training
data set. The rest 20% data was for “blind” testing. The test set contained proteins which do not
present in the training set to avoid protein and amino acid residue position redundancy. We
applied the exactly same training and testing procedure.

Comparing to the previous “redundant” test set results (Tables 3 and 5), the “non-redun-
dant” (at both protein and amino acid residue position levels) test set results (Tables 10 and
11) showed that for ddG binary classifications, the prediction performance slightly decreased.
In the “redundant” test, the best accuracy was 95% (SVM and PLS) and the best AUC was 0.94
(NBC). In the “non-redundant” test, the best accuracy was 92% (RF) and the best AUC was
0.84 (SVM). This indicated that some binary classification models are slightly overfitted on the
protein or position level. For the ternary classification, the prediction performance was compa-
rable or even increased. In the “redundant” test, the best accuracy was 71% (RF). In the “non-
redundant” test, the best accuracy was 78% (RF). To explain the increased performance in the
ternary classification case, we thought that the previous “redundant” test was probably not
overfitted and even underperformed due to the test set selection (randomly picked 20% data).
The “non-redundant” test set selection was targeted to a certain group of protein.

Hypothetical reverse mutations to detect overfitting and unbalanced data
sets
The hypothetical reverse mutations technique is a very good way to increase sampling of the
data set without adding new proteins. It provides an additional validation step to detect possi-
ble overfitting in the prediction models. For many machine learning methods, overfitting can
be encountered due to close correlation between training and testing data sets. We applied
hypothetical reverse mutations to our binary models which have the best prediction perfor-
mance. Comparison between test results by using forward and reverse mutations is shown in
Tables 12 and 13.

Table 10. Non-redundant ddG binary classification (training and test data sets were selected by protein).

Methods SVM RF NBC KNN ANN PLS

CV accuracy 88% 89% 87% 88% 88% 87%

Test accuracy 90% 92% 82% 90% 91% 91%

Test AUC 0.84 0.82 0.65 0.35 0.81 0.63

doi:10.1371/journal.pone.0138022.t010
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In the first test, we used the same model being trained by forward mutations with experi-
mental data. We then compared the test AUC value between predicting forward mutations and
predicting reverse mutations in the test set (since the training models are the same in this case,
the CV accuracy is the same too). In this case, the test AUC values of most models in the
reverse mutations test were lower than those in the forward mutations test. The difference of
test AUC values was greater than 0.1 in the following models: SVM, RF, NBC, and ANN in the
ddG binary classification, and NBC and KNN in the dTm binary classification. This indicated
that those models may be overfitted. The forward mutations training data had more unstable
mutations than stable mutations. When using models being trained by forward mutations
data, the prediction had a tendency to predict unstable mutations. Therefore, when predicting
the reverse mutations test set, where the majority data were stable mutations, the performance
decreased in the overfitted models.

In the second test, we mixed forward and reverse mutations in training and test data set to
balance the data sets. The performance of prediction models by using a balanced data set was
better than either forward or reverse mutations data set with most algorithms. This demon-
strated that a balanced training data set can increase the generalization performance of predic-
tion models. However, it is not easy to obtain a balanced protein thermostability data set from
experiments since most mutations on a wild type protein are unstable. Therefore, using reverse
mutations technique to balance the data set can be useful.

Table 11. Non-redundant ddG ternary classification (training and test data sets were selected by protein).

Methods SVM RF NBC KNN ANN PLS

CV accuracy 67% 69% 62% 63% 67% 61%

Test accuracy 70% 78% 76% 68% 73% 72%

doi:10.1371/journal.pone.0138022.t011

Table 12. ddG binary classification with forward and reversemutations.

Methods SVM RF NBC KNN ANN PLS

Forward mutations training and test

CV accuracy 90% 88% 85% 87% 90% 86%

Test AUC 0.90 0.92 0.94 0.84 0.93 0.87

Forward mutations training and reverse mutations test

Test AUC 0.70 0.76 0.66 0.79 0.80 0.80

Forward + reverse mutations training, forward + reverse mutations test

Test AUC 0.96 0.96 0.90 0.92 0.95 0.93

doi:10.1371/journal.pone.0138022.t012

Table 13. dTm binary classification with forward and reversemutations.

Methods SVM RF NBC KNN ANN PLS

Forward mutations training and test

CV accuracy 83% 85% 78% 82% 82% 81%

Test AUC 0.79 0.79 0.77 0.81 0.81 0.77

Forward mutations training and reverse mutations test

Test AUC 0.73 0.72 0.61 0.70 0.77 0.76

Forward + reverse mutations training, forward + reverse mutations test

Test AUC 0.85 0.85 0.75 0.81 0.85 0.84

doi:10.1371/journal.pone.0138022.t013
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Comparison to other methods
To evaluate the performance of our models (ddG prediction), we compared them with 11 other
methods which were previously reported in literature. Due to the limitation of direct access to
these methods for training and testing with our data set, we were not able to obtain perfor-
mance of these other methods by using our own data set. However, we managed to obtain the
performance of these other methods from publications. MUpro, I-Mutant 2.0, LSE, PROTS,
and PROTS_RF performance was obtained from Li, et al. [3]. FoldX and EGAD performance
was obtained from Potapov et al. [11] PoPMuSiC-2.0, Prethermut, ProMaya, and ELASPIC
performance was obtained from Berliner et al. [12]. One best performed model from each of
our ddG binary and ternary classification as well as regression models was included in the com-
parison. Cross validation accuracy and correlation coefficient (Pearson’s r) were used for com-
parison except for FoldX, and EGAD. In FoldX and EGAD, the accuracy and the r value were
obtained by using the directly calculated ddG of data sets containing 1200 and 1065 mutants,
respectively. The accuracy and the r value in MUpro, I-Mutant 2.0 LSE, PROTS, and
PROTS_RF model were obtained from a 5-fold cross validation, while we ran a 10-fold cross
validation with our models. PoPMuSiC-2.0, Prethermut, ProMaya, and ELASPIC were evalu-
ated with a 20-fold cross validation. The Potapov_09 (Core) data set [11] which contains 2104
mutations in 79 proteins was used for training and testing with these 4 methods. We converted
our coefficient of determination (R2) to Pearson’s r by taking a squared root operation.

Comparing between the regression cases (Table 14), our RF model outperformed others but
not Prothermut, ProMaya, and ELASPIC. The Potapov_09 (Core) data set which was used to
evaluate these higher performance models is more than 3 times the size as our cross validation
set. The ideal comparison is to use the same benchmark data set. Unfortunately, we couldn’t
apply the Potapov_09 (Core) data set to our models in this paper due to technical reasons. Our
binary classification has a better accuracy than other methods. But our binary classification has
a ddG gap being applied in the data set and neutral mutants were excluded. In addition, our
best binary classification model may be overfitted. The accuracy of our ternary classification is

Table 14. Comparison of ddG prediction performance.

Methods Accuracy r

Binary classification with SVM model in this paper a 0.90

Ternary classification with RF model in this paper a 0.69

Regression with RF model in this paper a 0.66

MUpro b 0.81 0.48

I-Mutant 2.0 b 0.78 0.54

LSE b 0.61 0.16

FoldX d 0.71 0.50

EGAD d 0.73 0.60

PROTS (Structure based) b 0.79 0.40

PROTS_RF (Structure based) b 0.80 0.63

PoPMuSiC-2.0 c 0.62

Prethemut c 0.72

ProMaya c 0.74

ELASPIC c 0.77

a 10-fold cross validation
b 5-fold cross validation
c 20-fold cross validation
d Direct prediction.

doi:10.1371/journal.pone.0138022.t014
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comparable to the accuracy of the other methods. It is close to the average of the accuracy from
the other methods.

Unfolding free energy change (ddG) and melting temperature change
(dTm) predictions
Two data sets, namely the unfolding free energy change (ddG) and melting temperature change
(dTm) data sets, were constructed and used for training thermostability prediction models. The
ddG data set was constructed based on experimental measurements of protein unfolding free
energy change data. In all three types of our predictions, ddG predictions always better performed
than dTm predictions. In addition, majority of protein thermostability predictions in literature are
ddGmodels. And dTm predictions are rarely reported. Melting temperature is a direct indication
of protein thermostability. Protein scientists often use melting temperature to describe the stability
of a given protein. Therefore, the dTm prediction would be better accepted by protein scientists.

As discussed in an article by Becktel et al [40], under certain approximations (“ddG must be
small and Tm of the wild type protein must not be too close to Ts”, which is the temperature at
which the wild type protein’s entropy change dS is zero), dTm = ddG/dS g

� where dS g
� is the

entropy change of the mutant protein at dG = 0 or the slope of the mutant protein’s stability
curve at Tm (dG = 0). In our prediction models, the dS g

� factor was not directly considered by
any descriptors. In addition, our dTm data set has a larger dynamic range comparing to the
ddG data set. We removed the mutations whose measured unfolding free energy changes are
lower than -10 kcal/mol or greater than 10 kcal/mol when constructing the ddG data set. But
we did not trim the dTm data set the same way in order to keep ddG and dTm sets in the com-
parable size. So there are more outliners in the dTm data set than the ddG set. And the dTm
data set may deviate from the Becktel et al approximation (ddG must be small). Other unclear
factors, like measurement consistency in data set etc, may also affect dTm prediction.

Rosetta improvements
Rosetta calculated ddG was the single most important contributor to all prediction models as
we found in feature selection. This property is a comprehensive feature which covers structural
and “energetical” information. The accuracy of this property can significantly influence the
overall performance of the prediction models. The ddG term being calculated by Rosetta is a
scoring function, which considers certain intra-molecular interactions such as steric effect,
hydrogen bonds etc. However, Rosetta is not set up by using a full atom based molecular
mechanics force field. Therefore, the Rosetta ddG term is not actually in an energy form. It rep-
resents a “fitness” of certain molecular structures in relationship to a control system (a wild
type protein in the mutant thermostability prediction case). The Rosetta ddG is only meaning-
ful for relative comparison. Energy properties from molecular mechanics calculations such as
MM-PBSA can be used as a surrogate to Rosetta ddG. When sampling the same conforma-
tional space, molecular mechanics energy is often more accurate than Rosetta ddG. However,
Rosetta is efficient in surveying conformational space of proteins with consideration of both
side chain and backbone flexibility. In comparing to other machine learning based protein
thermostability prediction methods, this approach has a compatible but not the best perfor-
mance. Increasing the accuracy of Rosetta ddG would be a readily approach to improving the
prediction accuracy of the models in this paper.

Portable QSARmodeling
Three components in a typical QSAR model: a data set, a descriptor set, and a statistical algo-
rithmmake it a portable method. The QSAR methodology was originally developed for
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predicting biological activities of small molecules for drug discovery [41–43]. In a frequently
used application, a data set of chemical compounds’ concentration at half inhibition activity
(IC50) are used to train a predictive model. The small molecules’ structural and physical proper-
ties are used as the descriptor set. A regression algorithm such as multiple linear regression or
partial least squares is used to establish the model. QSAR modeling is also commonly used to
predict drug compounds’ absorption, distribution, metabolism, excretion and toxicity
(ADMET). In the current work, the same QSAR modeling framework was adopted to predict
thermostability of a more complicated biological entity—proteins. We obtained a training data
set, which contains experimental measured protein thermostability data. The molecular descrip-
tors were tailored to this specific problem: protein thermostability. And several statistics algo-
rithms were used to establish predictive models and compared to each other in terms of
performance. Such QSARmodel can be applied to a broader scope. As long as a uniformly and
accurately measured training data set can be obtained; a meaningful set of properties as descrip-
tors can be derived; and a statistics algorithm which is capable to provide inferential analysis of
the data based on the descriptor set can be identified, a predictive QSARmodel can be estab-
lished. QSAR methods to predict activities and functions of biological system exist elsewhere
[44]. The flexible QSAR models do not rely on any understanding of the physical mechanisms
of the system. However, suitable physical properties can be involved through descriptors [45].

Conclusion
There are lots of challenges to apply machine learning based QSAR models in protein engineer-
ing. Proteins have more complicated structures. Protein folding is still a puzzle which is not
completed solved. On the other hand, proteins have more activities and functions to be pre-
dicted than those in small molecule field. Yet descriptor sets are under development. This work
started from simple: applying amino acids' simple physical properties and structural informa-
tion in addition to the Rosetta folding energy calculation.

Several thermostability prediction models were built for protein single point mutations.
These models can be useful to prioritize protein engineering design libraries to save time and
cost. To enhance the prediction performance, state of the art QSAR modeling was applied. It
involved high quality and diversified data sets, an accurately derived and scientifically mean-
ingful descriptor set, and several powerful machine learning and regression algorithms.

The models being reported here are limited to predicting thermostability of a single point
mutation. Multiple point mutations are often involved in protein engineering. Predicting ther-
mostability of multiple point mutations are possible but with great challenges. Rosetta folding
energy calculation can handle mutants with more than one point mutation. The simple amino
acid biophysical properties change and structural descriptors need to be synergized to each
other to treat multiple point mutations properly. In addition, the experimental data with multi-
ple point mutations are more complicated and noisy than those in the single point mutation
case. This can also affect overall prediction quality of the multiple point mutation models. Fur-
ther developing thermostability prediction models which consider multiple point mutations
are under consideration. In addition, more sophisticated descriptors need to be developed for
broader applications in the protein engineering field.

Supporting Information
S1 Table. Data sets for training and test in ddG and dTm binary and ternary classifications
as well as regression. Data sets of reverse mutations and non-redundant construction are also
included.
(XLSX)
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